xref: /linux/drivers/gpu/drm/imagination/pvr_vm.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_vm.h"
5 
6 #include "pvr_device.h"
7 #include "pvr_drv.h"
8 #include "pvr_gem.h"
9 #include "pvr_mmu.h"
10 #include "pvr_rogue_fwif.h"
11 #include "pvr_rogue_heap_config.h"
12 
13 #include <drm/drm_exec.h>
14 #include <drm/drm_gem.h>
15 #include <drm/drm_gpuvm.h>
16 
17 #include <linux/container_of.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/gfp_types.h>
21 #include <linux/kref.h>
22 #include <linux/mutex.h>
23 #include <linux/stddef.h>
24 
25 /**
26  * DOC: Memory context
27  *
28  * This is the "top level" datatype in the VM code. It's exposed in the public
29  * API as an opaque handle.
30  */
31 
32 /**
33  * struct pvr_vm_context - Context type used to represent a single VM.
34  */
35 struct pvr_vm_context {
36 	/**
37 	 * @pvr_dev: The PowerVR device to which this context is bound.
38 	 * This binding is immutable for the life of the context.
39 	 */
40 	struct pvr_device *pvr_dev;
41 
42 	/** @mmu_ctx: The context for binding to physical memory. */
43 	struct pvr_mmu_context *mmu_ctx;
44 
45 	/** @gpuvm_mgr: GPUVM object associated with this context. */
46 	struct drm_gpuvm gpuvm_mgr;
47 
48 	/** @lock: Global lock on this VM. */
49 	struct mutex lock;
50 
51 	/**
52 	 * @fw_mem_ctx_obj: Firmware object representing firmware memory
53 	 * context.
54 	 */
55 	struct pvr_fw_object *fw_mem_ctx_obj;
56 
57 	/** @ref_count: Reference count of object. */
58 	struct kref ref_count;
59 
60 	/**
61 	 * @dummy_gem: GEM object to enable VM reservation. All private BOs
62 	 * should use the @dummy_gem.resv and not their own _resv field.
63 	 */
64 	struct drm_gem_object dummy_gem;
65 };
66 
67 static inline
68 struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
69 {
70 	return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
71 }
72 
73 struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
74 {
75 	if (vm_ctx)
76 		kref_get(&vm_ctx->ref_count);
77 
78 	return vm_ctx;
79 }
80 
81 /**
82  * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
83  *                                     page table structure behind a VM context.
84  * @vm_ctx: Target VM context.
85  */
86 dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
87 {
88 	return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
89 }
90 
91 /**
92  * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
93  * @vm_ctx: Target VM context.
94  *
95  * This is used to allow private BOs to share a dma_resv for faster fence
96  * updates.
97  *
98  * Returns: The dma_resv pointer.
99  */
100 struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
101 {
102 	return vm_ctx->dummy_gem.resv;
103 }
104 
105 /**
106  * DOC: Memory mappings
107  */
108 
109 /**
110  * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
111  */
112 struct pvr_vm_gpuva {
113 	/** @base: The wrapped drm_gpuva object. */
114 	struct drm_gpuva base;
115 };
116 
117 enum pvr_vm_bind_type {
118 	PVR_VM_BIND_TYPE_MAP,
119 	PVR_VM_BIND_TYPE_UNMAP,
120 };
121 
122 /**
123  * struct pvr_vm_bind_op - Context of a map/unmap operation.
124  */
125 struct pvr_vm_bind_op {
126 	/** @type: Map or unmap. */
127 	enum pvr_vm_bind_type type;
128 
129 	/** @pvr_obj: Object associated with mapping (map only). */
130 	struct pvr_gem_object *pvr_obj;
131 
132 	/**
133 	 * @vm_ctx: VM context where the mapping will be created or destroyed.
134 	 */
135 	struct pvr_vm_context *vm_ctx;
136 
137 	/** @mmu_op_ctx: MMU op context. */
138 	struct pvr_mmu_op_context *mmu_op_ctx;
139 
140 	/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
141 	struct drm_gpuvm_bo *gpuvm_bo;
142 
143 	/**
144 	 * @new_va: Prealloced VA mapping object (init in callback).
145 	 * Used when creating a mapping.
146 	 */
147 	struct pvr_vm_gpuva *new_va;
148 
149 	/**
150 	 * @prev_va: Prealloced VA mapping object (init in callback).
151 	 * Used when a mapping or unmapping operation overlaps an existing
152 	 * mapping and splits away the beginning into a new mapping.
153 	 */
154 	struct pvr_vm_gpuva *prev_va;
155 
156 	/**
157 	 * @next_va: Prealloced VA mapping object (init in callback).
158 	 * Used when a mapping or unmapping operation overlaps an existing
159 	 * mapping and splits away the end into a new mapping.
160 	 */
161 	struct pvr_vm_gpuva *next_va;
162 
163 	/** @offset: Offset into @pvr_obj to begin mapping from. */
164 	u64 offset;
165 
166 	/** @device_addr: Device-virtual address at the start of the mapping. */
167 	u64 device_addr;
168 
169 	/** @size: Size of the desired mapping. */
170 	u64 size;
171 };
172 
173 /**
174  * pvr_vm_bind_op_exec() - Execute a single bind op.
175  * @bind_op: Bind op context.
176  *
177  * Returns:
178  *  * 0 on success,
179  *  * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
180  *    a callback function.
181  */
182 static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
183 {
184 	switch (bind_op->type) {
185 	case PVR_VM_BIND_TYPE_MAP:
186 		return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
187 					bind_op, bind_op->device_addr,
188 					bind_op->size,
189 					gem_from_pvr_gem(bind_op->pvr_obj),
190 					bind_op->offset);
191 
192 	case PVR_VM_BIND_TYPE_UNMAP:
193 		return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
194 					  bind_op, bind_op->device_addr,
195 					  bind_op->size);
196 	}
197 
198 	/*
199 	 * This shouldn't happen unless something went wrong
200 	 * in drm_sched.
201 	 */
202 	WARN_ON(1);
203 	return -EINVAL;
204 }
205 
206 static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
207 {
208 	drm_gpuvm_bo_put(bind_op->gpuvm_bo);
209 
210 	kfree(bind_op->new_va);
211 	kfree(bind_op->prev_va);
212 	kfree(bind_op->next_va);
213 
214 	if (bind_op->pvr_obj)
215 		pvr_gem_object_put(bind_op->pvr_obj);
216 
217 	if (bind_op->mmu_op_ctx)
218 		pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
219 }
220 
221 static int
222 pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
223 			struct pvr_vm_context *vm_ctx,
224 			struct pvr_gem_object *pvr_obj, u64 offset,
225 			u64 device_addr, u64 size)
226 {
227 	struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
228 	const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
229 	const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
230 	struct sg_table *sgt;
231 	u64 offset_plus_size;
232 	int err;
233 
234 	if (check_add_overflow(offset, size, &offset_plus_size))
235 		return -EINVAL;
236 
237 	if (is_user &&
238 	    !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
239 		return -EINVAL;
240 	}
241 
242 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
243 	    offset & ~PAGE_MASK || size & ~PAGE_MASK ||
244 	    offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
245 		return -EINVAL;
246 
247 	bind_op->type = PVR_VM_BIND_TYPE_MAP;
248 
249 	dma_resv_lock(obj->resv, NULL);
250 	bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
251 	dma_resv_unlock(obj->resv);
252 	if (IS_ERR(bind_op->gpuvm_bo))
253 		return PTR_ERR(bind_op->gpuvm_bo);
254 
255 	bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
256 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
257 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
258 	if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
259 		err = -ENOMEM;
260 		goto err_bind_op_fini;
261 	}
262 
263 	/* Pin pages so they're ready for use. */
264 	sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
265 	err = PTR_ERR_OR_ZERO(sgt);
266 	if (err)
267 		goto err_bind_op_fini;
268 
269 	bind_op->mmu_op_ctx =
270 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
271 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
272 	if (err) {
273 		bind_op->mmu_op_ctx = NULL;
274 		goto err_bind_op_fini;
275 	}
276 
277 	bind_op->pvr_obj = pvr_obj;
278 	bind_op->vm_ctx = vm_ctx;
279 	bind_op->device_addr = device_addr;
280 	bind_op->size = size;
281 	bind_op->offset = offset;
282 
283 	return 0;
284 
285 err_bind_op_fini:
286 	pvr_vm_bind_op_fini(bind_op);
287 
288 	return err;
289 }
290 
291 static int
292 pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
293 			  struct pvr_vm_context *vm_ctx, u64 device_addr,
294 			  u64 size)
295 {
296 	int err;
297 
298 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
299 		return -EINVAL;
300 
301 	bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
302 
303 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
304 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
305 	if (!bind_op->prev_va || !bind_op->next_va) {
306 		err = -ENOMEM;
307 		goto err_bind_op_fini;
308 	}
309 
310 	bind_op->mmu_op_ctx =
311 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
312 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
313 	if (err) {
314 		bind_op->mmu_op_ctx = NULL;
315 		goto err_bind_op_fini;
316 	}
317 
318 	bind_op->vm_ctx = vm_ctx;
319 	bind_op->device_addr = device_addr;
320 	bind_op->size = size;
321 
322 	return 0;
323 
324 err_bind_op_fini:
325 	pvr_vm_bind_op_fini(bind_op);
326 
327 	return err;
328 }
329 
330 /**
331  * pvr_vm_gpuva_map() - Insert a mapping into a memory context.
332  * @op: gpuva op containing the remap details.
333  * @op_ctx: Operation context.
334  *
335  * Context: Called by drm_gpuvm_sm_map following a successful mapping while
336  * @op_ctx.vm_ctx mutex is held.
337  *
338  * Return:
339  *  * 0 on success, or
340  *  * Any error returned by pvr_mmu_map().
341  */
342 static int
343 pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
344 {
345 	struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
346 	struct pvr_vm_bind_op *ctx = op_ctx;
347 	int err;
348 
349 	if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
350 		return -EINVAL;
351 
352 	err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
353 			  op->map.va.addr);
354 	if (err)
355 		return err;
356 
357 	drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
358 	drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
359 	ctx->new_va = NULL;
360 
361 	return 0;
362 }
363 
364 /**
365  * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
366  * @op: gpuva op containing the unmap details.
367  * @op_ctx: Operation context.
368  *
369  * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
370  * @op_ctx.vm_ctx mutex is held.
371  *
372  * Return:
373  *  * 0 on success, or
374  *  * Any error returned by pvr_mmu_unmap().
375  */
376 static int
377 pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
378 {
379 	struct pvr_vm_bind_op *ctx = op_ctx;
380 
381 	int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
382 				op->unmap.va->va.range);
383 
384 	if (err)
385 		return err;
386 
387 	drm_gpuva_unmap(&op->unmap);
388 	drm_gpuva_unlink(op->unmap.va);
389 
390 	return 0;
391 }
392 
393 /**
394  * pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
395  * @op: gpuva op containing the remap details.
396  * @op_ctx: Operation context.
397  *
398  * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
399  * mapping or unmapping operation causes a region to be split. The
400  * @op_ctx.vm_ctx mutex is held.
401  *
402  * Return:
403  *  * 0 on success, or
404  *  * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
405  */
406 static int
407 pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
408 {
409 	struct pvr_vm_bind_op *ctx = op_ctx;
410 	u64 va_start = 0, va_range = 0;
411 	int err;
412 
413 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
414 	err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
415 	if (err)
416 		return err;
417 
418 	/* No actual remap required: the page table tree depth is fixed to 3,
419 	 * and we use 4k page table entries only for now.
420 	 */
421 	drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
422 
423 	if (op->remap.prev) {
424 		pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
425 		drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
426 		ctx->prev_va = NULL;
427 	}
428 
429 	if (op->remap.next) {
430 		pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
431 		drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
432 		ctx->next_va = NULL;
433 	}
434 
435 	drm_gpuva_unlink(op->remap.unmap->va);
436 
437 	return 0;
438 }
439 
440 /*
441  * Public API
442  *
443  * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
444  */
445 
446 /**
447  * pvr_device_addr_is_valid() - Tests whether a device-virtual address
448  *                              is valid.
449  * @device_addr: Virtual device address to test.
450  *
451  * Return:
452  *  * %true if @device_addr is within the valid range for a device page
453  *    table and is aligned to the device page size, or
454  *  * %false otherwise.
455  */
456 bool
457 pvr_device_addr_is_valid(u64 device_addr)
458 {
459 	return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
460 	       (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
461 }
462 
463 /**
464  * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
465  * address and associated size are both valid.
466  * @vm_ctx: Target VM context.
467  * @device_addr: Virtual device address to test.
468  * @size: Size of the range based at @device_addr to test.
469  *
470  * Calling pvr_device_addr_is_valid() twice (once on @size, and again on
471  * @device_addr + @size) to verify a device-virtual address range initially
472  * seems intuitive, but it produces a false-negative when the address range
473  * is right at the end of device-virtual address space.
474  *
475  * This function catches that corner case, as well as checking that
476  * @size is non-zero.
477  *
478  * Return:
479  *  * %true if @device_addr is device page aligned; @size is device page
480  *    aligned; the range specified by @device_addr and @size is within the
481  *    bounds of the device-virtual address space, and @size is non-zero, or
482  *  * %false otherwise.
483  */
484 bool
485 pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
486 				   u64 device_addr, u64 size)
487 {
488 	return pvr_device_addr_is_valid(device_addr) &&
489 	       drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
490 	       size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
491 	       (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
492 }
493 
494 static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
495 {
496 	kfree(to_pvr_vm_context(gpuvm));
497 }
498 
499 static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
500 	.vm_free = pvr_gpuvm_free,
501 	.sm_step_map = pvr_vm_gpuva_map,
502 	.sm_step_remap = pvr_vm_gpuva_remap,
503 	.sm_step_unmap = pvr_vm_gpuva_unmap,
504 };
505 
506 static void
507 fw_mem_context_init(void *cpu_ptr, void *priv)
508 {
509 	struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
510 	struct pvr_vm_context *vm_ctx = priv;
511 
512 	fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
513 	fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
514 }
515 
516 /**
517  * pvr_vm_create_context() - Create a new VM context.
518  * @pvr_dev: Target PowerVR device.
519  * @is_userspace_context: %true if this context is for userspace. This will
520  *                        create a firmware memory context for the VM context
521  *                        and disable warnings when tearing down mappings.
522  *
523  * Return:
524  *  * A handle to the newly-minted VM context on success,
525  *  * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
526  *    missing or has an unsupported value,
527  *  * -%ENOMEM if allocation of the structure behind the opaque handle fails,
528  *    or
529  *  * Any error encountered while setting up internal structures.
530  */
531 struct pvr_vm_context *
532 pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
533 {
534 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
535 
536 	struct pvr_vm_context *vm_ctx;
537 	u16 device_addr_bits;
538 
539 	int err;
540 
541 	err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
542 				&device_addr_bits);
543 	if (err) {
544 		drm_err(drm_dev,
545 			"Failed to get device virtual address space bits\n");
546 		return ERR_PTR(err);
547 	}
548 
549 	if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
550 		drm_err(drm_dev,
551 			"Device has unsupported virtual address space size\n");
552 		return ERR_PTR(-EINVAL);
553 	}
554 
555 	vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
556 	if (!vm_ctx)
557 		return ERR_PTR(-ENOMEM);
558 
559 	vm_ctx->pvr_dev = pvr_dev;
560 
561 	vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
562 	err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
563 	if (err)
564 		goto err_free;
565 
566 	if (is_userspace_context) {
567 		err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
568 					   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
569 					   fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
570 
571 		if (err)
572 			goto err_page_table_destroy;
573 	}
574 
575 	drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
576 	drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
577 		       is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
578 		       0, &pvr_dev->base, &vm_ctx->dummy_gem,
579 		       0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
580 
581 	mutex_init(&vm_ctx->lock);
582 	kref_init(&vm_ctx->ref_count);
583 
584 	return vm_ctx;
585 
586 err_page_table_destroy:
587 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
588 
589 err_free:
590 	kfree(vm_ctx);
591 
592 	return ERR_PTR(err);
593 }
594 
595 /**
596  * pvr_vm_context_release() - Teardown a VM context.
597  * @ref_count: Pointer to reference counter of the VM context.
598  *
599  * This function ensures that no mappings are left dangling by unmapping them
600  * all in order of ascending device-virtual address.
601  */
602 static void
603 pvr_vm_context_release(struct kref *ref_count)
604 {
605 	struct pvr_vm_context *vm_ctx =
606 		container_of(ref_count, struct pvr_vm_context, ref_count);
607 
608 	if (vm_ctx->fw_mem_ctx_obj)
609 		pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
610 
611 	WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
612 			     vm_ctx->gpuvm_mgr.mm_range));
613 
614 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
615 	drm_gem_private_object_fini(&vm_ctx->dummy_gem);
616 	mutex_destroy(&vm_ctx->lock);
617 
618 	drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
619 }
620 
621 /**
622  * pvr_vm_context_lookup() - Look up VM context from handle
623  * @pvr_file: Pointer to pvr_file structure.
624  * @handle: Object handle.
625  *
626  * Takes reference on VM context object. Call pvr_vm_context_put() to release.
627  *
628  * Returns:
629  *  * The requested object on success, or
630  *  * %NULL on failure (object does not exist in list, or is not a VM context)
631  */
632 struct pvr_vm_context *
633 pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
634 {
635 	struct pvr_vm_context *vm_ctx;
636 
637 	xa_lock(&pvr_file->vm_ctx_handles);
638 	vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
639 	if (vm_ctx)
640 		kref_get(&vm_ctx->ref_count);
641 
642 	xa_unlock(&pvr_file->vm_ctx_handles);
643 
644 	return vm_ctx;
645 }
646 
647 /**
648  * pvr_vm_context_put() - Release a reference on a VM context
649  * @vm_ctx: Target VM context.
650  *
651  * Returns:
652  *  * %true if the VM context was destroyed, or
653  *  * %false if there are any references still remaining.
654  */
655 bool
656 pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
657 {
658 	if (vm_ctx)
659 		return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
660 
661 	return true;
662 }
663 
664 /**
665  * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
666  * given file.
667  * @pvr_file: Pointer to pvr_file structure.
668  *
669  * Removes all vm_contexts associated with @pvr_file from the device VM context
670  * list and drops initial references. vm_contexts will then be destroyed once
671  * all outstanding references are dropped.
672  */
673 void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
674 {
675 	struct pvr_vm_context *vm_ctx;
676 	unsigned long handle;
677 
678 	xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
679 		/* vm_ctx is not used here because that would create a race with xa_erase */
680 		pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
681 	}
682 }
683 
684 static int
685 pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
686 {
687 	struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
688 	struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
689 
690 	/* Unmap operations don't have an object to lock. */
691 	if (!pvr_obj)
692 		return 0;
693 
694 	/* Acquire lock on the GEM being mapped. */
695 	return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
696 }
697 
698 /**
699  * pvr_vm_map() - Map a section of physical memory into a section of
700  * device-virtual memory.
701  * @vm_ctx: Target VM context.
702  * @pvr_obj: Target PowerVR memory object.
703  * @pvr_obj_offset: Offset into @pvr_obj to map from.
704  * @device_addr: Virtual device address at the start of the requested mapping.
705  * @size: Size of the requested mapping.
706  *
707  * No handle is returned to represent the mapping. Instead, callers should
708  * remember @device_addr and use that as a handle.
709  *
710  * Return:
711  *  * 0 on success,
712  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
713  *    address; the region specified by @pvr_obj_offset and @size does not fall
714  *    entirely within @pvr_obj, or any part of the specified region of @pvr_obj
715  *    is not device-virtual page-aligned,
716  *  * Any error encountered while performing internal operations required to
717  *    destroy the mapping (returned from pvr_vm_gpuva_map or
718  *    pvr_vm_gpuva_remap).
719  */
720 int
721 pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
722 	   u64 pvr_obj_offset, u64 device_addr, u64 size)
723 {
724 	struct pvr_vm_bind_op bind_op = {0};
725 	struct drm_gpuvm_exec vm_exec = {
726 		.vm = &vm_ctx->gpuvm_mgr,
727 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
728 			 DRM_EXEC_IGNORE_DUPLICATES,
729 		.extra = {
730 			.fn = pvr_vm_lock_extra,
731 			.priv = &bind_op,
732 		},
733 	};
734 
735 	int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
736 					  pvr_obj_offset, device_addr,
737 					  size);
738 
739 	if (err)
740 		return err;
741 
742 	pvr_gem_object_get(pvr_obj);
743 
744 	err = drm_gpuvm_exec_lock(&vm_exec);
745 	if (err)
746 		goto err_cleanup;
747 
748 	err = pvr_vm_bind_op_exec(&bind_op);
749 
750 	drm_gpuvm_exec_unlock(&vm_exec);
751 
752 err_cleanup:
753 	pvr_vm_bind_op_fini(&bind_op);
754 
755 	return err;
756 }
757 
758 /**
759  * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
760  * @vm_ctx: Target VM context.
761  * @device_addr: Virtual device address at the start of the target mapping.
762  * @size: Size of the target mapping.
763  *
764  * Return:
765  *  * 0 on success,
766  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
767  *    address,
768  *  * Any error encountered while performing internal operations required to
769  *    destroy the mapping (returned from pvr_vm_gpuva_unmap or
770  *    pvr_vm_gpuva_remap).
771  */
772 int
773 pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
774 {
775 	struct pvr_vm_bind_op bind_op = {0};
776 	struct drm_gpuvm_exec vm_exec = {
777 		.vm = &vm_ctx->gpuvm_mgr,
778 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
779 			 DRM_EXEC_IGNORE_DUPLICATES,
780 		.extra = {
781 			.fn = pvr_vm_lock_extra,
782 			.priv = &bind_op,
783 		},
784 	};
785 
786 	int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr,
787 					    size);
788 	if (err)
789 		return err;
790 
791 	err = drm_gpuvm_exec_lock(&vm_exec);
792 	if (err)
793 		goto err_cleanup;
794 
795 	err = pvr_vm_bind_op_exec(&bind_op);
796 
797 	drm_gpuvm_exec_unlock(&vm_exec);
798 
799 err_cleanup:
800 	pvr_vm_bind_op_fini(&bind_op);
801 
802 	return err;
803 }
804 
805 /* Static data areas are determined by firmware. */
806 static const struct drm_pvr_static_data_area static_data_areas[] = {
807 	{
808 		.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
809 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
810 		.offset = 0,
811 		.size = 128,
812 	},
813 	{
814 		.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
815 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
816 		.offset = 128,
817 		.size = 1024,
818 	},
819 	{
820 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
821 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
822 		.offset = 0,
823 		.size = 128,
824 	},
825 	{
826 		.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
827 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
828 		.offset = 128,
829 		.size = 128,
830 	},
831 	{
832 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
833 		.location_heap_id = DRM_PVR_HEAP_USC_CODE,
834 		.offset = 0,
835 		.size = 128,
836 	},
837 };
838 
839 #define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
840 
841 /*
842  * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
843  * static data area for each heap.
844  */
845 static const struct drm_pvr_heap pvr_heaps[] = {
846 	[DRM_PVR_HEAP_GENERAL] = {
847 		.base = ROGUE_GENERAL_HEAP_BASE,
848 		.size = ROGUE_GENERAL_HEAP_SIZE,
849 		.flags = 0,
850 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
851 	},
852 	[DRM_PVR_HEAP_PDS_CODE_DATA] = {
853 		.base = ROGUE_PDSCODEDATA_HEAP_BASE,
854 		.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
855 		.flags = 0,
856 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
857 	},
858 	[DRM_PVR_HEAP_USC_CODE] = {
859 		.base = ROGUE_USCCODE_HEAP_BASE,
860 		.size = ROGUE_USCCODE_HEAP_SIZE,
861 		.flags = 0,
862 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
863 	},
864 	[DRM_PVR_HEAP_RGNHDR] = {
865 		.base = ROGUE_RGNHDR_HEAP_BASE,
866 		.size = ROGUE_RGNHDR_HEAP_SIZE,
867 		.flags = 0,
868 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
869 	},
870 	[DRM_PVR_HEAP_VIS_TEST] = {
871 		.base = ROGUE_VISTEST_HEAP_BASE,
872 		.size = ROGUE_VISTEST_HEAP_SIZE,
873 		.flags = 0,
874 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
875 	},
876 	[DRM_PVR_HEAP_TRANSFER_FRAG] = {
877 		.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
878 		.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
879 		.flags = 0,
880 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
881 	},
882 };
883 
884 int
885 pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
886 			  struct drm_pvr_ioctl_dev_query_args *args)
887 {
888 	struct drm_pvr_dev_query_static_data_areas query = {0};
889 	int err;
890 
891 	if (!args->pointer) {
892 		args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
893 		return 0;
894 	}
895 
896 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
897 	if (err < 0)
898 		return err;
899 
900 	if (!query.static_data_areas.array) {
901 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
902 		query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
903 		goto copy_out;
904 	}
905 
906 	if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
907 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
908 
909 	err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
910 	if (err < 0)
911 		return err;
912 
913 copy_out:
914 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
915 	if (err < 0)
916 		return err;
917 
918 	args->size = sizeof(query);
919 	return 0;
920 }
921 
922 int
923 pvr_heap_info_get(const struct pvr_device *pvr_dev,
924 		  struct drm_pvr_ioctl_dev_query_args *args)
925 {
926 	struct drm_pvr_dev_query_heap_info query = {0};
927 	u64 dest;
928 	int err;
929 
930 	if (!args->pointer) {
931 		args->size = sizeof(struct drm_pvr_dev_query_heap_info);
932 		return 0;
933 	}
934 
935 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
936 	if (err < 0)
937 		return err;
938 
939 	if (!query.heaps.array) {
940 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
941 		query.heaps.stride = sizeof(struct drm_pvr_heap);
942 		goto copy_out;
943 	}
944 
945 	if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
946 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
947 
948 	/* Region header heap is only present if BRN63142 is present. */
949 	dest = query.heaps.array;
950 	for (size_t i = 0; i < query.heaps.count; i++) {
951 		struct drm_pvr_heap heap = pvr_heaps[i];
952 
953 		if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
954 			heap.size = 0;
955 
956 		err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
957 		if (err < 0)
958 			return err;
959 
960 		dest += query.heaps.stride;
961 	}
962 
963 copy_out:
964 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
965 	if (err < 0)
966 		return err;
967 
968 	args->size = sizeof(query);
969 	return 0;
970 }
971 
972 /**
973  * pvr_heap_contains_range() - Determine if a given heap contains the specified
974  *                             device-virtual address range.
975  * @pvr_heap: Target heap.
976  * @start: Inclusive start of the target range.
977  * @end: Inclusive end of the target range.
978  *
979  * It is an error to call this function with values of @start and @end that do
980  * not satisfy the condition @start <= @end.
981  */
982 static __always_inline bool
983 pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
984 {
985 	return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
986 }
987 
988 /**
989  * pvr_find_heap_containing() - Find a heap which contains the specified
990  *                              device-virtual address range.
991  * @pvr_dev: Target PowerVR device.
992  * @start: Start of the target range.
993  * @size: Size of the target range.
994  *
995  * Return:
996  *  * A pointer to a constant instance of struct drm_pvr_heap representing the
997  *    heap containing the entire range specified by @start and @size on
998  *    success, or
999  *  * %NULL if no such heap exists.
1000  */
1001 const struct drm_pvr_heap *
1002 pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
1003 {
1004 	u64 end;
1005 
1006 	if (check_add_overflow(start, size - 1, &end))
1007 		return NULL;
1008 
1009 	/*
1010 	 * There are no guarantees about the order of address ranges in
1011 	 * &pvr_heaps, so iterate over the entire array for a heap whose
1012 	 * range completely encompasses the given range.
1013 	 */
1014 	for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
1015 		/* Filter heaps that present only with an associated quirk */
1016 		if (heap_id == DRM_PVR_HEAP_RGNHDR &&
1017 		    !PVR_HAS_QUIRK(pvr_dev, 63142)) {
1018 			continue;
1019 		}
1020 
1021 		if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
1022 			return &pvr_heaps[heap_id];
1023 	}
1024 
1025 	return NULL;
1026 }
1027 
1028 /**
1029  * pvr_vm_find_gem_object() - Look up a buffer object from a given
1030  *                            device-virtual address.
1031  * @vm_ctx: [IN] Target VM context.
1032  * @device_addr: [IN] Virtual device address at the start of the required
1033  *               object.
1034  * @mapped_offset_out: [OUT] Pointer to location to write offset of the start
1035  *                     of the mapped region within the buffer object. May be
1036  *                     %NULL if this information is not required.
1037  * @mapped_size_out: [OUT] Pointer to location to write size of the mapped
1038  *                   region. May be %NULL if this information is not required.
1039  *
1040  * If successful, a reference will be taken on the buffer object. The caller
1041  * must drop the reference with pvr_gem_object_put().
1042  *
1043  * Return:
1044  *  * The PowerVR buffer object mapped at @device_addr if one exists, or
1045  *  * %NULL otherwise.
1046  */
1047 struct pvr_gem_object *
1048 pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
1049 		       u64 *mapped_offset_out, u64 *mapped_size_out)
1050 {
1051 	struct pvr_gem_object *pvr_obj;
1052 	struct drm_gpuva *va;
1053 
1054 	mutex_lock(&vm_ctx->lock);
1055 
1056 	va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
1057 	if (!va)
1058 		goto err_unlock;
1059 
1060 	pvr_obj = gem_to_pvr_gem(va->gem.obj);
1061 	pvr_gem_object_get(pvr_obj);
1062 
1063 	if (mapped_offset_out)
1064 		*mapped_offset_out = va->gem.offset;
1065 	if (mapped_size_out)
1066 		*mapped_size_out = va->va.range;
1067 
1068 	mutex_unlock(&vm_ctx->lock);
1069 
1070 	return pvr_obj;
1071 
1072 err_unlock:
1073 	mutex_unlock(&vm_ctx->lock);
1074 
1075 	return NULL;
1076 }
1077 
1078 /**
1079  * pvr_vm_get_fw_mem_context: Get object representing firmware memory context
1080  * @vm_ctx: Target VM context.
1081  *
1082  * Returns:
1083  *  * FW object representing firmware memory context, or
1084  *  * %NULL if this VM context does not have a firmware memory context.
1085  */
1086 struct pvr_fw_object *
1087 pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
1088 {
1089 	return vm_ctx->fw_mem_ctx_obj;
1090 }
1091