xref: /linux/drivers/gpu/drm/i915/i915_drv.h (revision 975ef7ff81bb000af6e6c8e63e81f89f3468dcf7)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/perf_event.h>
44 #include <linux/pm_qos.h>
45 #include <linux/reservation.h>
46 #include <linux/shmem_fs.h>
47 
48 #include <drm/drmP.h>
49 #include <drm/intel-gtt.h>
50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
51 #include <drm/drm_gem.h>
52 #include <drm/drm_auth.h>
53 #include <drm/drm_cache.h>
54 
55 #include "i915_params.h"
56 #include "i915_reg.h"
57 #include "i915_utils.h"
58 
59 #include "intel_bios.h"
60 #include "intel_device_info.h"
61 #include "intel_display.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_lrc.h"
64 #include "intel_opregion.h"
65 #include "intel_ringbuffer.h"
66 #include "intel_uncore.h"
67 #include "intel_wopcm.h"
68 #include "intel_uc.h"
69 
70 #include "i915_gem.h"
71 #include "i915_gem_context.h"
72 #include "i915_gem_fence_reg.h"
73 #include "i915_gem_object.h"
74 #include "i915_gem_gtt.h"
75 #include "i915_gpu_error.h"
76 #include "i915_request.h"
77 #include "i915_scheduler.h"
78 #include "i915_timeline.h"
79 #include "i915_vma.h"
80 
81 #include "intel_gvt.h"
82 
83 /* General customization:
84  */
85 
86 #define DRIVER_NAME		"i915"
87 #define DRIVER_DESC		"Intel Graphics"
88 #define DRIVER_DATE		"20180514"
89 #define DRIVER_TIMESTAMP	1526300884
90 
91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
92  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
93  * which may not necessarily be a user visible problem.  This will either
94  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
95  * enable distros and users to tailor their preferred amount of i915 abrt
96  * spam.
97  */
98 #define I915_STATE_WARN(condition, format...) ({			\
99 	int __ret_warn_on = !!(condition);				\
100 	if (unlikely(__ret_warn_on))					\
101 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
102 			DRM_ERROR(format);				\
103 	unlikely(__ret_warn_on);					\
104 })
105 
106 #define I915_STATE_WARN_ON(x)						\
107 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
108 
109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 	__i915_inject_load_failure(__func__, __LINE__)
113 #else
114 #define i915_inject_load_failure() false
115 #endif
116 
117 typedef struct {
118 	uint32_t val;
119 } uint_fixed_16_16_t;
120 
121 #define FP_16_16_MAX ({ \
122 	uint_fixed_16_16_t fp; \
123 	fp.val = UINT_MAX; \
124 	fp; \
125 })
126 
127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
128 {
129 	if (val.val == 0)
130 		return true;
131 	return false;
132 }
133 
134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
135 {
136 	uint_fixed_16_16_t fp;
137 
138 	WARN_ON(val > U16_MAX);
139 
140 	fp.val = val << 16;
141 	return fp;
142 }
143 
144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
145 {
146 	return DIV_ROUND_UP(fp.val, 1 << 16);
147 }
148 
149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
150 {
151 	return fp.val >> 16;
152 }
153 
154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
155 						 uint_fixed_16_16_t min2)
156 {
157 	uint_fixed_16_16_t min;
158 
159 	min.val = min(min1.val, min2.val);
160 	return min;
161 }
162 
163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
164 						 uint_fixed_16_16_t max2)
165 {
166 	uint_fixed_16_16_t max;
167 
168 	max.val = max(max1.val, max2.val);
169 	return max;
170 }
171 
172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
173 {
174 	uint_fixed_16_16_t fp;
175 	WARN_ON(val > U32_MAX);
176 	fp.val = (uint32_t) val;
177 	return fp;
178 }
179 
180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
181 					    uint_fixed_16_16_t d)
182 {
183 	return DIV_ROUND_UP(val.val, d.val);
184 }
185 
186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
187 						uint_fixed_16_16_t mul)
188 {
189 	uint64_t intermediate_val;
190 
191 	intermediate_val = (uint64_t) val * mul.val;
192 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
193 	WARN_ON(intermediate_val > U32_MAX);
194 	return (uint32_t) intermediate_val;
195 }
196 
197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
198 					     uint_fixed_16_16_t mul)
199 {
200 	uint64_t intermediate_val;
201 
202 	intermediate_val = (uint64_t) val.val * mul.val;
203 	intermediate_val = intermediate_val >> 16;
204 	return clamp_u64_to_fixed16(intermediate_val);
205 }
206 
207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
208 {
209 	uint64_t interm_val;
210 
211 	interm_val = (uint64_t)val << 16;
212 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
213 	return clamp_u64_to_fixed16(interm_val);
214 }
215 
216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
217 						uint_fixed_16_16_t d)
218 {
219 	uint64_t interm_val;
220 
221 	interm_val = (uint64_t)val << 16;
222 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
223 	WARN_ON(interm_val > U32_MAX);
224 	return (uint32_t) interm_val;
225 }
226 
227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
228 						     uint_fixed_16_16_t mul)
229 {
230 	uint64_t intermediate_val;
231 
232 	intermediate_val = (uint64_t) val * mul.val;
233 	return clamp_u64_to_fixed16(intermediate_val);
234 }
235 
236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
237 					     uint_fixed_16_16_t add2)
238 {
239 	uint64_t interm_sum;
240 
241 	interm_sum = (uint64_t) add1.val + add2.val;
242 	return clamp_u64_to_fixed16(interm_sum);
243 }
244 
245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
246 						 uint32_t add2)
247 {
248 	uint64_t interm_sum;
249 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
250 
251 	interm_sum = (uint64_t) add1.val + interm_add2.val;
252 	return clamp_u64_to_fixed16(interm_sum);
253 }
254 
255 enum hpd_pin {
256 	HPD_NONE = 0,
257 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
258 	HPD_CRT,
259 	HPD_SDVO_B,
260 	HPD_SDVO_C,
261 	HPD_PORT_A,
262 	HPD_PORT_B,
263 	HPD_PORT_C,
264 	HPD_PORT_D,
265 	HPD_PORT_E,
266 	HPD_PORT_F,
267 	HPD_NUM_PINS
268 };
269 
270 #define for_each_hpd_pin(__pin) \
271 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
272 
273 #define HPD_STORM_DEFAULT_THRESHOLD 5
274 
275 struct i915_hotplug {
276 	struct work_struct hotplug_work;
277 
278 	struct {
279 		unsigned long last_jiffies;
280 		int count;
281 		enum {
282 			HPD_ENABLED = 0,
283 			HPD_DISABLED = 1,
284 			HPD_MARK_DISABLED = 2
285 		} state;
286 	} stats[HPD_NUM_PINS];
287 	u32 event_bits;
288 	struct delayed_work reenable_work;
289 
290 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
291 	u32 long_port_mask;
292 	u32 short_port_mask;
293 	struct work_struct dig_port_work;
294 
295 	struct work_struct poll_init_work;
296 	bool poll_enabled;
297 
298 	unsigned int hpd_storm_threshold;
299 
300 	/*
301 	 * if we get a HPD irq from DP and a HPD irq from non-DP
302 	 * the non-DP HPD could block the workqueue on a mode config
303 	 * mutex getting, that userspace may have taken. However
304 	 * userspace is waiting on the DP workqueue to run which is
305 	 * blocked behind the non-DP one.
306 	 */
307 	struct workqueue_struct *dp_wq;
308 };
309 
310 #define I915_GEM_GPU_DOMAINS \
311 	(I915_GEM_DOMAIN_RENDER | \
312 	 I915_GEM_DOMAIN_SAMPLER | \
313 	 I915_GEM_DOMAIN_COMMAND | \
314 	 I915_GEM_DOMAIN_INSTRUCTION | \
315 	 I915_GEM_DOMAIN_VERTEX)
316 
317 struct drm_i915_private;
318 struct i915_mm_struct;
319 struct i915_mmu_object;
320 
321 struct drm_i915_file_private {
322 	struct drm_i915_private *dev_priv;
323 	struct drm_file *file;
324 
325 	struct {
326 		spinlock_t lock;
327 		struct list_head request_list;
328 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
329  * chosen to prevent the CPU getting more than a frame ahead of the GPU
330  * (when using lax throttling for the frontbuffer). We also use it to
331  * offer free GPU waitboosts for severely congested workloads.
332  */
333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
334 	} mm;
335 	struct idr context_idr;
336 
337 	struct intel_rps_client {
338 		atomic_t boosts;
339 	} rps_client;
340 
341 	unsigned int bsd_engine;
342 
343 /*
344  * Every context ban increments per client ban score. Also
345  * hangs in short succession increments ban score. If ban threshold
346  * is reached, client is considered banned and submitting more work
347  * will fail. This is a stop gap measure to limit the badly behaving
348  * clients access to gpu. Note that unbannable contexts never increment
349  * the client ban score.
350  */
351 #define I915_CLIENT_SCORE_HANG_FAST	1
352 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
353 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
354 #define I915_CLIENT_SCORE_BANNED	9
355 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
356 	atomic_t ban_score;
357 	unsigned long hang_timestamp;
358 };
359 
360 /* Interface history:
361  *
362  * 1.1: Original.
363  * 1.2: Add Power Management
364  * 1.3: Add vblank support
365  * 1.4: Fix cmdbuffer path, add heap destroy
366  * 1.5: Add vblank pipe configuration
367  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
368  *      - Support vertical blank on secondary display pipe
369  */
370 #define DRIVER_MAJOR		1
371 #define DRIVER_MINOR		6
372 #define DRIVER_PATCHLEVEL	0
373 
374 struct intel_overlay;
375 struct intel_overlay_error_state;
376 
377 struct sdvo_device_mapping {
378 	u8 initialized;
379 	u8 dvo_port;
380 	u8 slave_addr;
381 	u8 dvo_wiring;
382 	u8 i2c_pin;
383 	u8 ddc_pin;
384 };
385 
386 struct intel_connector;
387 struct intel_encoder;
388 struct intel_atomic_state;
389 struct intel_crtc_state;
390 struct intel_initial_plane_config;
391 struct intel_crtc;
392 struct intel_limit;
393 struct dpll;
394 struct intel_cdclk_state;
395 
396 struct drm_i915_display_funcs {
397 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
398 			  struct intel_cdclk_state *cdclk_state);
399 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
400 			  const struct intel_cdclk_state *cdclk_state);
401 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
402 			     enum i9xx_plane_id i9xx_plane);
403 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
404 	int (*compute_intermediate_wm)(struct drm_device *dev,
405 				       struct intel_crtc *intel_crtc,
406 				       struct intel_crtc_state *newstate);
407 	void (*initial_watermarks)(struct intel_atomic_state *state,
408 				   struct intel_crtc_state *cstate);
409 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
410 					 struct intel_crtc_state *cstate);
411 	void (*optimize_watermarks)(struct intel_atomic_state *state,
412 				    struct intel_crtc_state *cstate);
413 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
414 	void (*update_wm)(struct intel_crtc *crtc);
415 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
416 	/* Returns the active state of the crtc, and if the crtc is active,
417 	 * fills out the pipe-config with the hw state. */
418 	bool (*get_pipe_config)(struct intel_crtc *,
419 				struct intel_crtc_state *);
420 	void (*get_initial_plane_config)(struct intel_crtc *,
421 					 struct intel_initial_plane_config *);
422 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
423 				  struct intel_crtc_state *crtc_state);
424 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
425 			    struct drm_atomic_state *old_state);
426 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
427 			     struct drm_atomic_state *old_state);
428 	void (*update_crtcs)(struct drm_atomic_state *state);
429 	void (*audio_codec_enable)(struct intel_encoder *encoder,
430 				   const struct intel_crtc_state *crtc_state,
431 				   const struct drm_connector_state *conn_state);
432 	void (*audio_codec_disable)(struct intel_encoder *encoder,
433 				    const struct intel_crtc_state *old_crtc_state,
434 				    const struct drm_connector_state *old_conn_state);
435 	void (*fdi_link_train)(struct intel_crtc *crtc,
436 			       const struct intel_crtc_state *crtc_state);
437 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
438 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
439 	/* clock updates for mode set */
440 	/* cursor updates */
441 	/* render clock increase/decrease */
442 	/* display clock increase/decrease */
443 	/* pll clock increase/decrease */
444 
445 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
446 	void (*load_luts)(struct drm_crtc_state *crtc_state);
447 };
448 
449 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
450 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
451 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
452 
453 struct intel_csr {
454 	struct work_struct work;
455 	const char *fw_path;
456 	uint32_t *dmc_payload;
457 	uint32_t dmc_fw_size;
458 	uint32_t version;
459 	uint32_t mmio_count;
460 	i915_reg_t mmioaddr[8];
461 	uint32_t mmiodata[8];
462 	uint32_t dc_state;
463 	uint32_t allowed_dc_mask;
464 };
465 
466 enum i915_cache_level {
467 	I915_CACHE_NONE = 0,
468 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
469 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
470 			      caches, eg sampler/render caches, and the
471 			      large Last-Level-Cache. LLC is coherent with
472 			      the CPU, but L3 is only visible to the GPU. */
473 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
474 };
475 
476 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
477 
478 enum fb_op_origin {
479 	ORIGIN_GTT,
480 	ORIGIN_CPU,
481 	ORIGIN_CS,
482 	ORIGIN_FLIP,
483 	ORIGIN_DIRTYFB,
484 };
485 
486 struct intel_fbc {
487 	/* This is always the inner lock when overlapping with struct_mutex and
488 	 * it's the outer lock when overlapping with stolen_lock. */
489 	struct mutex lock;
490 	unsigned threshold;
491 	unsigned int possible_framebuffer_bits;
492 	unsigned int busy_bits;
493 	unsigned int visible_pipes_mask;
494 	struct intel_crtc *crtc;
495 
496 	struct drm_mm_node compressed_fb;
497 	struct drm_mm_node *compressed_llb;
498 
499 	bool false_color;
500 
501 	bool enabled;
502 	bool active;
503 
504 	bool underrun_detected;
505 	struct work_struct underrun_work;
506 
507 	/*
508 	 * Due to the atomic rules we can't access some structures without the
509 	 * appropriate locking, so we cache information here in order to avoid
510 	 * these problems.
511 	 */
512 	struct intel_fbc_state_cache {
513 		struct i915_vma *vma;
514 		unsigned long flags;
515 
516 		struct {
517 			unsigned int mode_flags;
518 			uint32_t hsw_bdw_pixel_rate;
519 		} crtc;
520 
521 		struct {
522 			unsigned int rotation;
523 			int src_w;
524 			int src_h;
525 			bool visible;
526 			/*
527 			 * Display surface base address adjustement for
528 			 * pageflips. Note that on gen4+ this only adjusts up
529 			 * to a tile, offsets within a tile are handled in
530 			 * the hw itself (with the TILEOFF register).
531 			 */
532 			int adjusted_x;
533 			int adjusted_y;
534 
535 			int y;
536 		} plane;
537 
538 		struct {
539 			const struct drm_format_info *format;
540 			unsigned int stride;
541 		} fb;
542 	} state_cache;
543 
544 	/*
545 	 * This structure contains everything that's relevant to program the
546 	 * hardware registers. When we want to figure out if we need to disable
547 	 * and re-enable FBC for a new configuration we just check if there's
548 	 * something different in the struct. The genx_fbc_activate functions
549 	 * are supposed to read from it in order to program the registers.
550 	 */
551 	struct intel_fbc_reg_params {
552 		struct i915_vma *vma;
553 		unsigned long flags;
554 
555 		struct {
556 			enum pipe pipe;
557 			enum i9xx_plane_id i9xx_plane;
558 			unsigned int fence_y_offset;
559 		} crtc;
560 
561 		struct {
562 			const struct drm_format_info *format;
563 			unsigned int stride;
564 		} fb;
565 
566 		int cfb_size;
567 		unsigned int gen9_wa_cfb_stride;
568 	} params;
569 
570 	struct intel_fbc_work {
571 		bool scheduled;
572 		u64 scheduled_vblank;
573 		struct work_struct work;
574 	} work;
575 
576 	const char *no_fbc_reason;
577 };
578 
579 /*
580  * HIGH_RR is the highest eDP panel refresh rate read from EDID
581  * LOW_RR is the lowest eDP panel refresh rate found from EDID
582  * parsing for same resolution.
583  */
584 enum drrs_refresh_rate_type {
585 	DRRS_HIGH_RR,
586 	DRRS_LOW_RR,
587 	DRRS_MAX_RR, /* RR count */
588 };
589 
590 enum drrs_support_type {
591 	DRRS_NOT_SUPPORTED = 0,
592 	STATIC_DRRS_SUPPORT = 1,
593 	SEAMLESS_DRRS_SUPPORT = 2
594 };
595 
596 struct intel_dp;
597 struct i915_drrs {
598 	struct mutex mutex;
599 	struct delayed_work work;
600 	struct intel_dp *dp;
601 	unsigned busy_frontbuffer_bits;
602 	enum drrs_refresh_rate_type refresh_rate_type;
603 	enum drrs_support_type type;
604 };
605 
606 struct i915_psr {
607 	struct mutex lock;
608 	bool sink_support;
609 	struct intel_dp *enabled;
610 	bool active;
611 	struct delayed_work work;
612 	unsigned busy_frontbuffer_bits;
613 	bool sink_psr2_support;
614 	bool link_standby;
615 	bool colorimetry_support;
616 	bool alpm;
617 	bool has_hw_tracking;
618 	bool psr2_enabled;
619 	u8 sink_sync_latency;
620 	bool debug;
621 	ktime_t last_entry_attempt;
622 	ktime_t last_exit;
623 
624 	void (*enable_source)(struct intel_dp *,
625 			      const struct intel_crtc_state *);
626 	void (*disable_source)(struct intel_dp *,
627 			       const struct intel_crtc_state *);
628 	void (*enable_sink)(struct intel_dp *);
629 	void (*activate)(struct intel_dp *);
630 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
631 };
632 
633 enum intel_pch {
634 	PCH_NONE = 0,	/* No PCH present */
635 	PCH_IBX,	/* Ibexpeak PCH */
636 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
637 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
638 	PCH_SPT,        /* Sunrisepoint PCH */
639 	PCH_KBP,        /* Kaby Lake PCH */
640 	PCH_CNP,        /* Cannon Lake PCH */
641 	PCH_ICP,	/* Ice Lake PCH */
642 	PCH_NOP,
643 };
644 
645 enum intel_sbi_destination {
646 	SBI_ICLK,
647 	SBI_MPHY,
648 };
649 
650 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
651 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
652 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
653 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
654 #define QUIRK_INCREASE_T12_DELAY (1<<6)
655 
656 struct intel_fbdev;
657 struct intel_fbc_work;
658 
659 struct intel_gmbus {
660 	struct i2c_adapter adapter;
661 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
662 	u32 force_bit;
663 	u32 reg0;
664 	i915_reg_t gpio_reg;
665 	struct i2c_algo_bit_data bit_algo;
666 	struct drm_i915_private *dev_priv;
667 };
668 
669 struct i915_suspend_saved_registers {
670 	u32 saveDSPARB;
671 	u32 saveFBC_CONTROL;
672 	u32 saveCACHE_MODE_0;
673 	u32 saveMI_ARB_STATE;
674 	u32 saveSWF0[16];
675 	u32 saveSWF1[16];
676 	u32 saveSWF3[3];
677 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
678 	u32 savePCH_PORT_HOTPLUG;
679 	u16 saveGCDGMBUS;
680 };
681 
682 struct vlv_s0ix_state {
683 	/* GAM */
684 	u32 wr_watermark;
685 	u32 gfx_prio_ctrl;
686 	u32 arb_mode;
687 	u32 gfx_pend_tlb0;
688 	u32 gfx_pend_tlb1;
689 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
690 	u32 media_max_req_count;
691 	u32 gfx_max_req_count;
692 	u32 render_hwsp;
693 	u32 ecochk;
694 	u32 bsd_hwsp;
695 	u32 blt_hwsp;
696 	u32 tlb_rd_addr;
697 
698 	/* MBC */
699 	u32 g3dctl;
700 	u32 gsckgctl;
701 	u32 mbctl;
702 
703 	/* GCP */
704 	u32 ucgctl1;
705 	u32 ucgctl3;
706 	u32 rcgctl1;
707 	u32 rcgctl2;
708 	u32 rstctl;
709 	u32 misccpctl;
710 
711 	/* GPM */
712 	u32 gfxpause;
713 	u32 rpdeuhwtc;
714 	u32 rpdeuc;
715 	u32 ecobus;
716 	u32 pwrdwnupctl;
717 	u32 rp_down_timeout;
718 	u32 rp_deucsw;
719 	u32 rcubmabdtmr;
720 	u32 rcedata;
721 	u32 spare2gh;
722 
723 	/* Display 1 CZ domain */
724 	u32 gt_imr;
725 	u32 gt_ier;
726 	u32 pm_imr;
727 	u32 pm_ier;
728 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
729 
730 	/* GT SA CZ domain */
731 	u32 tilectl;
732 	u32 gt_fifoctl;
733 	u32 gtlc_wake_ctrl;
734 	u32 gtlc_survive;
735 	u32 pmwgicz;
736 
737 	/* Display 2 CZ domain */
738 	u32 gu_ctl0;
739 	u32 gu_ctl1;
740 	u32 pcbr;
741 	u32 clock_gate_dis2;
742 };
743 
744 struct intel_rps_ei {
745 	ktime_t ktime;
746 	u32 render_c0;
747 	u32 media_c0;
748 };
749 
750 struct intel_rps {
751 	/*
752 	 * work, interrupts_enabled and pm_iir are protected by
753 	 * dev_priv->irq_lock
754 	 */
755 	struct work_struct work;
756 	bool interrupts_enabled;
757 	u32 pm_iir;
758 
759 	/* PM interrupt bits that should never be masked */
760 	u32 pm_intrmsk_mbz;
761 
762 	/* Frequencies are stored in potentially platform dependent multiples.
763 	 * In other words, *_freq needs to be multiplied by X to be interesting.
764 	 * Soft limits are those which are used for the dynamic reclocking done
765 	 * by the driver (raise frequencies under heavy loads, and lower for
766 	 * lighter loads). Hard limits are those imposed by the hardware.
767 	 *
768 	 * A distinction is made for overclocking, which is never enabled by
769 	 * default, and is considered to be above the hard limit if it's
770 	 * possible at all.
771 	 */
772 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
773 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
774 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
775 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
776 	u8 min_freq;		/* AKA RPn. Minimum frequency */
777 	u8 boost_freq;		/* Frequency to request when wait boosting */
778 	u8 idle_freq;		/* Frequency to request when we are idle */
779 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
780 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
781 	u8 rp0_freq;		/* Non-overclocked max frequency. */
782 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
783 
784 	u8 up_threshold; /* Current %busy required to uplock */
785 	u8 down_threshold; /* Current %busy required to downclock */
786 
787 	int last_adj;
788 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
789 
790 	bool enabled;
791 	atomic_t num_waiters;
792 	atomic_t boosts;
793 
794 	/* manual wa residency calculations */
795 	struct intel_rps_ei ei;
796 };
797 
798 struct intel_rc6 {
799 	bool enabled;
800 	u64 prev_hw_residency[4];
801 	u64 cur_residency[4];
802 };
803 
804 struct intel_llc_pstate {
805 	bool enabled;
806 };
807 
808 struct intel_gen6_power_mgmt {
809 	struct intel_rps rps;
810 	struct intel_rc6 rc6;
811 	struct intel_llc_pstate llc_pstate;
812 };
813 
814 /* defined intel_pm.c */
815 extern spinlock_t mchdev_lock;
816 
817 struct intel_ilk_power_mgmt {
818 	u8 cur_delay;
819 	u8 min_delay;
820 	u8 max_delay;
821 	u8 fmax;
822 	u8 fstart;
823 
824 	u64 last_count1;
825 	unsigned long last_time1;
826 	unsigned long chipset_power;
827 	u64 last_count2;
828 	u64 last_time2;
829 	unsigned long gfx_power;
830 	u8 corr;
831 
832 	int c_m;
833 	int r_t;
834 };
835 
836 struct drm_i915_private;
837 struct i915_power_well;
838 
839 struct i915_power_well_ops {
840 	/*
841 	 * Synchronize the well's hw state to match the current sw state, for
842 	 * example enable/disable it based on the current refcount. Called
843 	 * during driver init and resume time, possibly after first calling
844 	 * the enable/disable handlers.
845 	 */
846 	void (*sync_hw)(struct drm_i915_private *dev_priv,
847 			struct i915_power_well *power_well);
848 	/*
849 	 * Enable the well and resources that depend on it (for example
850 	 * interrupts located on the well). Called after the 0->1 refcount
851 	 * transition.
852 	 */
853 	void (*enable)(struct drm_i915_private *dev_priv,
854 		       struct i915_power_well *power_well);
855 	/*
856 	 * Disable the well and resources that depend on it. Called after
857 	 * the 1->0 refcount transition.
858 	 */
859 	void (*disable)(struct drm_i915_private *dev_priv,
860 			struct i915_power_well *power_well);
861 	/* Returns the hw enabled state. */
862 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
863 			   struct i915_power_well *power_well);
864 };
865 
866 /* Power well structure for haswell */
867 struct i915_power_well {
868 	const char *name;
869 	bool always_on;
870 	/* power well enable/disable usage count */
871 	int count;
872 	/* cached hw enabled state */
873 	bool hw_enabled;
874 	u64 domains;
875 	/* unique identifier for this power well */
876 	enum i915_power_well_id id;
877 	/*
878 	 * Arbitraty data associated with this power well. Platform and power
879 	 * well specific.
880 	 */
881 	union {
882 		struct {
883 			enum dpio_phy phy;
884 		} bxt;
885 		struct {
886 			/* Mask of pipes whose IRQ logic is backed by the pw */
887 			u8 irq_pipe_mask;
888 			/* The pw is backing the VGA functionality */
889 			bool has_vga:1;
890 			bool has_fuses:1;
891 		} hsw;
892 	};
893 	const struct i915_power_well_ops *ops;
894 };
895 
896 struct i915_power_domains {
897 	/*
898 	 * Power wells needed for initialization at driver init and suspend
899 	 * time are on. They are kept on until after the first modeset.
900 	 */
901 	bool init_power_on;
902 	bool initializing;
903 	int power_well_count;
904 
905 	struct mutex lock;
906 	int domain_use_count[POWER_DOMAIN_NUM];
907 	struct i915_power_well *power_wells;
908 };
909 
910 #define MAX_L3_SLICES 2
911 struct intel_l3_parity {
912 	u32 *remap_info[MAX_L3_SLICES];
913 	struct work_struct error_work;
914 	int which_slice;
915 };
916 
917 struct i915_gem_mm {
918 	/** Memory allocator for GTT stolen memory */
919 	struct drm_mm stolen;
920 	/** Protects the usage of the GTT stolen memory allocator. This is
921 	 * always the inner lock when overlapping with struct_mutex. */
922 	struct mutex stolen_lock;
923 
924 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
925 	spinlock_t obj_lock;
926 
927 	/** List of all objects in gtt_space. Used to restore gtt
928 	 * mappings on resume */
929 	struct list_head bound_list;
930 	/**
931 	 * List of objects which are not bound to the GTT (thus
932 	 * are idle and not used by the GPU). These objects may or may
933 	 * not actually have any pages attached.
934 	 */
935 	struct list_head unbound_list;
936 
937 	/** List of all objects in gtt_space, currently mmaped by userspace.
938 	 * All objects within this list must also be on bound_list.
939 	 */
940 	struct list_head userfault_list;
941 
942 	/**
943 	 * List of objects which are pending destruction.
944 	 */
945 	struct llist_head free_list;
946 	struct work_struct free_work;
947 	spinlock_t free_lock;
948 	/**
949 	 * Count of objects pending destructions. Used to skip needlessly
950 	 * waiting on an RCU barrier if no objects are waiting to be freed.
951 	 */
952 	atomic_t free_count;
953 
954 	/**
955 	 * Small stash of WC pages
956 	 */
957 	struct pagevec wc_stash;
958 
959 	/**
960 	 * tmpfs instance used for shmem backed objects
961 	 */
962 	struct vfsmount *gemfs;
963 
964 	/** PPGTT used for aliasing the PPGTT with the GTT */
965 	struct i915_hw_ppgtt *aliasing_ppgtt;
966 
967 	struct notifier_block oom_notifier;
968 	struct notifier_block vmap_notifier;
969 	struct shrinker shrinker;
970 
971 	/** LRU list of objects with fence regs on them. */
972 	struct list_head fence_list;
973 
974 	/**
975 	 * Workqueue to fault in userptr pages, flushed by the execbuf
976 	 * when required but otherwise left to userspace to try again
977 	 * on EAGAIN.
978 	 */
979 	struct workqueue_struct *userptr_wq;
980 
981 	u64 unordered_timeline;
982 
983 	/* the indicator for dispatch video commands on two BSD rings */
984 	atomic_t bsd_engine_dispatch_index;
985 
986 	/** Bit 6 swizzling required for X tiling */
987 	uint32_t bit_6_swizzle_x;
988 	/** Bit 6 swizzling required for Y tiling */
989 	uint32_t bit_6_swizzle_y;
990 
991 	/* accounting, useful for userland debugging */
992 	spinlock_t object_stat_lock;
993 	u64 object_memory;
994 	u32 object_count;
995 };
996 
997 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
998 
999 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1000 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1001 
1002 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1003 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1004 
1005 enum modeset_restore {
1006 	MODESET_ON_LID_OPEN,
1007 	MODESET_DONE,
1008 	MODESET_SUSPENDED,
1009 };
1010 
1011 #define DP_AUX_A 0x40
1012 #define DP_AUX_B 0x10
1013 #define DP_AUX_C 0x20
1014 #define DP_AUX_D 0x30
1015 #define DP_AUX_F 0x60
1016 
1017 #define DDC_PIN_B  0x05
1018 #define DDC_PIN_C  0x04
1019 #define DDC_PIN_D  0x06
1020 
1021 struct ddi_vbt_port_info {
1022 	int max_tmds_clock;
1023 
1024 	/*
1025 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1026 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1027 	 * populate this field.
1028 	 */
1029 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1030 	uint8_t hdmi_level_shift;
1031 
1032 	uint8_t supports_dvi:1;
1033 	uint8_t supports_hdmi:1;
1034 	uint8_t supports_dp:1;
1035 	uint8_t supports_edp:1;
1036 
1037 	uint8_t alternate_aux_channel;
1038 	uint8_t alternate_ddc_pin;
1039 
1040 	uint8_t dp_boost_level;
1041 	uint8_t hdmi_boost_level;
1042 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1043 };
1044 
1045 enum psr_lines_to_wait {
1046 	PSR_0_LINES_TO_WAIT = 0,
1047 	PSR_1_LINE_TO_WAIT,
1048 	PSR_4_LINES_TO_WAIT,
1049 	PSR_8_LINES_TO_WAIT
1050 };
1051 
1052 struct intel_vbt_data {
1053 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1054 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1055 
1056 	/* Feature bits */
1057 	unsigned int int_tv_support:1;
1058 	unsigned int lvds_dither:1;
1059 	unsigned int lvds_vbt:1;
1060 	unsigned int int_crt_support:1;
1061 	unsigned int lvds_use_ssc:1;
1062 	unsigned int display_clock_mode:1;
1063 	unsigned int fdi_rx_polarity_inverted:1;
1064 	unsigned int panel_type:4;
1065 	int lvds_ssc_freq;
1066 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1067 
1068 	enum drrs_support_type drrs_type;
1069 
1070 	struct {
1071 		int rate;
1072 		int lanes;
1073 		int preemphasis;
1074 		int vswing;
1075 		bool low_vswing;
1076 		bool initialized;
1077 		bool support;
1078 		int bpp;
1079 		struct edp_power_seq pps;
1080 	} edp;
1081 
1082 	struct {
1083 		bool enable;
1084 		bool full_link;
1085 		bool require_aux_wakeup;
1086 		int idle_frames;
1087 		enum psr_lines_to_wait lines_to_wait;
1088 		int tp1_wakeup_time;
1089 		int tp2_tp3_wakeup_time;
1090 	} psr;
1091 
1092 	struct {
1093 		u16 pwm_freq_hz;
1094 		bool present;
1095 		bool active_low_pwm;
1096 		u8 min_brightness;	/* min_brightness/255 of max */
1097 		u8 controller;		/* brightness controller number */
1098 		enum intel_backlight_type type;
1099 	} backlight;
1100 
1101 	/* MIPI DSI */
1102 	struct {
1103 		u16 panel_id;
1104 		struct mipi_config *config;
1105 		struct mipi_pps_data *pps;
1106 		u16 bl_ports;
1107 		u16 cabc_ports;
1108 		u8 seq_version;
1109 		u32 size;
1110 		u8 *data;
1111 		const u8 *sequence[MIPI_SEQ_MAX];
1112 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1113 	} dsi;
1114 
1115 	int crt_ddc_pin;
1116 
1117 	int child_dev_num;
1118 	struct child_device_config *child_dev;
1119 
1120 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1121 	struct sdvo_device_mapping sdvo_mappings[2];
1122 };
1123 
1124 enum intel_ddb_partitioning {
1125 	INTEL_DDB_PART_1_2,
1126 	INTEL_DDB_PART_5_6, /* IVB+ */
1127 };
1128 
1129 struct intel_wm_level {
1130 	bool enable;
1131 	uint32_t pri_val;
1132 	uint32_t spr_val;
1133 	uint32_t cur_val;
1134 	uint32_t fbc_val;
1135 };
1136 
1137 struct ilk_wm_values {
1138 	uint32_t wm_pipe[3];
1139 	uint32_t wm_lp[3];
1140 	uint32_t wm_lp_spr[3];
1141 	uint32_t wm_linetime[3];
1142 	bool enable_fbc_wm;
1143 	enum intel_ddb_partitioning partitioning;
1144 };
1145 
1146 struct g4x_pipe_wm {
1147 	uint16_t plane[I915_MAX_PLANES];
1148 	uint16_t fbc;
1149 };
1150 
1151 struct g4x_sr_wm {
1152 	uint16_t plane;
1153 	uint16_t cursor;
1154 	uint16_t fbc;
1155 };
1156 
1157 struct vlv_wm_ddl_values {
1158 	uint8_t plane[I915_MAX_PLANES];
1159 };
1160 
1161 struct vlv_wm_values {
1162 	struct g4x_pipe_wm pipe[3];
1163 	struct g4x_sr_wm sr;
1164 	struct vlv_wm_ddl_values ddl[3];
1165 	uint8_t level;
1166 	bool cxsr;
1167 };
1168 
1169 struct g4x_wm_values {
1170 	struct g4x_pipe_wm pipe[2];
1171 	struct g4x_sr_wm sr;
1172 	struct g4x_sr_wm hpll;
1173 	bool cxsr;
1174 	bool hpll_en;
1175 	bool fbc_en;
1176 };
1177 
1178 struct skl_ddb_entry {
1179 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1180 };
1181 
1182 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1183 {
1184 	return entry->end - entry->start;
1185 }
1186 
1187 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1188 				       const struct skl_ddb_entry *e2)
1189 {
1190 	if (e1->start == e2->start && e1->end == e2->end)
1191 		return true;
1192 
1193 	return false;
1194 }
1195 
1196 struct skl_ddb_allocation {
1197 	/* packed/y */
1198 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1199 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1200 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1201 };
1202 
1203 struct skl_ddb_values {
1204 	unsigned dirty_pipes;
1205 	struct skl_ddb_allocation ddb;
1206 };
1207 
1208 struct skl_wm_level {
1209 	bool plane_en;
1210 	uint16_t plane_res_b;
1211 	uint8_t plane_res_l;
1212 };
1213 
1214 /* Stores plane specific WM parameters */
1215 struct skl_wm_params {
1216 	bool x_tiled, y_tiled;
1217 	bool rc_surface;
1218 	bool is_planar;
1219 	uint32_t width;
1220 	uint8_t cpp;
1221 	uint32_t plane_pixel_rate;
1222 	uint32_t y_min_scanlines;
1223 	uint32_t plane_bytes_per_line;
1224 	uint_fixed_16_16_t plane_blocks_per_line;
1225 	uint_fixed_16_16_t y_tile_minimum;
1226 	uint32_t linetime_us;
1227 	uint32_t dbuf_block_size;
1228 };
1229 
1230 /*
1231  * This struct helps tracking the state needed for runtime PM, which puts the
1232  * device in PCI D3 state. Notice that when this happens, nothing on the
1233  * graphics device works, even register access, so we don't get interrupts nor
1234  * anything else.
1235  *
1236  * Every piece of our code that needs to actually touch the hardware needs to
1237  * either call intel_runtime_pm_get or call intel_display_power_get with the
1238  * appropriate power domain.
1239  *
1240  * Our driver uses the autosuspend delay feature, which means we'll only really
1241  * suspend if we stay with zero refcount for a certain amount of time. The
1242  * default value is currently very conservative (see intel_runtime_pm_enable), but
1243  * it can be changed with the standard runtime PM files from sysfs.
1244  *
1245  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1246  * goes back to false exactly before we reenable the IRQs. We use this variable
1247  * to check if someone is trying to enable/disable IRQs while they're supposed
1248  * to be disabled. This shouldn't happen and we'll print some error messages in
1249  * case it happens.
1250  *
1251  * For more, read the Documentation/power/runtime_pm.txt.
1252  */
1253 struct i915_runtime_pm {
1254 	atomic_t wakeref_count;
1255 	bool suspended;
1256 	bool irqs_enabled;
1257 };
1258 
1259 enum intel_pipe_crc_source {
1260 	INTEL_PIPE_CRC_SOURCE_NONE,
1261 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1262 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1263 	INTEL_PIPE_CRC_SOURCE_PF,
1264 	INTEL_PIPE_CRC_SOURCE_PIPE,
1265 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1266 	INTEL_PIPE_CRC_SOURCE_TV,
1267 	INTEL_PIPE_CRC_SOURCE_DP_B,
1268 	INTEL_PIPE_CRC_SOURCE_DP_C,
1269 	INTEL_PIPE_CRC_SOURCE_DP_D,
1270 	INTEL_PIPE_CRC_SOURCE_AUTO,
1271 	INTEL_PIPE_CRC_SOURCE_MAX,
1272 };
1273 
1274 struct intel_pipe_crc_entry {
1275 	uint32_t frame;
1276 	uint32_t crc[5];
1277 };
1278 
1279 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1280 struct intel_pipe_crc {
1281 	spinlock_t lock;
1282 	bool opened;		/* exclusive access to the result file */
1283 	struct intel_pipe_crc_entry *entries;
1284 	enum intel_pipe_crc_source source;
1285 	int head, tail;
1286 	wait_queue_head_t wq;
1287 	int skipped;
1288 };
1289 
1290 struct i915_frontbuffer_tracking {
1291 	spinlock_t lock;
1292 
1293 	/*
1294 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1295 	 * scheduled flips.
1296 	 */
1297 	unsigned busy_bits;
1298 	unsigned flip_bits;
1299 };
1300 
1301 struct i915_wa_reg {
1302 	i915_reg_t addr;
1303 	u32 value;
1304 	/* bitmask representing WA bits */
1305 	u32 mask;
1306 };
1307 
1308 #define I915_MAX_WA_REGS 16
1309 
1310 struct i915_workarounds {
1311 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1312 	u32 count;
1313 };
1314 
1315 struct i915_virtual_gpu {
1316 	bool active;
1317 	u32 caps;
1318 };
1319 
1320 /* used in computing the new watermarks state */
1321 struct intel_wm_config {
1322 	unsigned int num_pipes_active;
1323 	bool sprites_enabled;
1324 	bool sprites_scaled;
1325 };
1326 
1327 struct i915_oa_format {
1328 	u32 format;
1329 	int size;
1330 };
1331 
1332 struct i915_oa_reg {
1333 	i915_reg_t addr;
1334 	u32 value;
1335 };
1336 
1337 struct i915_oa_config {
1338 	char uuid[UUID_STRING_LEN + 1];
1339 	int id;
1340 
1341 	const struct i915_oa_reg *mux_regs;
1342 	u32 mux_regs_len;
1343 	const struct i915_oa_reg *b_counter_regs;
1344 	u32 b_counter_regs_len;
1345 	const struct i915_oa_reg *flex_regs;
1346 	u32 flex_regs_len;
1347 
1348 	struct attribute_group sysfs_metric;
1349 	struct attribute *attrs[2];
1350 	struct device_attribute sysfs_metric_id;
1351 
1352 	atomic_t ref_count;
1353 };
1354 
1355 struct i915_perf_stream;
1356 
1357 /**
1358  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1359  */
1360 struct i915_perf_stream_ops {
1361 	/**
1362 	 * @enable: Enables the collection of HW samples, either in response to
1363 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1364 	 * without `I915_PERF_FLAG_DISABLED`.
1365 	 */
1366 	void (*enable)(struct i915_perf_stream *stream);
1367 
1368 	/**
1369 	 * @disable: Disables the collection of HW samples, either in response
1370 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1371 	 * the stream.
1372 	 */
1373 	void (*disable)(struct i915_perf_stream *stream);
1374 
1375 	/**
1376 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1377 	 * once there is something ready to read() for the stream
1378 	 */
1379 	void (*poll_wait)(struct i915_perf_stream *stream,
1380 			  struct file *file,
1381 			  poll_table *wait);
1382 
1383 	/**
1384 	 * @wait_unlocked: For handling a blocking read, wait until there is
1385 	 * something to ready to read() for the stream. E.g. wait on the same
1386 	 * wait queue that would be passed to poll_wait().
1387 	 */
1388 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1389 
1390 	/**
1391 	 * @read: Copy buffered metrics as records to userspace
1392 	 * **buf**: the userspace, destination buffer
1393 	 * **count**: the number of bytes to copy, requested by userspace
1394 	 * **offset**: zero at the start of the read, updated as the read
1395 	 * proceeds, it represents how many bytes have been copied so far and
1396 	 * the buffer offset for copying the next record.
1397 	 *
1398 	 * Copy as many buffered i915 perf samples and records for this stream
1399 	 * to userspace as will fit in the given buffer.
1400 	 *
1401 	 * Only write complete records; returning -%ENOSPC if there isn't room
1402 	 * for a complete record.
1403 	 *
1404 	 * Return any error condition that results in a short read such as
1405 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1406 	 * returning to userspace.
1407 	 */
1408 	int (*read)(struct i915_perf_stream *stream,
1409 		    char __user *buf,
1410 		    size_t count,
1411 		    size_t *offset);
1412 
1413 	/**
1414 	 * @destroy: Cleanup any stream specific resources.
1415 	 *
1416 	 * The stream will always be disabled before this is called.
1417 	 */
1418 	void (*destroy)(struct i915_perf_stream *stream);
1419 };
1420 
1421 /**
1422  * struct i915_perf_stream - state for a single open stream FD
1423  */
1424 struct i915_perf_stream {
1425 	/**
1426 	 * @dev_priv: i915 drm device
1427 	 */
1428 	struct drm_i915_private *dev_priv;
1429 
1430 	/**
1431 	 * @link: Links the stream into ``&drm_i915_private->streams``
1432 	 */
1433 	struct list_head link;
1434 
1435 	/**
1436 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1437 	 * properties given when opening a stream, representing the contents
1438 	 * of a single sample as read() by userspace.
1439 	 */
1440 	u32 sample_flags;
1441 
1442 	/**
1443 	 * @sample_size: Considering the configured contents of a sample
1444 	 * combined with the required header size, this is the total size
1445 	 * of a single sample record.
1446 	 */
1447 	int sample_size;
1448 
1449 	/**
1450 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1451 	 * specific context that is being monitored.
1452 	 */
1453 	struct i915_gem_context *ctx;
1454 
1455 	/**
1456 	 * @enabled: Whether the stream is currently enabled, considering
1457 	 * whether the stream was opened in a disabled state and based
1458 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1459 	 */
1460 	bool enabled;
1461 
1462 	/**
1463 	 * @ops: The callbacks providing the implementation of this specific
1464 	 * type of configured stream.
1465 	 */
1466 	const struct i915_perf_stream_ops *ops;
1467 
1468 	/**
1469 	 * @oa_config: The OA configuration used by the stream.
1470 	 */
1471 	struct i915_oa_config *oa_config;
1472 };
1473 
1474 /**
1475  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1476  */
1477 struct i915_oa_ops {
1478 	/**
1479 	 * @is_valid_b_counter_reg: Validates register's address for
1480 	 * programming boolean counters for a particular platform.
1481 	 */
1482 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1483 				       u32 addr);
1484 
1485 	/**
1486 	 * @is_valid_mux_reg: Validates register's address for programming mux
1487 	 * for a particular platform.
1488 	 */
1489 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1490 
1491 	/**
1492 	 * @is_valid_flex_reg: Validates register's address for programming
1493 	 * flex EU filtering for a particular platform.
1494 	 */
1495 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1496 
1497 	/**
1498 	 * @init_oa_buffer: Resets the head and tail pointers of the
1499 	 * circular buffer for periodic OA reports.
1500 	 *
1501 	 * Called when first opening a stream for OA metrics, but also may be
1502 	 * called in response to an OA buffer overflow or other error
1503 	 * condition.
1504 	 *
1505 	 * Note it may be necessary to clear the full OA buffer here as part of
1506 	 * maintaining the invariable that new reports must be written to
1507 	 * zeroed memory for us to be able to reliable detect if an expected
1508 	 * report has not yet landed in memory.  (At least on Haswell the OA
1509 	 * buffer tail pointer is not synchronized with reports being visible
1510 	 * to the CPU)
1511 	 */
1512 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1513 
1514 	/**
1515 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1516 	 * up the Boolean and Custom (B/C) counters that are part of the
1517 	 * counter reports being sampled. May apply system constraints such as
1518 	 * disabling EU clock gating as required.
1519 	 */
1520 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1521 				 const struct i915_oa_config *oa_config);
1522 
1523 	/**
1524 	 * @disable_metric_set: Remove system constraints associated with using
1525 	 * the OA unit.
1526 	 */
1527 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1528 
1529 	/**
1530 	 * @oa_enable: Enable periodic sampling
1531 	 */
1532 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1533 
1534 	/**
1535 	 * @oa_disable: Disable periodic sampling
1536 	 */
1537 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1538 
1539 	/**
1540 	 * @read: Copy data from the circular OA buffer into a given userspace
1541 	 * buffer.
1542 	 */
1543 	int (*read)(struct i915_perf_stream *stream,
1544 		    char __user *buf,
1545 		    size_t count,
1546 		    size_t *offset);
1547 
1548 	/**
1549 	 * @oa_hw_tail_read: read the OA tail pointer register
1550 	 *
1551 	 * In particular this enables us to share all the fiddly code for
1552 	 * handling the OA unit tail pointer race that affects multiple
1553 	 * generations.
1554 	 */
1555 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1556 };
1557 
1558 struct intel_cdclk_state {
1559 	unsigned int cdclk, vco, ref, bypass;
1560 	u8 voltage_level;
1561 };
1562 
1563 struct drm_i915_private {
1564 	struct drm_device drm;
1565 
1566 	struct kmem_cache *objects;
1567 	struct kmem_cache *vmas;
1568 	struct kmem_cache *luts;
1569 	struct kmem_cache *requests;
1570 	struct kmem_cache *dependencies;
1571 	struct kmem_cache *priorities;
1572 
1573 	const struct intel_device_info info;
1574 	struct intel_driver_caps caps;
1575 
1576 	/**
1577 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1578 	 * end of stolen which we can optionally use to create GEM objects
1579 	 * backed by stolen memory. Note that stolen_usable_size tells us
1580 	 * exactly how much of this we are actually allowed to use, given that
1581 	 * some portion of it is in fact reserved for use by hardware functions.
1582 	 */
1583 	struct resource dsm;
1584 	/**
1585 	 * Reseved portion of Data Stolen Memory
1586 	 */
1587 	struct resource dsm_reserved;
1588 
1589 	/*
1590 	 * Stolen memory is segmented in hardware with different portions
1591 	 * offlimits to certain functions.
1592 	 *
1593 	 * The drm_mm is initialised to the total accessible range, as found
1594 	 * from the PCI config. On Broadwell+, this is further restricted to
1595 	 * avoid the first page! The upper end of stolen memory is reserved for
1596 	 * hardware functions and similarly removed from the accessible range.
1597 	 */
1598 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1599 
1600 	void __iomem *regs;
1601 
1602 	struct intel_uncore uncore;
1603 
1604 	struct i915_virtual_gpu vgpu;
1605 
1606 	struct intel_gvt *gvt;
1607 
1608 	struct intel_wopcm wopcm;
1609 
1610 	struct intel_huc huc;
1611 	struct intel_guc guc;
1612 
1613 	struct intel_csr csr;
1614 
1615 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1616 
1617 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1618 	 * controller on different i2c buses. */
1619 	struct mutex gmbus_mutex;
1620 
1621 	/**
1622 	 * Base address of the gmbus and gpio block.
1623 	 */
1624 	uint32_t gpio_mmio_base;
1625 
1626 	/* MMIO base address for MIPI regs */
1627 	uint32_t mipi_mmio_base;
1628 
1629 	uint32_t psr_mmio_base;
1630 
1631 	uint32_t pps_mmio_base;
1632 
1633 	wait_queue_head_t gmbus_wait_queue;
1634 
1635 	struct pci_dev *bridge_dev;
1636 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1637 	/* Context used internally to idle the GPU and setup initial state */
1638 	struct i915_gem_context *kernel_context;
1639 	/* Context only to be used for injecting preemption commands */
1640 	struct i915_gem_context *preempt_context;
1641 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1642 					    [MAX_ENGINE_INSTANCE + 1];
1643 
1644 	struct drm_dma_handle *status_page_dmah;
1645 	struct resource mch_res;
1646 
1647 	/* protects the irq masks */
1648 	spinlock_t irq_lock;
1649 
1650 	bool display_irqs_enabled;
1651 
1652 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1653 	struct pm_qos_request pm_qos;
1654 
1655 	/* Sideband mailbox protection */
1656 	struct mutex sb_lock;
1657 
1658 	/** Cached value of IMR to avoid reads in updating the bitfield */
1659 	union {
1660 		u32 irq_mask;
1661 		u32 de_irq_mask[I915_MAX_PIPES];
1662 	};
1663 	u32 gt_irq_mask;
1664 	u32 pm_imr;
1665 	u32 pm_ier;
1666 	u32 pm_rps_events;
1667 	u32 pm_guc_events;
1668 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1669 
1670 	struct i915_hotplug hotplug;
1671 	struct intel_fbc fbc;
1672 	struct i915_drrs drrs;
1673 	struct intel_opregion opregion;
1674 	struct intel_vbt_data vbt;
1675 
1676 	bool preserve_bios_swizzle;
1677 
1678 	/* overlay */
1679 	struct intel_overlay *overlay;
1680 
1681 	/* backlight registers and fields in struct intel_panel */
1682 	struct mutex backlight_lock;
1683 
1684 	/* LVDS info */
1685 	bool no_aux_handshake;
1686 
1687 	/* protects panel power sequencer state */
1688 	struct mutex pps_mutex;
1689 
1690 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1691 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1692 
1693 	unsigned int fsb_freq, mem_freq, is_ddr3;
1694 	unsigned int skl_preferred_vco_freq;
1695 	unsigned int max_cdclk_freq;
1696 
1697 	unsigned int max_dotclk_freq;
1698 	unsigned int rawclk_freq;
1699 	unsigned int hpll_freq;
1700 	unsigned int fdi_pll_freq;
1701 	unsigned int czclk_freq;
1702 
1703 	struct {
1704 		/*
1705 		 * The current logical cdclk state.
1706 		 * See intel_atomic_state.cdclk.logical
1707 		 *
1708 		 * For reading holding any crtc lock is sufficient,
1709 		 * for writing must hold all of them.
1710 		 */
1711 		struct intel_cdclk_state logical;
1712 		/*
1713 		 * The current actual cdclk state.
1714 		 * See intel_atomic_state.cdclk.actual
1715 		 */
1716 		struct intel_cdclk_state actual;
1717 		/* The current hardware cdclk state */
1718 		struct intel_cdclk_state hw;
1719 	} cdclk;
1720 
1721 	/**
1722 	 * wq - Driver workqueue for GEM.
1723 	 *
1724 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1725 	 * locks, for otherwise the flushing done in the pageflip code will
1726 	 * result in deadlocks.
1727 	 */
1728 	struct workqueue_struct *wq;
1729 
1730 	/* ordered wq for modesets */
1731 	struct workqueue_struct *modeset_wq;
1732 
1733 	/* Display functions */
1734 	struct drm_i915_display_funcs display;
1735 
1736 	/* PCH chipset type */
1737 	enum intel_pch pch_type;
1738 	unsigned short pch_id;
1739 
1740 	unsigned long quirks;
1741 
1742 	enum modeset_restore modeset_restore;
1743 	struct mutex modeset_restore_lock;
1744 	struct drm_atomic_state *modeset_restore_state;
1745 	struct drm_modeset_acquire_ctx reset_ctx;
1746 
1747 	struct list_head vm_list; /* Global list of all address spaces */
1748 	struct i915_ggtt ggtt; /* VM representing the global address space */
1749 
1750 	struct i915_gem_mm mm;
1751 	DECLARE_HASHTABLE(mm_structs, 7);
1752 	struct mutex mm_lock;
1753 
1754 	struct intel_ppat ppat;
1755 
1756 	/* Kernel Modesetting */
1757 
1758 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1759 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1760 
1761 #ifdef CONFIG_DEBUG_FS
1762 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1763 #endif
1764 
1765 	/* dpll and cdclk state is protected by connection_mutex */
1766 	int num_shared_dpll;
1767 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1768 	const struct intel_dpll_mgr *dpll_mgr;
1769 
1770 	/*
1771 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1772 	 * Must be global rather than per dpll, because on some platforms
1773 	 * plls share registers.
1774 	 */
1775 	struct mutex dpll_lock;
1776 
1777 	unsigned int active_crtcs;
1778 	/* minimum acceptable cdclk for each pipe */
1779 	int min_cdclk[I915_MAX_PIPES];
1780 	/* minimum acceptable voltage level for each pipe */
1781 	u8 min_voltage_level[I915_MAX_PIPES];
1782 
1783 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1784 
1785 	struct i915_workarounds workarounds;
1786 
1787 	struct i915_frontbuffer_tracking fb_tracking;
1788 
1789 	struct intel_atomic_helper {
1790 		struct llist_head free_list;
1791 		struct work_struct free_work;
1792 	} atomic_helper;
1793 
1794 	u16 orig_clock;
1795 
1796 	bool mchbar_need_disable;
1797 
1798 	struct intel_l3_parity l3_parity;
1799 
1800 	/* Cannot be determined by PCIID. You must always read a register. */
1801 	u32 edram_cap;
1802 
1803 	/*
1804 	 * Protects RPS/RC6 register access and PCU communication.
1805 	 * Must be taken after struct_mutex if nested. Note that
1806 	 * this lock may be held for long periods of time when
1807 	 * talking to hw - so only take it when talking to hw!
1808 	 */
1809 	struct mutex pcu_lock;
1810 
1811 	/* gen6+ GT PM state */
1812 	struct intel_gen6_power_mgmt gt_pm;
1813 
1814 	/* ilk-only ips/rps state. Everything in here is protected by the global
1815 	 * mchdev_lock in intel_pm.c */
1816 	struct intel_ilk_power_mgmt ips;
1817 
1818 	struct i915_power_domains power_domains;
1819 
1820 	struct i915_psr psr;
1821 
1822 	struct i915_gpu_error gpu_error;
1823 
1824 	struct drm_i915_gem_object *vlv_pctx;
1825 
1826 	/* list of fbdev register on this device */
1827 	struct intel_fbdev *fbdev;
1828 	struct work_struct fbdev_suspend_work;
1829 
1830 	struct drm_property *broadcast_rgb_property;
1831 	struct drm_property *force_audio_property;
1832 
1833 	/* hda/i915 audio component */
1834 	struct i915_audio_component *audio_component;
1835 	bool audio_component_registered;
1836 	/**
1837 	 * av_mutex - mutex for audio/video sync
1838 	 *
1839 	 */
1840 	struct mutex av_mutex;
1841 
1842 	struct {
1843 		struct list_head list;
1844 		struct llist_head free_list;
1845 		struct work_struct free_work;
1846 
1847 		/* The hw wants to have a stable context identifier for the
1848 		 * lifetime of the context (for OA, PASID, faults, etc).
1849 		 * This is limited in execlists to 21 bits.
1850 		 */
1851 		struct ida hw_ida;
1852 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1853 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1854 	} contexts;
1855 
1856 	u32 fdi_rx_config;
1857 
1858 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1859 	u32 chv_phy_control;
1860 	/*
1861 	 * Shadows for CHV DPLL_MD regs to keep the state
1862 	 * checker somewhat working in the presence hardware
1863 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1864 	 */
1865 	u32 chv_dpll_md[I915_MAX_PIPES];
1866 	u32 bxt_phy_grc;
1867 
1868 	u32 suspend_count;
1869 	bool power_domains_suspended;
1870 	struct i915_suspend_saved_registers regfile;
1871 	struct vlv_s0ix_state vlv_s0ix_state;
1872 
1873 	enum {
1874 		I915_SAGV_UNKNOWN = 0,
1875 		I915_SAGV_DISABLED,
1876 		I915_SAGV_ENABLED,
1877 		I915_SAGV_NOT_CONTROLLED
1878 	} sagv_status;
1879 
1880 	struct {
1881 		/*
1882 		 * Raw watermark latency values:
1883 		 * in 0.1us units for WM0,
1884 		 * in 0.5us units for WM1+.
1885 		 */
1886 		/* primary */
1887 		uint16_t pri_latency[5];
1888 		/* sprite */
1889 		uint16_t spr_latency[5];
1890 		/* cursor */
1891 		uint16_t cur_latency[5];
1892 		/*
1893 		 * Raw watermark memory latency values
1894 		 * for SKL for all 8 levels
1895 		 * in 1us units.
1896 		 */
1897 		uint16_t skl_latency[8];
1898 
1899 		/* current hardware state */
1900 		union {
1901 			struct ilk_wm_values hw;
1902 			struct skl_ddb_values skl_hw;
1903 			struct vlv_wm_values vlv;
1904 			struct g4x_wm_values g4x;
1905 		};
1906 
1907 		uint8_t max_level;
1908 
1909 		/*
1910 		 * Should be held around atomic WM register writing; also
1911 		 * protects * intel_crtc->wm.active and
1912 		 * cstate->wm.need_postvbl_update.
1913 		 */
1914 		struct mutex wm_mutex;
1915 
1916 		/*
1917 		 * Set during HW readout of watermarks/DDB.  Some platforms
1918 		 * need to know when we're still using BIOS-provided values
1919 		 * (which we don't fully trust).
1920 		 */
1921 		bool distrust_bios_wm;
1922 	} wm;
1923 
1924 	struct i915_runtime_pm runtime_pm;
1925 
1926 	struct {
1927 		bool initialized;
1928 
1929 		struct kobject *metrics_kobj;
1930 		struct ctl_table_header *sysctl_header;
1931 
1932 		/*
1933 		 * Lock associated with adding/modifying/removing OA configs
1934 		 * in dev_priv->perf.metrics_idr.
1935 		 */
1936 		struct mutex metrics_lock;
1937 
1938 		/*
1939 		 * List of dynamic configurations, you need to hold
1940 		 * dev_priv->perf.metrics_lock to access it.
1941 		 */
1942 		struct idr metrics_idr;
1943 
1944 		/*
1945 		 * Lock associated with anything below within this structure
1946 		 * except exclusive_stream.
1947 		 */
1948 		struct mutex lock;
1949 		struct list_head streams;
1950 
1951 		struct {
1952 			/*
1953 			 * The stream currently using the OA unit. If accessed
1954 			 * outside a syscall associated to its file
1955 			 * descriptor, you need to hold
1956 			 * dev_priv->drm.struct_mutex.
1957 			 */
1958 			struct i915_perf_stream *exclusive_stream;
1959 
1960 			u32 specific_ctx_id;
1961 
1962 			struct hrtimer poll_check_timer;
1963 			wait_queue_head_t poll_wq;
1964 			bool pollin;
1965 
1966 			/**
1967 			 * For rate limiting any notifications of spurious
1968 			 * invalid OA reports
1969 			 */
1970 			struct ratelimit_state spurious_report_rs;
1971 
1972 			bool periodic;
1973 			int period_exponent;
1974 
1975 			struct i915_oa_config test_config;
1976 
1977 			struct {
1978 				struct i915_vma *vma;
1979 				u8 *vaddr;
1980 				u32 last_ctx_id;
1981 				int format;
1982 				int format_size;
1983 
1984 				/**
1985 				 * Locks reads and writes to all head/tail state
1986 				 *
1987 				 * Consider: the head and tail pointer state
1988 				 * needs to be read consistently from a hrtimer
1989 				 * callback (atomic context) and read() fop
1990 				 * (user context) with tail pointer updates
1991 				 * happening in atomic context and head updates
1992 				 * in user context and the (unlikely)
1993 				 * possibility of read() errors needing to
1994 				 * reset all head/tail state.
1995 				 *
1996 				 * Note: Contention or performance aren't
1997 				 * currently a significant concern here
1998 				 * considering the relatively low frequency of
1999 				 * hrtimer callbacks (5ms period) and that
2000 				 * reads typically only happen in response to a
2001 				 * hrtimer event and likely complete before the
2002 				 * next callback.
2003 				 *
2004 				 * Note: This lock is not held *while* reading
2005 				 * and copying data to userspace so the value
2006 				 * of head observed in htrimer callbacks won't
2007 				 * represent any partial consumption of data.
2008 				 */
2009 				spinlock_t ptr_lock;
2010 
2011 				/**
2012 				 * One 'aging' tail pointer and one 'aged'
2013 				 * tail pointer ready to used for reading.
2014 				 *
2015 				 * Initial values of 0xffffffff are invalid
2016 				 * and imply that an update is required
2017 				 * (and should be ignored by an attempted
2018 				 * read)
2019 				 */
2020 				struct {
2021 					u32 offset;
2022 				} tails[2];
2023 
2024 				/**
2025 				 * Index for the aged tail ready to read()
2026 				 * data up to.
2027 				 */
2028 				unsigned int aged_tail_idx;
2029 
2030 				/**
2031 				 * A monotonic timestamp for when the current
2032 				 * aging tail pointer was read; used to
2033 				 * determine when it is old enough to trust.
2034 				 */
2035 				u64 aging_timestamp;
2036 
2037 				/**
2038 				 * Although we can always read back the head
2039 				 * pointer register, we prefer to avoid
2040 				 * trusting the HW state, just to avoid any
2041 				 * risk that some hardware condition could
2042 				 * somehow bump the head pointer unpredictably
2043 				 * and cause us to forward the wrong OA buffer
2044 				 * data to userspace.
2045 				 */
2046 				u32 head;
2047 			} oa_buffer;
2048 
2049 			u32 gen7_latched_oastatus1;
2050 			u32 ctx_oactxctrl_offset;
2051 			u32 ctx_flexeu0_offset;
2052 
2053 			/**
2054 			 * The RPT_ID/reason field for Gen8+ includes a bit
2055 			 * to determine if the CTX ID in the report is valid
2056 			 * but the specific bit differs between Gen 8 and 9
2057 			 */
2058 			u32 gen8_valid_ctx_bit;
2059 
2060 			struct i915_oa_ops ops;
2061 			const struct i915_oa_format *oa_formats;
2062 		} oa;
2063 	} perf;
2064 
2065 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2066 	struct {
2067 		void (*resume)(struct drm_i915_private *);
2068 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2069 
2070 		struct list_head timelines;
2071 
2072 		struct list_head active_rings;
2073 		struct list_head closed_vma;
2074 		u32 active_requests;
2075 		u32 request_serial;
2076 
2077 		/**
2078 		 * Is the GPU currently considered idle, or busy executing
2079 		 * userspace requests? Whilst idle, we allow runtime power
2080 		 * management to power down the hardware and display clocks.
2081 		 * In order to reduce the effect on performance, there
2082 		 * is a slight delay before we do so.
2083 		 */
2084 		bool awake;
2085 
2086 		/**
2087 		 * The number of times we have woken up.
2088 		 */
2089 		unsigned int epoch;
2090 #define I915_EPOCH_INVALID 0
2091 
2092 		/**
2093 		 * We leave the user IRQ off as much as possible,
2094 		 * but this means that requests will finish and never
2095 		 * be retired once the system goes idle. Set a timer to
2096 		 * fire periodically while the ring is running. When it
2097 		 * fires, go retire requests.
2098 		 */
2099 		struct delayed_work retire_work;
2100 
2101 		/**
2102 		 * When we detect an idle GPU, we want to turn on
2103 		 * powersaving features. So once we see that there
2104 		 * are no more requests outstanding and no more
2105 		 * arrive within a small period of time, we fire
2106 		 * off the idle_work.
2107 		 */
2108 		struct delayed_work idle_work;
2109 
2110 		ktime_t last_init_time;
2111 	} gt;
2112 
2113 	/* perform PHY state sanity checks? */
2114 	bool chv_phy_assert[2];
2115 
2116 	bool ipc_enabled;
2117 
2118 	/* Used to save the pipe-to-encoder mapping for audio */
2119 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2120 
2121 	/* necessary resource sharing with HDMI LPE audio driver. */
2122 	struct {
2123 		struct platform_device *platdev;
2124 		int	irq;
2125 	} lpe_audio;
2126 
2127 	struct i915_pmu pmu;
2128 
2129 	/*
2130 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2131 	 * will be rejected. Instead look for a better place.
2132 	 */
2133 };
2134 
2135 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2136 {
2137 	return container_of(dev, struct drm_i915_private, drm);
2138 }
2139 
2140 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2141 {
2142 	return to_i915(dev_get_drvdata(kdev));
2143 }
2144 
2145 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2146 {
2147 	return container_of(wopcm, struct drm_i915_private, wopcm);
2148 }
2149 
2150 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2151 {
2152 	return container_of(guc, struct drm_i915_private, guc);
2153 }
2154 
2155 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2156 {
2157 	return container_of(huc, struct drm_i915_private, huc);
2158 }
2159 
2160 /* Simple iterator over all initialised engines */
2161 #define for_each_engine(engine__, dev_priv__, id__) \
2162 	for ((id__) = 0; \
2163 	     (id__) < I915_NUM_ENGINES; \
2164 	     (id__)++) \
2165 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2166 
2167 /* Iterator over subset of engines selected by mask */
2168 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2169 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2170 	     (tmp__) ? \
2171 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2172 	     0;)
2173 
2174 enum hdmi_force_audio {
2175 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2176 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2177 	HDMI_AUDIO_AUTO,		/* trust EDID */
2178 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2179 };
2180 
2181 #define I915_GTT_OFFSET_NONE ((u32)-1)
2182 
2183 /*
2184  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2185  * considered to be the frontbuffer for the given plane interface-wise. This
2186  * doesn't mean that the hw necessarily already scans it out, but that any
2187  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2188  *
2189  * We have one bit per pipe and per scanout plane type.
2190  */
2191 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2192 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2193 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2194 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2195 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2196 })
2197 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2198 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2199 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2200 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2201 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2202 
2203 /*
2204  * Optimised SGL iterator for GEM objects
2205  */
2206 static __always_inline struct sgt_iter {
2207 	struct scatterlist *sgp;
2208 	union {
2209 		unsigned long pfn;
2210 		dma_addr_t dma;
2211 	};
2212 	unsigned int curr;
2213 	unsigned int max;
2214 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2215 	struct sgt_iter s = { .sgp = sgl };
2216 
2217 	if (s.sgp) {
2218 		s.max = s.curr = s.sgp->offset;
2219 		s.max += s.sgp->length;
2220 		if (dma)
2221 			s.dma = sg_dma_address(s.sgp);
2222 		else
2223 			s.pfn = page_to_pfn(sg_page(s.sgp));
2224 	}
2225 
2226 	return s;
2227 }
2228 
2229 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2230 {
2231 	++sg;
2232 	if (unlikely(sg_is_chain(sg)))
2233 		sg = sg_chain_ptr(sg);
2234 	return sg;
2235 }
2236 
2237 /**
2238  * __sg_next - return the next scatterlist entry in a list
2239  * @sg:		The current sg entry
2240  *
2241  * Description:
2242  *   If the entry is the last, return NULL; otherwise, step to the next
2243  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2244  *   otherwise just return the pointer to the current element.
2245  **/
2246 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2247 {
2248 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2249 }
2250 
2251 /**
2252  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2253  * @__dmap:	DMA address (output)
2254  * @__iter:	'struct sgt_iter' (iterator state, internal)
2255  * @__sgt:	sg_table to iterate over (input)
2256  */
2257 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2258 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2259 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2260 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2261 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2262 
2263 /**
2264  * for_each_sgt_page - iterate over the pages of the given sg_table
2265  * @__pp:	page pointer (output)
2266  * @__iter:	'struct sgt_iter' (iterator state, internal)
2267  * @__sgt:	sg_table to iterate over (input)
2268  */
2269 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2270 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2271 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2272 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2273 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2274 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2275 
2276 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2277 {
2278 	unsigned int page_sizes;
2279 
2280 	page_sizes = 0;
2281 	while (sg) {
2282 		GEM_BUG_ON(sg->offset);
2283 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2284 		page_sizes |= sg->length;
2285 		sg = __sg_next(sg);
2286 	}
2287 
2288 	return page_sizes;
2289 }
2290 
2291 static inline unsigned int i915_sg_segment_size(void)
2292 {
2293 	unsigned int size = swiotlb_max_segment();
2294 
2295 	if (size == 0)
2296 		return SCATTERLIST_MAX_SEGMENT;
2297 
2298 	size = rounddown(size, PAGE_SIZE);
2299 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2300 	if (size < PAGE_SIZE)
2301 		size = PAGE_SIZE;
2302 
2303 	return size;
2304 }
2305 
2306 static inline const struct intel_device_info *
2307 intel_info(const struct drm_i915_private *dev_priv)
2308 {
2309 	return &dev_priv->info;
2310 }
2311 
2312 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2313 
2314 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2315 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2316 
2317 #define REVID_FOREVER		0xff
2318 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2319 
2320 #define GEN_FOREVER (0)
2321 
2322 #define INTEL_GEN_MASK(s, e) ( \
2323 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2324 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2325 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2326 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2327 )
2328 
2329 /*
2330  * Returns true if Gen is in inclusive range [Start, End].
2331  *
2332  * Use GEN_FOREVER for unbound start and or end.
2333  */
2334 #define IS_GEN(dev_priv, s, e) \
2335 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2336 
2337 /*
2338  * Return true if revision is in range [since,until] inclusive.
2339  *
2340  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2341  */
2342 #define IS_REVID(p, since, until) \
2343 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2344 
2345 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2346 
2347 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2348 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2349 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2350 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2351 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2352 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2353 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2354 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2355 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2356 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2357 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2358 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2359 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2360 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2361 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2362 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2363 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2364 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2365 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2366 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2367 				 (dev_priv)->info.gt == 1)
2368 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2369 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2370 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2371 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2372 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2373 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2374 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2375 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2376 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2377 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2378 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2379 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2380 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2381 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2382 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2383 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2384 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2385 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2386 /* ULX machines are also considered ULT. */
2387 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2388 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2389 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2390 				 (dev_priv)->info.gt == 3)
2391 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2392 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2393 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2394 				 (dev_priv)->info.gt == 3)
2395 /* ULX machines are also considered ULT. */
2396 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2397 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2398 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2399 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2400 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2401 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2402 				 INTEL_DEVID(dev_priv) == 0x1926)
2403 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2404 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2405 				 INTEL_DEVID(dev_priv) == 0x191E)
2406 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2407 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2408 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2409 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2410 				 INTEL_DEVID(dev_priv) == 0x5926)
2411 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2412 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2413 				 INTEL_DEVID(dev_priv) == 0x591E)
2414 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2415 				 (dev_priv)->info.gt == 2)
2416 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2417 				 (dev_priv)->info.gt == 3)
2418 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2419 				 (dev_priv)->info.gt == 4)
2420 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2421 				 (dev_priv)->info.gt == 2)
2422 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2423 				 (dev_priv)->info.gt == 3)
2424 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2425 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2426 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2427 				 (dev_priv)->info.gt == 2)
2428 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2429 				 (dev_priv)->info.gt == 3)
2430 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2431 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2432 
2433 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2434 
2435 #define SKL_REVID_A0		0x0
2436 #define SKL_REVID_B0		0x1
2437 #define SKL_REVID_C0		0x2
2438 #define SKL_REVID_D0		0x3
2439 #define SKL_REVID_E0		0x4
2440 #define SKL_REVID_F0		0x5
2441 #define SKL_REVID_G0		0x6
2442 #define SKL_REVID_H0		0x7
2443 
2444 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2445 
2446 #define BXT_REVID_A0		0x0
2447 #define BXT_REVID_A1		0x1
2448 #define BXT_REVID_B0		0x3
2449 #define BXT_REVID_B_LAST	0x8
2450 #define BXT_REVID_C0		0x9
2451 
2452 #define IS_BXT_REVID(dev_priv, since, until) \
2453 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2454 
2455 #define KBL_REVID_A0		0x0
2456 #define KBL_REVID_B0		0x1
2457 #define KBL_REVID_C0		0x2
2458 #define KBL_REVID_D0		0x3
2459 #define KBL_REVID_E0		0x4
2460 
2461 #define IS_KBL_REVID(dev_priv, since, until) \
2462 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2463 
2464 #define GLK_REVID_A0		0x0
2465 #define GLK_REVID_A1		0x1
2466 
2467 #define IS_GLK_REVID(dev_priv, since, until) \
2468 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2469 
2470 #define CNL_REVID_A0		0x0
2471 #define CNL_REVID_B0		0x1
2472 #define CNL_REVID_C0		0x2
2473 
2474 #define IS_CNL_REVID(p, since, until) \
2475 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2476 
2477 #define ICL_REVID_A0		0x0
2478 #define ICL_REVID_A2		0x1
2479 #define ICL_REVID_B0		0x3
2480 #define ICL_REVID_B2		0x4
2481 #define ICL_REVID_C0		0x5
2482 
2483 #define IS_ICL_REVID(p, since, until) \
2484 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2485 
2486 /*
2487  * The genX designation typically refers to the render engine, so render
2488  * capability related checks should use IS_GEN, while display and other checks
2489  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2490  * chips, etc.).
2491  */
2492 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2493 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2494 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2495 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2496 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2497 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2498 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2499 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2500 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2501 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2502 
2503 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2504 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2505 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2506 
2507 #define ENGINE_MASK(id)	BIT(id)
2508 #define RENDER_RING	ENGINE_MASK(RCS)
2509 #define BSD_RING	ENGINE_MASK(VCS)
2510 #define BLT_RING	ENGINE_MASK(BCS)
2511 #define VEBOX_RING	ENGINE_MASK(VECS)
2512 #define BSD2_RING	ENGINE_MASK(VCS2)
2513 #define BSD3_RING	ENGINE_MASK(VCS3)
2514 #define BSD4_RING	ENGINE_MASK(VCS4)
2515 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2516 #define ALL_ENGINES	(~0)
2517 
2518 #define HAS_ENGINE(dev_priv, id) \
2519 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2520 
2521 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2522 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2523 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2524 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2525 
2526 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2527 
2528 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2529 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2530 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2531 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2532 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2533 
2534 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2535 
2536 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2537 		((dev_priv)->info.has_logical_ring_contexts)
2538 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2539 		((dev_priv)->info.has_logical_ring_elsq)
2540 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2541 		((dev_priv)->info.has_logical_ring_preemption)
2542 
2543 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2544 
2545 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2546 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2547 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2548 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2549 	GEM_BUG_ON((sizes) == 0); \
2550 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2551 })
2552 
2553 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2554 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2555 		((dev_priv)->info.overlay_needs_physical)
2556 
2557 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2558 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2559 
2560 /* WaRsDisableCoarsePowerGating:skl,cnl */
2561 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2562 	(IS_CANNONLAKE(dev_priv) || \
2563 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2564 
2565 /*
2566  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2567  * even when in MSI mode. This results in spurious interrupt warnings if the
2568  * legacy irq no. is shared with another device. The kernel then disables that
2569  * interrupt source and so prevents the other device from working properly.
2570  *
2571  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2572  * interrupts.
2573  */
2574 #define HAS_AUX_IRQ(dev_priv)   true
2575 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2576 
2577 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2578  * rows, which changed the alignment requirements and fence programming.
2579  */
2580 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2581 					 !(IS_I915G(dev_priv) || \
2582 					 IS_I915GM(dev_priv)))
2583 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2584 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2585 
2586 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2587 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2588 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2589 
2590 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2591 
2592 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2593 
2594 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2595 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2596 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2597 
2598 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2599 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2600 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2601 
2602 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2603 
2604 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2605 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2606 
2607 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2608 
2609 /*
2610  * For now, anything with a GuC requires uCode loading, and then supports
2611  * command submission once loaded. But these are logically independent
2612  * properties, so we have separate macros to test them.
2613  */
2614 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2615 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2616 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2617 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2618 
2619 /* For now, anything with a GuC has also HuC */
2620 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2621 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2622 
2623 /* Having a GuC is not the same as using a GuC */
2624 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2625 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2626 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2627 
2628 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2629 
2630 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2631 
2632 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2633 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2634 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2635 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2636 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2637 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2638 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2639 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2640 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2641 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2642 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2643 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2644 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2645 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2646 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2647 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2648 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2649 
2650 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2651 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2652 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2653 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2654 #define HAS_PCH_CNP_LP(dev_priv) \
2655 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2656 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2657 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2658 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2659 #define HAS_PCH_LPT_LP(dev_priv) \
2660 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2661 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2662 #define HAS_PCH_LPT_H(dev_priv) \
2663 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2664 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2665 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2666 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2667 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2668 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2669 
2670 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2671 
2672 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2673 
2674 /* DPF == dynamic parity feature */
2675 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2676 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2677 				 2 : HAS_L3_DPF(dev_priv))
2678 
2679 #define GT_FREQUENCY_MULTIPLIER 50
2680 #define GEN9_FREQ_SCALER 3
2681 
2682 #include "i915_trace.h"
2683 
2684 static inline bool intel_vtd_active(void)
2685 {
2686 #ifdef CONFIG_INTEL_IOMMU
2687 	if (intel_iommu_gfx_mapped)
2688 		return true;
2689 #endif
2690 	return false;
2691 }
2692 
2693 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2694 {
2695 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2696 }
2697 
2698 static inline bool
2699 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2700 {
2701 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2702 }
2703 
2704 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2705 				int enable_ppgtt);
2706 
2707 /* i915_drv.c */
2708 void __printf(3, 4)
2709 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2710 	      const char *fmt, ...);
2711 
2712 #define i915_report_error(dev_priv, fmt, ...)				   \
2713 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2714 
2715 #ifdef CONFIG_COMPAT
2716 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2717 			      unsigned long arg);
2718 #else
2719 #define i915_compat_ioctl NULL
2720 #endif
2721 extern const struct dev_pm_ops i915_pm_ops;
2722 
2723 extern int i915_driver_load(struct pci_dev *pdev,
2724 			    const struct pci_device_id *ent);
2725 extern void i915_driver_unload(struct drm_device *dev);
2726 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2727 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2728 
2729 extern void i915_reset(struct drm_i915_private *i915,
2730 		       unsigned int stalled_mask,
2731 		       const char *reason);
2732 extern int i915_reset_engine(struct intel_engine_cs *engine,
2733 			     const char *reason);
2734 
2735 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2736 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2737 extern int intel_guc_reset_engine(struct intel_guc *guc,
2738 				  struct intel_engine_cs *engine);
2739 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2740 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2741 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2742 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2743 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2744 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2745 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2746 
2747 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2748 int intel_engines_init(struct drm_i915_private *dev_priv);
2749 
2750 /* intel_hotplug.c */
2751 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2752 			   u32 pin_mask, u32 long_mask);
2753 void intel_hpd_init(struct drm_i915_private *dev_priv);
2754 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2755 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2756 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2757 				enum hpd_pin pin);
2758 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2759 				   enum port port);
2760 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2761 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2762 
2763 /* i915_irq.c */
2764 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2765 {
2766 	unsigned long delay;
2767 
2768 	if (unlikely(!i915_modparams.enable_hangcheck))
2769 		return;
2770 
2771 	/* Don't continually defer the hangcheck so that it is always run at
2772 	 * least once after work has been scheduled on any ring. Otherwise,
2773 	 * we will ignore a hung ring if a second ring is kept busy.
2774 	 */
2775 
2776 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2777 	queue_delayed_work(system_long_wq,
2778 			   &dev_priv->gpu_error.hangcheck_work, delay);
2779 }
2780 
2781 __printf(4, 5)
2782 void i915_handle_error(struct drm_i915_private *dev_priv,
2783 		       u32 engine_mask,
2784 		       unsigned long flags,
2785 		       const char *fmt, ...);
2786 #define I915_ERROR_CAPTURE BIT(0)
2787 
2788 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2789 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2790 int intel_irq_install(struct drm_i915_private *dev_priv);
2791 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2792 
2793 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2794 {
2795 	return dev_priv->gvt;
2796 }
2797 
2798 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2799 {
2800 	return dev_priv->vgpu.active;
2801 }
2802 
2803 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2804 			      enum pipe pipe);
2805 void
2806 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2807 		     u32 status_mask);
2808 
2809 void
2810 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2811 		      u32 status_mask);
2812 
2813 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2814 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2815 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2816 				   uint32_t mask,
2817 				   uint32_t bits);
2818 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2819 			    uint32_t interrupt_mask,
2820 			    uint32_t enabled_irq_mask);
2821 static inline void
2822 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2823 {
2824 	ilk_update_display_irq(dev_priv, bits, bits);
2825 }
2826 static inline void
2827 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2828 {
2829 	ilk_update_display_irq(dev_priv, bits, 0);
2830 }
2831 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2832 			 enum pipe pipe,
2833 			 uint32_t interrupt_mask,
2834 			 uint32_t enabled_irq_mask);
2835 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2836 				       enum pipe pipe, uint32_t bits)
2837 {
2838 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2839 }
2840 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2841 					enum pipe pipe, uint32_t bits)
2842 {
2843 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2844 }
2845 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2846 				  uint32_t interrupt_mask,
2847 				  uint32_t enabled_irq_mask);
2848 static inline void
2849 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2850 {
2851 	ibx_display_interrupt_update(dev_priv, bits, bits);
2852 }
2853 static inline void
2854 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2855 {
2856 	ibx_display_interrupt_update(dev_priv, bits, 0);
2857 }
2858 
2859 /* i915_gem.c */
2860 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2861 			  struct drm_file *file_priv);
2862 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2863 			 struct drm_file *file_priv);
2864 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2865 			  struct drm_file *file_priv);
2866 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2867 			struct drm_file *file_priv);
2868 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2869 			struct drm_file *file_priv);
2870 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2871 			      struct drm_file *file_priv);
2872 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2873 			     struct drm_file *file_priv);
2874 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2875 			      struct drm_file *file_priv);
2876 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2877 			       struct drm_file *file_priv);
2878 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2879 			struct drm_file *file_priv);
2880 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2881 			       struct drm_file *file);
2882 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2883 			       struct drm_file *file);
2884 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2885 			    struct drm_file *file_priv);
2886 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2887 			   struct drm_file *file_priv);
2888 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2889 			      struct drm_file *file_priv);
2890 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2891 			      struct drm_file *file_priv);
2892 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2893 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2894 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2895 			   struct drm_file *file);
2896 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2897 				struct drm_file *file_priv);
2898 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2899 			struct drm_file *file_priv);
2900 void i915_gem_sanitize(struct drm_i915_private *i915);
2901 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2902 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2903 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2904 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2905 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2906 
2907 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2908 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2909 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2910 			 const struct drm_i915_gem_object_ops *ops);
2911 struct drm_i915_gem_object *
2912 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2913 struct drm_i915_gem_object *
2914 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2915 				 const void *data, size_t size);
2916 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2917 void i915_gem_free_object(struct drm_gem_object *obj);
2918 
2919 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2920 {
2921 	if (!atomic_read(&i915->mm.free_count))
2922 		return;
2923 
2924 	/* A single pass should suffice to release all the freed objects (along
2925 	 * most call paths) , but be a little more paranoid in that freeing
2926 	 * the objects does take a little amount of time, during which the rcu
2927 	 * callbacks could have added new objects into the freed list, and
2928 	 * armed the work again.
2929 	 */
2930 	do {
2931 		rcu_barrier();
2932 	} while (flush_work(&i915->mm.free_work));
2933 }
2934 
2935 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2936 {
2937 	/*
2938 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2939 	 * general we have workers that are armed by RCU and then rearm
2940 	 * themselves in their callbacks. To be paranoid, we need to
2941 	 * drain the workqueue a second time after waiting for the RCU
2942 	 * grace period so that we catch work queued via RCU from the first
2943 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2944 	 * a result, we make an assumption that we only don't require more
2945 	 * than 2 passes to catch all recursive RCU delayed work.
2946 	 *
2947 	 */
2948 	int pass = 2;
2949 	do {
2950 		rcu_barrier();
2951 		drain_workqueue(i915->wq);
2952 	} while (--pass);
2953 }
2954 
2955 struct i915_vma * __must_check
2956 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2957 			 const struct i915_ggtt_view *view,
2958 			 u64 size,
2959 			 u64 alignment,
2960 			 u64 flags);
2961 
2962 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2963 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2964 
2965 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2966 
2967 static inline int __sg_page_count(const struct scatterlist *sg)
2968 {
2969 	return sg->length >> PAGE_SHIFT;
2970 }
2971 
2972 struct scatterlist *
2973 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2974 		       unsigned int n, unsigned int *offset);
2975 
2976 struct page *
2977 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2978 			 unsigned int n);
2979 
2980 struct page *
2981 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2982 			       unsigned int n);
2983 
2984 dma_addr_t
2985 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2986 				unsigned long n);
2987 
2988 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2989 				 struct sg_table *pages,
2990 				 unsigned int sg_page_sizes);
2991 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2992 
2993 static inline int __must_check
2994 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2995 {
2996 	might_lock(&obj->mm.lock);
2997 
2998 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2999 		return 0;
3000 
3001 	return __i915_gem_object_get_pages(obj);
3002 }
3003 
3004 static inline bool
3005 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3006 {
3007 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3008 }
3009 
3010 static inline void
3011 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3012 {
3013 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3014 
3015 	atomic_inc(&obj->mm.pages_pin_count);
3016 }
3017 
3018 static inline bool
3019 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3020 {
3021 	return atomic_read(&obj->mm.pages_pin_count);
3022 }
3023 
3024 static inline void
3025 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3026 {
3027 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3028 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3029 
3030 	atomic_dec(&obj->mm.pages_pin_count);
3031 }
3032 
3033 static inline void
3034 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3035 {
3036 	__i915_gem_object_unpin_pages(obj);
3037 }
3038 
3039 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3040 	I915_MM_NORMAL = 0,
3041 	I915_MM_SHRINKER
3042 };
3043 
3044 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3045 				 enum i915_mm_subclass subclass);
3046 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3047 
3048 enum i915_map_type {
3049 	I915_MAP_WB = 0,
3050 	I915_MAP_WC,
3051 #define I915_MAP_OVERRIDE BIT(31)
3052 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3053 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3054 };
3055 
3056 /**
3057  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3058  * @obj: the object to map into kernel address space
3059  * @type: the type of mapping, used to select pgprot_t
3060  *
3061  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3062  * pages and then returns a contiguous mapping of the backing storage into
3063  * the kernel address space. Based on the @type of mapping, the PTE will be
3064  * set to either WriteBack or WriteCombine (via pgprot_t).
3065  *
3066  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3067  * mapping is no longer required.
3068  *
3069  * Returns the pointer through which to access the mapped object, or an
3070  * ERR_PTR() on error.
3071  */
3072 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3073 					   enum i915_map_type type);
3074 
3075 /**
3076  * i915_gem_object_unpin_map - releases an earlier mapping
3077  * @obj: the object to unmap
3078  *
3079  * After pinning the object and mapping its pages, once you are finished
3080  * with your access, call i915_gem_object_unpin_map() to release the pin
3081  * upon the mapping. Once the pin count reaches zero, that mapping may be
3082  * removed.
3083  */
3084 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3085 {
3086 	i915_gem_object_unpin_pages(obj);
3087 }
3088 
3089 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3090 				    unsigned int *needs_clflush);
3091 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3092 				     unsigned int *needs_clflush);
3093 #define CLFLUSH_BEFORE	BIT(0)
3094 #define CLFLUSH_AFTER	BIT(1)
3095 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3096 
3097 static inline void
3098 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3099 {
3100 	i915_gem_object_unpin_pages(obj);
3101 }
3102 
3103 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3104 void i915_vma_move_to_active(struct i915_vma *vma,
3105 			     struct i915_request *rq,
3106 			     unsigned int flags);
3107 int i915_gem_dumb_create(struct drm_file *file_priv,
3108 			 struct drm_device *dev,
3109 			 struct drm_mode_create_dumb *args);
3110 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3111 		      uint32_t handle, uint64_t *offset);
3112 int i915_gem_mmap_gtt_version(void);
3113 
3114 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3115 		       struct drm_i915_gem_object *new,
3116 		       unsigned frontbuffer_bits);
3117 
3118 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3119 
3120 struct i915_request *
3121 i915_gem_find_active_request(struct intel_engine_cs *engine);
3122 
3123 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3124 {
3125 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3126 }
3127 
3128 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3129 {
3130 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3131 }
3132 
3133 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3134 {
3135 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3136 }
3137 
3138 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3139 {
3140 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3141 }
3142 
3143 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3144 {
3145 	return READ_ONCE(error->reset_count);
3146 }
3147 
3148 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3149 					  struct intel_engine_cs *engine)
3150 {
3151 	return READ_ONCE(error->reset_engine_count[engine->id]);
3152 }
3153 
3154 struct i915_request *
3155 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3156 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3157 void i915_gem_reset(struct drm_i915_private *dev_priv,
3158 		    unsigned int stalled_mask);
3159 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3160 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3161 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3162 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3163 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3164 			   struct i915_request *request,
3165 			   bool stalled);
3166 
3167 void i915_gem_init_mmio(struct drm_i915_private *i915);
3168 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3169 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3170 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3171 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3172 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3173 			   unsigned int flags);
3174 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3175 void i915_gem_resume(struct drm_i915_private *dev_priv);
3176 int i915_gem_fault(struct vm_fault *vmf);
3177 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3178 			 unsigned int flags,
3179 			 long timeout,
3180 			 struct intel_rps_client *rps);
3181 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3182 				  unsigned int flags,
3183 				  const struct i915_sched_attr *attr);
3184 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3185 
3186 int __must_check
3187 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3188 int __must_check
3189 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3190 int __must_check
3191 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3192 struct i915_vma * __must_check
3193 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3194 				     u32 alignment,
3195 				     const struct i915_ggtt_view *view,
3196 				     unsigned int flags);
3197 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3198 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3199 				int align);
3200 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3201 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3202 
3203 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3204 				    enum i915_cache_level cache_level);
3205 
3206 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3207 				struct dma_buf *dma_buf);
3208 
3209 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3210 				struct drm_gem_object *gem_obj, int flags);
3211 
3212 static inline struct i915_hw_ppgtt *
3213 i915_vm_to_ppgtt(struct i915_address_space *vm)
3214 {
3215 	return container_of(vm, struct i915_hw_ppgtt, base);
3216 }
3217 
3218 /* i915_gem_fence_reg.c */
3219 struct drm_i915_fence_reg *
3220 i915_reserve_fence(struct drm_i915_private *dev_priv);
3221 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3222 
3223 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3224 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3225 
3226 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3227 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3228 				       struct sg_table *pages);
3229 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3230 					 struct sg_table *pages);
3231 
3232 static inline struct i915_gem_context *
3233 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3234 {
3235 	return idr_find(&file_priv->context_idr, id);
3236 }
3237 
3238 static inline struct i915_gem_context *
3239 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3240 {
3241 	struct i915_gem_context *ctx;
3242 
3243 	rcu_read_lock();
3244 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3245 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3246 		ctx = NULL;
3247 	rcu_read_unlock();
3248 
3249 	return ctx;
3250 }
3251 
3252 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3253 			 struct drm_file *file);
3254 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3255 			       struct drm_file *file);
3256 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3257 				  struct drm_file *file);
3258 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3259 			    struct i915_gem_context *ctx,
3260 			    uint32_t *reg_state);
3261 
3262 /* i915_gem_evict.c */
3263 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3264 					  u64 min_size, u64 alignment,
3265 					  unsigned cache_level,
3266 					  u64 start, u64 end,
3267 					  unsigned flags);
3268 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3269 					 struct drm_mm_node *node,
3270 					 unsigned int flags);
3271 int i915_gem_evict_vm(struct i915_address_space *vm);
3272 
3273 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3274 
3275 /* belongs in i915_gem_gtt.h */
3276 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3277 {
3278 	wmb();
3279 	if (INTEL_GEN(dev_priv) < 6)
3280 		intel_gtt_chipset_flush();
3281 }
3282 
3283 /* i915_gem_stolen.c */
3284 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3285 				struct drm_mm_node *node, u64 size,
3286 				unsigned alignment);
3287 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3288 					 struct drm_mm_node *node, u64 size,
3289 					 unsigned alignment, u64 start,
3290 					 u64 end);
3291 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3292 				 struct drm_mm_node *node);
3293 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3294 void i915_gem_cleanup_stolen(struct drm_device *dev);
3295 struct drm_i915_gem_object *
3296 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3297 			      resource_size_t size);
3298 struct drm_i915_gem_object *
3299 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3300 					       resource_size_t stolen_offset,
3301 					       resource_size_t gtt_offset,
3302 					       resource_size_t size);
3303 
3304 /* i915_gem_internal.c */
3305 struct drm_i915_gem_object *
3306 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3307 				phys_addr_t size);
3308 
3309 /* i915_gem_shrinker.c */
3310 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3311 			      unsigned long target,
3312 			      unsigned long *nr_scanned,
3313 			      unsigned flags);
3314 #define I915_SHRINK_PURGEABLE 0x1
3315 #define I915_SHRINK_UNBOUND 0x2
3316 #define I915_SHRINK_BOUND 0x4
3317 #define I915_SHRINK_ACTIVE 0x8
3318 #define I915_SHRINK_VMAPS 0x10
3319 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3320 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3321 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3322 
3323 
3324 /* i915_gem_tiling.c */
3325 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3326 {
3327 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3328 
3329 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3330 		i915_gem_object_is_tiled(obj);
3331 }
3332 
3333 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3334 			unsigned int tiling, unsigned int stride);
3335 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3336 			     unsigned int tiling, unsigned int stride);
3337 
3338 /* i915_debugfs.c */
3339 #ifdef CONFIG_DEBUG_FS
3340 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3341 int i915_debugfs_connector_add(struct drm_connector *connector);
3342 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3343 #else
3344 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3345 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3346 { return 0; }
3347 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3348 #endif
3349 
3350 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3351 
3352 /* i915_cmd_parser.c */
3353 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3354 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3355 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3356 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3357 			    struct drm_i915_gem_object *batch_obj,
3358 			    struct drm_i915_gem_object *shadow_batch_obj,
3359 			    u32 batch_start_offset,
3360 			    u32 batch_len,
3361 			    bool is_master);
3362 
3363 /* i915_perf.c */
3364 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3365 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3366 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3367 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3368 
3369 /* i915_suspend.c */
3370 extern int i915_save_state(struct drm_i915_private *dev_priv);
3371 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3372 
3373 /* i915_sysfs.c */
3374 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3375 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3376 
3377 /* intel_lpe_audio.c */
3378 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3379 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3380 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3381 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3382 			    enum pipe pipe, enum port port,
3383 			    const void *eld, int ls_clock, bool dp_output);
3384 
3385 /* intel_i2c.c */
3386 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3387 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3388 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3389 				     unsigned int pin);
3390 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3391 
3392 extern struct i2c_adapter *
3393 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3394 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3395 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3396 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3397 {
3398 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3399 }
3400 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3401 
3402 /* intel_bios.c */
3403 void intel_bios_init(struct drm_i915_private *dev_priv);
3404 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3405 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3406 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3407 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3408 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3409 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3410 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3411 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3412 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3413 				     enum port port);
3414 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3415 				enum port port);
3416 
3417 /* intel_acpi.c */
3418 #ifdef CONFIG_ACPI
3419 extern void intel_register_dsm_handler(void);
3420 extern void intel_unregister_dsm_handler(void);
3421 #else
3422 static inline void intel_register_dsm_handler(void) { return; }
3423 static inline void intel_unregister_dsm_handler(void) { return; }
3424 #endif /* CONFIG_ACPI */
3425 
3426 /* intel_device_info.c */
3427 static inline struct intel_device_info *
3428 mkwrite_device_info(struct drm_i915_private *dev_priv)
3429 {
3430 	return (struct intel_device_info *)&dev_priv->info;
3431 }
3432 
3433 /* modesetting */
3434 extern void intel_modeset_init_hw(struct drm_device *dev);
3435 extern int intel_modeset_init(struct drm_device *dev);
3436 extern void intel_modeset_cleanup(struct drm_device *dev);
3437 extern int intel_connector_register(struct drm_connector *);
3438 extern void intel_connector_unregister(struct drm_connector *);
3439 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3440 				       bool state);
3441 extern void intel_display_resume(struct drm_device *dev);
3442 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3443 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3444 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3445 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3446 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3447 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3448 				  bool enable);
3449 
3450 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3451 			struct drm_file *file);
3452 
3453 /* overlay */
3454 extern struct intel_overlay_error_state *
3455 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3456 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3457 					    struct intel_overlay_error_state *error);
3458 
3459 extern struct intel_display_error_state *
3460 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3461 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3462 					    struct intel_display_error_state *error);
3463 
3464 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3465 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3466 				    u32 val, int fast_timeout_us,
3467 				    int slow_timeout_ms);
3468 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3469 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3470 
3471 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3472 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3473 
3474 /* intel_sideband.c */
3475 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3476 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3477 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3478 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3479 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3480 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3481 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3482 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3483 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3484 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3485 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3486 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3487 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3488 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3489 		   enum intel_sbi_destination destination);
3490 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3491 		     enum intel_sbi_destination destination);
3492 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3493 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3494 
3495 /* intel_dpio_phy.c */
3496 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3497 			     enum dpio_phy *phy, enum dpio_channel *ch);
3498 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3499 				  enum port port, u32 margin, u32 scale,
3500 				  u32 enable, u32 deemphasis);
3501 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3502 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3503 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3504 			    enum dpio_phy phy);
3505 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3506 			      enum dpio_phy phy);
3507 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3508 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3509 				     uint8_t lane_lat_optim_mask);
3510 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3511 
3512 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3513 			      u32 deemph_reg_value, u32 margin_reg_value,
3514 			      bool uniq_trans_scale);
3515 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3516 			      const struct intel_crtc_state *crtc_state,
3517 			      bool reset);
3518 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3519 			    const struct intel_crtc_state *crtc_state);
3520 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3521 				const struct intel_crtc_state *crtc_state);
3522 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3523 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3524 			      const struct intel_crtc_state *old_crtc_state);
3525 
3526 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3527 			      u32 demph_reg_value, u32 preemph_reg_value,
3528 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3529 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3530 			    const struct intel_crtc_state *crtc_state);
3531 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3532 				const struct intel_crtc_state *crtc_state);
3533 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3534 			 const struct intel_crtc_state *old_crtc_state);
3535 
3536 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3537 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3538 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3539 			   const i915_reg_t reg);
3540 
3541 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3542 
3543 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3544 					 const i915_reg_t reg)
3545 {
3546 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3547 }
3548 
3549 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3550 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3551 
3552 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3553 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3554 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3555 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3556 
3557 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3558 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3559 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3560 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3561 
3562 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3563  * will be implemented using 2 32-bit writes in an arbitrary order with
3564  * an arbitrary delay between them. This can cause the hardware to
3565  * act upon the intermediate value, possibly leading to corruption and
3566  * machine death. For this reason we do not support I915_WRITE64, or
3567  * dev_priv->uncore.funcs.mmio_writeq.
3568  *
3569  * When reading a 64-bit value as two 32-bit values, the delay may cause
3570  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3571  * occasionally a 64-bit register does not actualy support a full readq
3572  * and must be read using two 32-bit reads.
3573  *
3574  * You have been warned.
3575  */
3576 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3577 
3578 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3579 	u32 upper, lower, old_upper, loop = 0;				\
3580 	upper = I915_READ(upper_reg);					\
3581 	do {								\
3582 		old_upper = upper;					\
3583 		lower = I915_READ(lower_reg);				\
3584 		upper = I915_READ(upper_reg);				\
3585 	} while (upper != old_upper && loop++ < 2);			\
3586 	(u64)upper << 32 | lower; })
3587 
3588 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3589 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3590 
3591 #define __raw_read(x, s) \
3592 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3593 					     i915_reg_t reg) \
3594 { \
3595 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3596 }
3597 
3598 #define __raw_write(x, s) \
3599 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3600 				       i915_reg_t reg, uint##x##_t val) \
3601 { \
3602 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3603 }
3604 __raw_read(8, b)
3605 __raw_read(16, w)
3606 __raw_read(32, l)
3607 __raw_read(64, q)
3608 
3609 __raw_write(8, b)
3610 __raw_write(16, w)
3611 __raw_write(32, l)
3612 __raw_write(64, q)
3613 
3614 #undef __raw_read
3615 #undef __raw_write
3616 
3617 /* These are untraced mmio-accessors that are only valid to be used inside
3618  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3619  * controlled.
3620  *
3621  * Think twice, and think again, before using these.
3622  *
3623  * As an example, these accessors can possibly be used between:
3624  *
3625  * spin_lock_irq(&dev_priv->uncore.lock);
3626  * intel_uncore_forcewake_get__locked();
3627  *
3628  * and
3629  *
3630  * intel_uncore_forcewake_put__locked();
3631  * spin_unlock_irq(&dev_priv->uncore.lock);
3632  *
3633  *
3634  * Note: some registers may not need forcewake held, so
3635  * intel_uncore_forcewake_{get,put} can be omitted, see
3636  * intel_uncore_forcewake_for_reg().
3637  *
3638  * Certain architectures will die if the same cacheline is concurrently accessed
3639  * by different clients (e.g. on Ivybridge). Access to registers should
3640  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3641  * a more localised lock guarding all access to that bank of registers.
3642  */
3643 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3644 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3645 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3646 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3647 
3648 /* "Broadcast RGB" property */
3649 #define INTEL_BROADCAST_RGB_AUTO 0
3650 #define INTEL_BROADCAST_RGB_FULL 1
3651 #define INTEL_BROADCAST_RGB_LIMITED 2
3652 
3653 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3654 {
3655 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3656 		return VLV_VGACNTRL;
3657 	else if (INTEL_GEN(dev_priv) >= 5)
3658 		return CPU_VGACNTRL;
3659 	else
3660 		return VGACNTRL;
3661 }
3662 
3663 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3664 {
3665 	unsigned long j = msecs_to_jiffies(m);
3666 
3667 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3668 }
3669 
3670 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3671 {
3672 	/* nsecs_to_jiffies64() does not guard against overflow */
3673 	if (NSEC_PER_SEC % HZ &&
3674 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3675 		return MAX_JIFFY_OFFSET;
3676 
3677         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3678 }
3679 
3680 static inline unsigned long
3681 timespec_to_jiffies_timeout(const struct timespec *value)
3682 {
3683 	unsigned long j = timespec_to_jiffies(value);
3684 
3685 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3686 }
3687 
3688 /*
3689  * If you need to wait X milliseconds between events A and B, but event B
3690  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3691  * when event A happened, then just before event B you call this function and
3692  * pass the timestamp as the first argument, and X as the second argument.
3693  */
3694 static inline void
3695 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3696 {
3697 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3698 
3699 	/*
3700 	 * Don't re-read the value of "jiffies" every time since it may change
3701 	 * behind our back and break the math.
3702 	 */
3703 	tmp_jiffies = jiffies;
3704 	target_jiffies = timestamp_jiffies +
3705 			 msecs_to_jiffies_timeout(to_wait_ms);
3706 
3707 	if (time_after(target_jiffies, tmp_jiffies)) {
3708 		remaining_jiffies = target_jiffies - tmp_jiffies;
3709 		while (remaining_jiffies)
3710 			remaining_jiffies =
3711 			    schedule_timeout_uninterruptible(remaining_jiffies);
3712 	}
3713 }
3714 
3715 static inline bool
3716 __i915_request_irq_complete(const struct i915_request *rq)
3717 {
3718 	struct intel_engine_cs *engine = rq->engine;
3719 	u32 seqno;
3720 
3721 	/* Note that the engine may have wrapped around the seqno, and
3722 	 * so our request->global_seqno will be ahead of the hardware,
3723 	 * even though it completed the request before wrapping. We catch
3724 	 * this by kicking all the waiters before resetting the seqno
3725 	 * in hardware, and also signal the fence.
3726 	 */
3727 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3728 		return true;
3729 
3730 	/* The request was dequeued before we were awoken. We check after
3731 	 * inspecting the hw to confirm that this was the same request
3732 	 * that generated the HWS update. The memory barriers within
3733 	 * the request execution are sufficient to ensure that a check
3734 	 * after reading the value from hw matches this request.
3735 	 */
3736 	seqno = i915_request_global_seqno(rq);
3737 	if (!seqno)
3738 		return false;
3739 
3740 	/* Before we do the heavier coherent read of the seqno,
3741 	 * check the value (hopefully) in the CPU cacheline.
3742 	 */
3743 	if (__i915_request_completed(rq, seqno))
3744 		return true;
3745 
3746 	/* Ensure our read of the seqno is coherent so that we
3747 	 * do not "miss an interrupt" (i.e. if this is the last
3748 	 * request and the seqno write from the GPU is not visible
3749 	 * by the time the interrupt fires, we will see that the
3750 	 * request is incomplete and go back to sleep awaiting
3751 	 * another interrupt that will never come.)
3752 	 *
3753 	 * Strictly, we only need to do this once after an interrupt,
3754 	 * but it is easier and safer to do it every time the waiter
3755 	 * is woken.
3756 	 */
3757 	if (engine->irq_seqno_barrier &&
3758 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3759 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3760 
3761 		/* The ordering of irq_posted versus applying the barrier
3762 		 * is crucial. The clearing of the current irq_posted must
3763 		 * be visible before we perform the barrier operation,
3764 		 * such that if a subsequent interrupt arrives, irq_posted
3765 		 * is reasserted and our task rewoken (which causes us to
3766 		 * do another __i915_request_irq_complete() immediately
3767 		 * and reapply the barrier). Conversely, if the clear
3768 		 * occurs after the barrier, then an interrupt that arrived
3769 		 * whilst we waited on the barrier would not trigger a
3770 		 * barrier on the next pass, and the read may not see the
3771 		 * seqno update.
3772 		 */
3773 		engine->irq_seqno_barrier(engine);
3774 
3775 		/* If we consume the irq, but we are no longer the bottom-half,
3776 		 * the real bottom-half may not have serialised their own
3777 		 * seqno check with the irq-barrier (i.e. may have inspected
3778 		 * the seqno before we believe it coherent since they see
3779 		 * irq_posted == false but we are still running).
3780 		 */
3781 		spin_lock_irq(&b->irq_lock);
3782 		if (b->irq_wait && b->irq_wait->tsk != current)
3783 			/* Note that if the bottom-half is changed as we
3784 			 * are sending the wake-up, the new bottom-half will
3785 			 * be woken by whomever made the change. We only have
3786 			 * to worry about when we steal the irq-posted for
3787 			 * ourself.
3788 			 */
3789 			wake_up_process(b->irq_wait->tsk);
3790 		spin_unlock_irq(&b->irq_lock);
3791 
3792 		if (__i915_request_completed(rq, seqno))
3793 			return true;
3794 	}
3795 
3796 	return false;
3797 }
3798 
3799 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3800 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3801 
3802 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3803  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3804  * perform the operation. To check beforehand, pass in the parameters to
3805  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3806  * you only need to pass in the minor offsets, page-aligned pointers are
3807  * always valid.
3808  *
3809  * For just checking for SSE4.1, in the foreknowledge that the future use
3810  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3811  */
3812 #define i915_can_memcpy_from_wc(dst, src, len) \
3813 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3814 
3815 #define i915_has_memcpy_from_wc() \
3816 	i915_memcpy_from_wc(NULL, NULL, 0)
3817 
3818 /* i915_mm.c */
3819 int remap_io_mapping(struct vm_area_struct *vma,
3820 		     unsigned long addr, unsigned long pfn, unsigned long size,
3821 		     struct io_mapping *iomap);
3822 
3823 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3824 {
3825 	if (INTEL_GEN(i915) >= 10)
3826 		return CNL_HWS_CSB_WRITE_INDEX;
3827 	else
3828 		return I915_HWS_CSB_WRITE_INDEX;
3829 }
3830 
3831 #endif
3832