xref: /linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_lmem.h"
14 #include "i915_trace.h"
15 #include "intel_gt.h"
16 #include "intel_gtt.h"
17 
18 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
19 {
20 	struct drm_i915_gem_object *obj;
21 
22 	/*
23 	 * To avoid severe over-allocation when dealing with min_page_size
24 	 * restrictions, we override that behaviour here by allowing an object
25 	 * size and page layout which can be smaller. In practice this should be
26 	 * totally fine, since GTT paging structures are not typically inserted
27 	 * into the GTT.
28 	 *
29 	 * Note that we also hit this path for the scratch page, and for this
30 	 * case it might need to be 64K, but that should work fine here since we
31 	 * used the passed in size for the page size, which should ensure it
32 	 * also has the same alignment.
33 	 */
34 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
35 						    vm->lmem_pt_obj_flags);
36 	/*
37 	 * Ensure all paging structures for this vm share the same dma-resv
38 	 * object underneath, with the idea that one object_lock() will lock
39 	 * them all at once.
40 	 */
41 	if (!IS_ERR(obj)) {
42 		obj->base.resv = i915_vm_resv_get(vm);
43 		obj->shares_resv_from = vm;
44 	}
45 
46 	return obj;
47 }
48 
49 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
50 {
51 	struct drm_i915_gem_object *obj;
52 
53 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
54 		i915_gem_shrink_all(vm->i915);
55 
56 	obj = i915_gem_object_create_internal(vm->i915, sz);
57 	/*
58 	 * Ensure all paging structures for this vm share the same dma-resv
59 	 * object underneath, with the idea that one object_lock() will lock
60 	 * them all at once.
61 	 */
62 	if (!IS_ERR(obj)) {
63 		obj->base.resv = i915_vm_resv_get(vm);
64 		obj->shares_resv_from = vm;
65 	}
66 
67 	return obj;
68 }
69 
70 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
71 {
72 	enum i915_map_type type;
73 	void *vaddr;
74 
75 	type = i915_coherent_map_type(vm->i915, obj, true);
76 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
77 	if (IS_ERR(vaddr))
78 		return PTR_ERR(vaddr);
79 
80 	i915_gem_object_make_unshrinkable(obj);
81 	return 0;
82 }
83 
84 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
85 {
86 	enum i915_map_type type;
87 	void *vaddr;
88 
89 	type = i915_coherent_map_type(vm->i915, obj, true);
90 	vaddr = i915_gem_object_pin_map(obj, type);
91 	if (IS_ERR(vaddr))
92 		return PTR_ERR(vaddr);
93 
94 	i915_gem_object_make_unshrinkable(obj);
95 	return 0;
96 }
97 
98 void __i915_vm_close(struct i915_address_space *vm)
99 {
100 	struct i915_vma *vma, *vn;
101 
102 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
103 		return;
104 
105 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
106 		struct drm_i915_gem_object *obj = vma->obj;
107 
108 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
109 		if (!kref_get_unless_zero(&obj->base.refcount))
110 			continue;
111 
112 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
113 		WARN_ON(__i915_vma_unbind(vma));
114 		__i915_vma_put(vma);
115 
116 		i915_gem_object_put(obj);
117 	}
118 	GEM_BUG_ON(!list_empty(&vm->bound_list));
119 
120 	mutex_unlock(&vm->mutex);
121 }
122 
123 /* lock the vm into the current ww, if we lock one, we lock all */
124 int i915_vm_lock_objects(struct i915_address_space *vm,
125 			 struct i915_gem_ww_ctx *ww)
126 {
127 	if (vm->scratch[0]->base.resv == &vm->_resv) {
128 		return i915_gem_object_lock(vm->scratch[0], ww);
129 	} else {
130 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
131 
132 		/* We borrowed the scratch page from ggtt, take the top level object */
133 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
134 	}
135 }
136 
137 void i915_address_space_fini(struct i915_address_space *vm)
138 {
139 	drm_mm_takedown(&vm->mm);
140 	mutex_destroy(&vm->mutex);
141 }
142 
143 /**
144  * i915_vm_resv_release - Final struct i915_address_space destructor
145  * @kref: Pointer to the &i915_address_space.resv_ref member.
146  *
147  * This function is called when the last lock sharer no longer shares the
148  * &i915_address_space._resv lock.
149  */
150 void i915_vm_resv_release(struct kref *kref)
151 {
152 	struct i915_address_space *vm =
153 		container_of(kref, typeof(*vm), resv_ref);
154 
155 	dma_resv_fini(&vm->_resv);
156 	kfree(vm);
157 }
158 
159 static void __i915_vm_release(struct work_struct *work)
160 {
161 	struct i915_address_space *vm =
162 		container_of(work, struct i915_address_space, release_work);
163 
164 	vm->cleanup(vm);
165 	i915_address_space_fini(vm);
166 
167 	i915_vm_resv_put(vm);
168 }
169 
170 void i915_vm_release(struct kref *kref)
171 {
172 	struct i915_address_space *vm =
173 		container_of(kref, struct i915_address_space, ref);
174 
175 	GEM_BUG_ON(i915_is_ggtt(vm));
176 	trace_i915_ppgtt_release(vm);
177 
178 	queue_work(vm->i915->wq, &vm->release_work);
179 }
180 
181 void i915_address_space_init(struct i915_address_space *vm, int subclass)
182 {
183 	kref_init(&vm->ref);
184 
185 	/*
186 	 * Special case for GGTT that has already done an early
187 	 * kref_init here.
188 	 */
189 	if (!kref_read(&vm->resv_ref))
190 		kref_init(&vm->resv_ref);
191 
192 	INIT_WORK(&vm->release_work, __i915_vm_release);
193 	atomic_set(&vm->open, 1);
194 
195 	/*
196 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
197 	 * Do a dummy acquire now under fs_reclaim so that any allocation
198 	 * attempt holding the lock is immediately reported by lockdep.
199 	 */
200 	mutex_init(&vm->mutex);
201 	lockdep_set_subclass(&vm->mutex, subclass);
202 
203 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
204 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
205 	} else {
206 		/*
207 		 * CHV + BXT VTD workaround use stop_machine(),
208 		 * which is allowed to allocate memory. This means &vm->mutex
209 		 * is the outer lock, and in theory we can allocate memory inside
210 		 * it through stop_machine().
211 		 *
212 		 * Add the annotation for this, we use trylock in shrinker.
213 		 */
214 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
215 		might_alloc(GFP_KERNEL);
216 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
217 	}
218 	dma_resv_init(&vm->_resv);
219 
220 	GEM_BUG_ON(!vm->total);
221 	drm_mm_init(&vm->mm, 0, vm->total);
222 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
223 
224 	INIT_LIST_HEAD(&vm->bound_list);
225 }
226 
227 void *__px_vaddr(struct drm_i915_gem_object *p)
228 {
229 	enum i915_map_type type;
230 
231 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
232 	return page_unpack_bits(p->mm.mapping, &type);
233 }
234 
235 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
236 {
237 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
238 	return sg_dma_address(p->mm.pages->sgl);
239 }
240 
241 struct page *__px_page(struct drm_i915_gem_object *p)
242 {
243 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
244 	return sg_page(p->mm.pages->sgl);
245 }
246 
247 void
248 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
249 {
250 	void *vaddr = __px_vaddr(p);
251 
252 	memset64(vaddr, val, count);
253 	clflush_cache_range(vaddr, PAGE_SIZE);
254 }
255 
256 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
257 {
258 	void *vaddr = __px_vaddr(scratch);
259 	u8 val;
260 
261 	val = 0;
262 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 		val = POISON_FREE;
264 
265 	memset(vaddr, val, scratch->base.size);
266 	drm_clflush_virt_range(vaddr, scratch->base.size);
267 }
268 
269 int setup_scratch_page(struct i915_address_space *vm)
270 {
271 	unsigned long size;
272 
273 	/*
274 	 * In order to utilize 64K pages for an object with a size < 2M, we will
275 	 * need to support a 64K scratch page, given that every 16th entry for a
276 	 * page-table operating in 64K mode must point to a properly aligned 64K
277 	 * region, including any PTEs which happen to point to scratch.
278 	 *
279 	 * This is only relevant for the 48b PPGTT where we support
280 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
281 	 * scratch (read-only) between all vm, we create one 64k scratch page
282 	 * for all.
283 	 */
284 	size = I915_GTT_PAGE_SIZE_4K;
285 	if (i915_vm_is_4lvl(vm) &&
286 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
287 		size = I915_GTT_PAGE_SIZE_64K;
288 
289 	do {
290 		struct drm_i915_gem_object *obj;
291 
292 		obj = vm->alloc_scratch_dma(vm, size);
293 		if (IS_ERR(obj))
294 			goto skip;
295 
296 		if (map_pt_dma(vm, obj))
297 			goto skip_obj;
298 
299 		/* We need a single contiguous page for our scratch */
300 		if (obj->mm.page_sizes.sg < size)
301 			goto skip_obj;
302 
303 		/* And it needs to be correspondingly aligned */
304 		if (__px_dma(obj) & (size - 1))
305 			goto skip_obj;
306 
307 		/*
308 		 * Use a non-zero scratch page for debugging.
309 		 *
310 		 * We want a value that should be reasonably obvious
311 		 * to spot in the error state, while also causing a GPU hang
312 		 * if executed. We prefer using a clear page in production, so
313 		 * should it ever be accidentally used, the effect should be
314 		 * fairly benign.
315 		 */
316 		poison_scratch_page(obj);
317 
318 		vm->scratch[0] = obj;
319 		vm->scratch_order = get_order(size);
320 		return 0;
321 
322 skip_obj:
323 		i915_gem_object_put(obj);
324 skip:
325 		if (size == I915_GTT_PAGE_SIZE_4K)
326 			return -ENOMEM;
327 
328 		/*
329 		 * If we need 64K minimum GTT pages for device local-memory,
330 		 * like on XEHPSDV, then we need to fail the allocation here,
331 		 * otherwise we can't safely support the insertion of
332 		 * local-memory pages for this vm, since the HW expects the
333 		 * correct physical alignment and size when the page-table is
334 		 * operating in 64K GTT mode, which includes any scratch PTEs,
335 		 * since userspace can still touch them.
336 		 */
337 		if (HAS_64K_PAGES(vm->i915))
338 			return -ENOMEM;
339 
340 		size = I915_GTT_PAGE_SIZE_4K;
341 	} while (1);
342 }
343 
344 void free_scratch(struct i915_address_space *vm)
345 {
346 	int i;
347 
348 	for (i = 0; i <= vm->top; i++)
349 		i915_gem_object_put(vm->scratch[i]);
350 }
351 
352 void gtt_write_workarounds(struct intel_gt *gt)
353 {
354 	struct drm_i915_private *i915 = gt->i915;
355 	struct intel_uncore *uncore = gt->uncore;
356 
357 	/*
358 	 * This function is for gtt related workarounds. This function is
359 	 * called on driver load and after a GPU reset, so you can place
360 	 * workarounds here even if they get overwritten by GPU reset.
361 	 */
362 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
363 	if (IS_BROADWELL(i915))
364 		intel_uncore_write(uncore,
365 				   GEN8_L3_LRA_1_GPGPU,
366 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
367 	else if (IS_CHERRYVIEW(i915))
368 		intel_uncore_write(uncore,
369 				   GEN8_L3_LRA_1_GPGPU,
370 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
371 	else if (IS_GEN9_LP(i915))
372 		intel_uncore_write(uncore,
373 				   GEN8_L3_LRA_1_GPGPU,
374 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
375 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
376 		intel_uncore_write(uncore,
377 				   GEN8_L3_LRA_1_GPGPU,
378 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
379 
380 	/*
381 	 * To support 64K PTEs we need to first enable the use of the
382 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
383 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
384 	 * shouldn't be needed after GEN10.
385 	 *
386 	 * 64K pages were first introduced from BDW+, although technically they
387 	 * only *work* from gen9+. For pre-BDW we instead have the option for
388 	 * 32K pages, but we don't currently have any support for it in our
389 	 * driver.
390 	 */
391 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
392 	    GRAPHICS_VER(i915) <= 10)
393 		intel_uncore_rmw(uncore,
394 				 GEN8_GAMW_ECO_DEV_RW_IA,
395 				 0,
396 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
397 
398 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
399 		bool can_use_gtt_cache = true;
400 
401 		/*
402 		 * According to the BSpec if we use 2M/1G pages then we also
403 		 * need to disable the GTT cache. At least on BDW we can see
404 		 * visual corruption when using 2M pages, and not disabling the
405 		 * GTT cache.
406 		 */
407 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
408 			can_use_gtt_cache = false;
409 
410 		/* WaGttCachingOffByDefault */
411 		intel_uncore_write(uncore,
412 				   HSW_GTT_CACHE_EN,
413 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
414 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
415 				 intel_uncore_read(uncore,
416 						   HSW_GTT_CACHE_EN) == 0);
417 	}
418 }
419 
420 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
421 {
422 	/* TGL doesn't support LLC or AGE settings */
423 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
424 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
425 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
426 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
427 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
428 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
429 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
430 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
431 }
432 
433 static void icl_setup_private_ppat(struct intel_uncore *uncore)
434 {
435 	intel_uncore_write(uncore,
436 			   GEN10_PAT_INDEX(0),
437 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
438 	intel_uncore_write(uncore,
439 			   GEN10_PAT_INDEX(1),
440 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
441 	intel_uncore_write(uncore,
442 			   GEN10_PAT_INDEX(2),
443 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
444 	intel_uncore_write(uncore,
445 			   GEN10_PAT_INDEX(3),
446 			   GEN8_PPAT_UC);
447 	intel_uncore_write(uncore,
448 			   GEN10_PAT_INDEX(4),
449 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
450 	intel_uncore_write(uncore,
451 			   GEN10_PAT_INDEX(5),
452 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
453 	intel_uncore_write(uncore,
454 			   GEN10_PAT_INDEX(6),
455 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
456 	intel_uncore_write(uncore,
457 			   GEN10_PAT_INDEX(7),
458 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
459 }
460 
461 /*
462  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
463  * bits. When using advanced contexts each context stores its own PAT, but
464  * writing this data shouldn't be harmful even in those cases.
465  */
466 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
467 {
468 	struct drm_i915_private *i915 = uncore->i915;
469 	u64 pat;
470 
471 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
472 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
473 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
474 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
475 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
476 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
477 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
478 
479 	/* for scanout with eLLC */
480 	if (GRAPHICS_VER(i915) >= 9)
481 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
482 	else
483 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
484 
485 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
486 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
487 }
488 
489 static void chv_setup_private_ppat(struct intel_uncore *uncore)
490 {
491 	u64 pat;
492 
493 	/*
494 	 * Map WB on BDW to snooped on CHV.
495 	 *
496 	 * Only the snoop bit has meaning for CHV, the rest is
497 	 * ignored.
498 	 *
499 	 * The hardware will never snoop for certain types of accesses:
500 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
501 	 * - PPGTT page tables
502 	 * - some other special cycles
503 	 *
504 	 * As with BDW, we also need to consider the following for GT accesses:
505 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
506 	 * so RTL will always use the value corresponding to
507 	 * pat_sel = 000".
508 	 * Which means we must set the snoop bit in PAT entry 0
509 	 * in order to keep the global status page working.
510 	 */
511 
512 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
513 	      GEN8_PPAT(1, 0) |
514 	      GEN8_PPAT(2, 0) |
515 	      GEN8_PPAT(3, 0) |
516 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
517 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
518 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
519 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
520 
521 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
522 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
523 }
524 
525 void setup_private_pat(struct intel_uncore *uncore)
526 {
527 	struct drm_i915_private *i915 = uncore->i915;
528 
529 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
530 
531 	if (GRAPHICS_VER(i915) >= 12)
532 		tgl_setup_private_ppat(uncore);
533 	else if (GRAPHICS_VER(i915) >= 11)
534 		icl_setup_private_ppat(uncore);
535 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
536 		chv_setup_private_ppat(uncore);
537 	else
538 		bdw_setup_private_ppat(uncore);
539 }
540 
541 struct i915_vma *
542 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
543 {
544 	struct drm_i915_gem_object *obj;
545 	struct i915_vma *vma;
546 
547 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
548 	if (IS_ERR(obj))
549 		return ERR_CAST(obj);
550 
551 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
552 
553 	vma = i915_vma_instance(obj, vm, NULL);
554 	if (IS_ERR(vma)) {
555 		i915_gem_object_put(obj);
556 		return vma;
557 	}
558 
559 	return vma;
560 }
561 
562 struct i915_vma *
563 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
564 {
565 	struct i915_vma *vma;
566 	int err;
567 
568 	vma = __vm_create_scratch_for_read(vm, size);
569 	if (IS_ERR(vma))
570 		return vma;
571 
572 	err = i915_vma_pin(vma, 0, 0,
573 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
574 	if (err) {
575 		i915_vma_put(vma);
576 		return ERR_PTR(err);
577 	}
578 
579 	return vma;
580 }
581 
582 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
583 #include "selftests/mock_gtt.c"
584 #endif
585