xref: /linux/drivers/gpu/drm/gma500/gma_display.c (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/highmem.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_fourcc.h>
15 #include <drm/drm_vblank.h>
16 
17 #include "framebuffer.h"
18 #include "gem.h"
19 #include "gma_display.h"
20 #include "psb_drv.h"
21 #include "psb_intel_drv.h"
22 #include "psb_intel_reg.h"
23 
24 /*
25  * Returns whether any output on the specified pipe is of the specified type
26  */
27 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
28 {
29 	struct drm_device *dev = crtc->dev;
30 	struct drm_mode_config *mode_config = &dev->mode_config;
31 	struct drm_connector *l_entry;
32 
33 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
34 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
35 			struct gma_encoder *gma_encoder =
36 						gma_attached_encoder(l_entry);
37 			if (gma_encoder->type == type)
38 				return true;
39 		}
40 	}
41 
42 	return false;
43 }
44 
45 void gma_wait_for_vblank(struct drm_device *dev)
46 {
47 	/* Wait for 20ms, i.e. one cycle at 50hz. */
48 	mdelay(20);
49 }
50 
51 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
52 		      struct drm_framebuffer *old_fb)
53 {
54 	struct drm_device *dev = crtc->dev;
55 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
56 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
57 	struct drm_framebuffer *fb = crtc->primary->fb;
58 	struct psb_gem_object *pobj;
59 	int pipe = gma_crtc->pipe;
60 	const struct psb_offset *map = &dev_priv->regmap[pipe];
61 	unsigned long start, offset;
62 	u32 dspcntr;
63 	int ret = 0;
64 
65 	if (!gma_power_begin(dev, true))
66 		return 0;
67 
68 	/* no fb bound */
69 	if (!fb) {
70 		dev_err(dev->dev, "No FB bound\n");
71 		goto gma_pipe_cleaner;
72 	}
73 
74 	pobj = to_psb_gem_object(fb->obj[0]);
75 
76 	/* We are displaying this buffer, make sure it is actually loaded
77 	   into the GTT */
78 	ret = psb_gem_pin(pobj);
79 	if (ret < 0)
80 		goto gma_pipe_set_base_exit;
81 	start = pobj->offset;
82 	offset = y * fb->pitches[0] + x * fb->format->cpp[0];
83 
84 	REG_WRITE(map->stride, fb->pitches[0]);
85 
86 	dspcntr = REG_READ(map->cntr);
87 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
88 
89 	switch (fb->format->cpp[0] * 8) {
90 	case 8:
91 		dspcntr |= DISPPLANE_8BPP;
92 		break;
93 	case 16:
94 		if (fb->format->depth == 15)
95 			dspcntr |= DISPPLANE_15_16BPP;
96 		else
97 			dspcntr |= DISPPLANE_16BPP;
98 		break;
99 	case 24:
100 	case 32:
101 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
102 		break;
103 	default:
104 		dev_err(dev->dev, "Unknown color depth\n");
105 		ret = -EINVAL;
106 		goto gma_pipe_set_base_exit;
107 	}
108 	REG_WRITE(map->cntr, dspcntr);
109 
110 	dev_dbg(dev->dev,
111 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
112 
113 	/* FIXME: Investigate whether this really is the base for psb and why
114 		  the linear offset is named base for the other chips. map->surf
115 		  should be the base and map->linoff the offset for all chips */
116 	if (IS_PSB(dev)) {
117 		REG_WRITE(map->base, offset + start);
118 		REG_READ(map->base);
119 	} else {
120 		REG_WRITE(map->base, offset);
121 		REG_READ(map->base);
122 		REG_WRITE(map->surf, start);
123 		REG_READ(map->surf);
124 	}
125 
126 gma_pipe_cleaner:
127 	/* If there was a previous display we can now unpin it */
128 	if (old_fb)
129 		psb_gem_unpin(to_psb_gem_object(old_fb->obj[0]));
130 
131 gma_pipe_set_base_exit:
132 	gma_power_end(dev);
133 	return ret;
134 }
135 
136 /* Loads the palette/gamma unit for the CRTC with the prepared values */
137 void gma_crtc_load_lut(struct drm_crtc *crtc)
138 {
139 	struct drm_device *dev = crtc->dev;
140 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
141 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
142 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
143 	int palreg = map->palette;
144 	u16 *r, *g, *b;
145 	int i;
146 
147 	/* The clocks have to be on to load the palette. */
148 	if (!crtc->enabled)
149 		return;
150 
151 	r = crtc->gamma_store;
152 	g = r + crtc->gamma_size;
153 	b = g + crtc->gamma_size;
154 
155 	if (gma_power_begin(dev, false)) {
156 		for (i = 0; i < 256; i++) {
157 			REG_WRITE(palreg + 4 * i,
158 				  (((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
159 				  (((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
160 				  ((*b++ >> 8) + gma_crtc->lut_adj[i]));
161 		}
162 		gma_power_end(dev);
163 	} else {
164 		for (i = 0; i < 256; i++) {
165 			/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
166 			dev_priv->regs.pipe[0].palette[i] =
167 				(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
168 				(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
169 				((*b++ >> 8) + gma_crtc->lut_adj[i]);
170 		}
171 
172 	}
173 }
174 
175 int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
176 		       u32 size,
177 		       struct drm_modeset_acquire_ctx *ctx)
178 {
179 	gma_crtc_load_lut(crtc);
180 
181 	return 0;
182 }
183 
184 /*
185  * Sets the power management mode of the pipe and plane.
186  *
187  * This code should probably grow support for turning the cursor off and back
188  * on appropriately at the same time as we're turning the pipe off/on.
189  */
190 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
191 {
192 	struct drm_device *dev = crtc->dev;
193 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
194 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
195 	int pipe = gma_crtc->pipe;
196 	const struct psb_offset *map = &dev_priv->regmap[pipe];
197 	u32 temp;
198 
199 	/* XXX: When our outputs are all unaware of DPMS modes other than off
200 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
201 	 */
202 
203 	if (IS_CDV(dev))
204 		dev_priv->ops->disable_sr(dev);
205 
206 	switch (mode) {
207 	case DRM_MODE_DPMS_ON:
208 	case DRM_MODE_DPMS_STANDBY:
209 	case DRM_MODE_DPMS_SUSPEND:
210 		if (gma_crtc->active)
211 			break;
212 
213 		gma_crtc->active = true;
214 
215 		/* Enable the DPLL */
216 		temp = REG_READ(map->dpll);
217 		if ((temp & DPLL_VCO_ENABLE) == 0) {
218 			REG_WRITE(map->dpll, temp);
219 			REG_READ(map->dpll);
220 			/* Wait for the clocks to stabilize. */
221 			udelay(150);
222 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
223 			REG_READ(map->dpll);
224 			/* Wait for the clocks to stabilize. */
225 			udelay(150);
226 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
227 			REG_READ(map->dpll);
228 			/* Wait for the clocks to stabilize. */
229 			udelay(150);
230 		}
231 
232 		/* Enable the plane */
233 		temp = REG_READ(map->cntr);
234 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
235 			REG_WRITE(map->cntr,
236 				  temp | DISPLAY_PLANE_ENABLE);
237 			/* Flush the plane changes */
238 			REG_WRITE(map->base, REG_READ(map->base));
239 		}
240 
241 		udelay(150);
242 
243 		/* Enable the pipe */
244 		temp = REG_READ(map->conf);
245 		if ((temp & PIPEACONF_ENABLE) == 0)
246 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
247 
248 		temp = REG_READ(map->status);
249 		temp &= ~(0xFFFF);
250 		temp |= PIPE_FIFO_UNDERRUN;
251 		REG_WRITE(map->status, temp);
252 		REG_READ(map->status);
253 
254 		gma_crtc_load_lut(crtc);
255 
256 		/* Give the overlay scaler a chance to enable
257 		 * if it's on this pipe */
258 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
259 
260 		drm_crtc_vblank_on(crtc);
261 		break;
262 	case DRM_MODE_DPMS_OFF:
263 		if (!gma_crtc->active)
264 			break;
265 
266 		gma_crtc->active = false;
267 
268 		/* Give the overlay scaler a chance to disable
269 		 * if it's on this pipe */
270 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
271 
272 		/* Disable the VGA plane that we never use */
273 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
274 
275 		/* Turn off vblank interrupts */
276 		drm_crtc_vblank_off(crtc);
277 
278 		/* Wait for vblank for the disable to take effect */
279 		gma_wait_for_vblank(dev);
280 
281 		/* Disable plane */
282 		temp = REG_READ(map->cntr);
283 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
284 			REG_WRITE(map->cntr,
285 				  temp & ~DISPLAY_PLANE_ENABLE);
286 			/* Flush the plane changes */
287 			REG_WRITE(map->base, REG_READ(map->base));
288 			REG_READ(map->base);
289 		}
290 
291 		/* Disable pipe */
292 		temp = REG_READ(map->conf);
293 		if ((temp & PIPEACONF_ENABLE) != 0) {
294 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
295 			REG_READ(map->conf);
296 		}
297 
298 		/* Wait for vblank for the disable to take effect. */
299 		gma_wait_for_vblank(dev);
300 
301 		udelay(150);
302 
303 		/* Disable DPLL */
304 		temp = REG_READ(map->dpll);
305 		if ((temp & DPLL_VCO_ENABLE) != 0) {
306 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
307 			REG_READ(map->dpll);
308 		}
309 
310 		/* Wait for the clocks to turn off. */
311 		udelay(150);
312 		break;
313 	}
314 
315 	if (IS_CDV(dev))
316 		dev_priv->ops->update_wm(dev, crtc);
317 
318 	/* Set FIFO watermarks */
319 	REG_WRITE(DSPARB, 0x3F3E);
320 }
321 
322 int gma_crtc_cursor_set(struct drm_crtc *crtc,
323 			struct drm_file *file_priv,
324 			uint32_t handle,
325 			uint32_t width, uint32_t height)
326 {
327 	struct drm_device *dev = crtc->dev;
328 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
329 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
330 	int pipe = gma_crtc->pipe;
331 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
332 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
333 	uint32_t temp;
334 	size_t addr = 0;
335 	struct psb_gem_object *pobj;
336 	struct psb_gem_object *cursor_pobj = gma_crtc->cursor_pobj;
337 	struct drm_gem_object *obj;
338 	void *tmp_dst, *tmp_src;
339 	int ret = 0, i, cursor_pages;
340 
341 	/* If we didn't get a handle then turn the cursor off */
342 	if (!handle) {
343 		temp = CURSOR_MODE_DISABLE;
344 		if (gma_power_begin(dev, false)) {
345 			REG_WRITE(control, temp);
346 			REG_WRITE(base, 0);
347 			gma_power_end(dev);
348 		}
349 
350 		/* Unpin the old GEM object */
351 		if (gma_crtc->cursor_obj) {
352 			pobj = to_psb_gem_object(gma_crtc->cursor_obj);
353 			psb_gem_unpin(pobj);
354 			drm_gem_object_put(gma_crtc->cursor_obj);
355 			gma_crtc->cursor_obj = NULL;
356 		}
357 		return 0;
358 	}
359 
360 	/* Currently we only support 64x64 cursors */
361 	if (width != 64 || height != 64) {
362 		dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
363 		return -EINVAL;
364 	}
365 
366 	obj = drm_gem_object_lookup(file_priv, handle);
367 	if (!obj) {
368 		ret = -ENOENT;
369 		goto unlock;
370 	}
371 
372 	if (obj->size < width * height * 4) {
373 		dev_dbg(dev->dev, "Buffer is too small\n");
374 		ret = -ENOMEM;
375 		goto unref_cursor;
376 	}
377 
378 	pobj = to_psb_gem_object(obj);
379 
380 	/* Pin the memory into the GTT */
381 	ret = psb_gem_pin(pobj);
382 	if (ret) {
383 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
384 		goto unref_cursor;
385 	}
386 
387 	if (dev_priv->ops->cursor_needs_phys) {
388 		if (!cursor_pobj) {
389 			dev_err(dev->dev, "No hardware cursor mem available");
390 			ret = -ENOMEM;
391 			goto unref_cursor;
392 		}
393 
394 		/* Prevent overflow */
395 		if (pobj->npage > 4)
396 			cursor_pages = 4;
397 		else
398 			cursor_pages = pobj->npage;
399 
400 		/* Copy the cursor to cursor mem */
401 		tmp_dst = dev_priv->vram_addr + cursor_pobj->offset;
402 		for (i = 0; i < cursor_pages; i++) {
403 			tmp_src = kmap(pobj->pages[i]);
404 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
405 			kunmap(pobj->pages[i]);
406 			tmp_dst += PAGE_SIZE;
407 		}
408 
409 		addr = gma_crtc->cursor_addr;
410 	} else {
411 		addr = pobj->offset;
412 		gma_crtc->cursor_addr = addr;
413 	}
414 
415 	temp = 0;
416 	/* set the pipe for the cursor */
417 	temp |= (pipe << 28);
418 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
419 
420 	if (gma_power_begin(dev, false)) {
421 		REG_WRITE(control, temp);
422 		REG_WRITE(base, addr);
423 		gma_power_end(dev);
424 	}
425 
426 	/* unpin the old bo */
427 	if (gma_crtc->cursor_obj) {
428 		pobj = to_psb_gem_object(gma_crtc->cursor_obj);
429 		psb_gem_unpin(pobj);
430 		drm_gem_object_put(gma_crtc->cursor_obj);
431 	}
432 
433 	gma_crtc->cursor_obj = obj;
434 unlock:
435 	return ret;
436 
437 unref_cursor:
438 	drm_gem_object_put(obj);
439 	return ret;
440 }
441 
442 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
443 {
444 	struct drm_device *dev = crtc->dev;
445 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
446 	int pipe = gma_crtc->pipe;
447 	uint32_t temp = 0;
448 	uint32_t addr;
449 
450 	if (x < 0) {
451 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
452 		x = -x;
453 	}
454 	if (y < 0) {
455 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
456 		y = -y;
457 	}
458 
459 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
460 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
461 
462 	addr = gma_crtc->cursor_addr;
463 
464 	if (gma_power_begin(dev, false)) {
465 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
466 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
467 		gma_power_end(dev);
468 	}
469 	return 0;
470 }
471 
472 void gma_crtc_prepare(struct drm_crtc *crtc)
473 {
474 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
475 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
476 }
477 
478 void gma_crtc_commit(struct drm_crtc *crtc)
479 {
480 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
481 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
482 }
483 
484 void gma_crtc_disable(struct drm_crtc *crtc)
485 {
486 	struct psb_gem_object *pobj;
487 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
488 
489 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
490 
491 	if (crtc->primary->fb) {
492 		pobj = to_psb_gem_object(crtc->primary->fb->obj[0]);
493 		psb_gem_unpin(pobj);
494 	}
495 }
496 
497 void gma_crtc_destroy(struct drm_crtc *crtc)
498 {
499 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
500 
501 	if (gma_crtc->cursor_pobj)
502 		drm_gem_object_put(&gma_crtc->cursor_pobj->base);
503 
504 	kfree(gma_crtc->crtc_state);
505 	drm_crtc_cleanup(crtc);
506 	kfree(gma_crtc);
507 }
508 
509 int gma_crtc_page_flip(struct drm_crtc *crtc,
510 		       struct drm_framebuffer *fb,
511 		       struct drm_pending_vblank_event *event,
512 		       uint32_t page_flip_flags,
513 		       struct drm_modeset_acquire_ctx *ctx)
514 {
515 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
516 	struct drm_framebuffer *current_fb = crtc->primary->fb;
517 	struct drm_framebuffer *old_fb = crtc->primary->old_fb;
518 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
519 	struct drm_device *dev = crtc->dev;
520 	unsigned long flags;
521 	int ret;
522 
523 	if (!crtc_funcs->mode_set_base)
524 		return -EINVAL;
525 
526 	/* Using mode_set_base requires the new fb to be set already. */
527 	crtc->primary->fb = fb;
528 
529 	if (event) {
530 		spin_lock_irqsave(&dev->event_lock, flags);
531 
532 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
533 
534 		gma_crtc->page_flip_event = event;
535 
536 		/* Call this locked if we want an event at vblank interrupt. */
537 		ret = crtc_funcs->mode_set_base(crtc, crtc->x, crtc->y, old_fb);
538 		if (ret) {
539 			gma_crtc->page_flip_event = NULL;
540 			drm_crtc_vblank_put(crtc);
541 		}
542 
543 		spin_unlock_irqrestore(&dev->event_lock, flags);
544 	} else {
545 		ret = crtc_funcs->mode_set_base(crtc, crtc->x, crtc->y, old_fb);
546 	}
547 
548 	/* Restore previous fb in case of failure. */
549 	if (ret)
550 		crtc->primary->fb = current_fb;
551 
552 	return ret;
553 }
554 
555 int gma_crtc_set_config(struct drm_mode_set *set,
556 			struct drm_modeset_acquire_ctx *ctx)
557 {
558 	struct drm_device *dev = set->crtc->dev;
559 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
560 	int ret;
561 
562 	if (!dev_priv->rpm_enabled)
563 		return drm_crtc_helper_set_config(set, ctx);
564 
565 	pm_runtime_forbid(dev->dev);
566 	ret = drm_crtc_helper_set_config(set, ctx);
567 	pm_runtime_allow(dev->dev);
568 
569 	return ret;
570 }
571 
572 /*
573  * Save HW states of given crtc
574  */
575 void gma_crtc_save(struct drm_crtc *crtc)
576 {
577 	struct drm_device *dev = crtc->dev;
578 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
579 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
580 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
581 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
582 	uint32_t palette_reg;
583 	int i;
584 
585 	if (!crtc_state) {
586 		dev_err(dev->dev, "No CRTC state found\n");
587 		return;
588 	}
589 
590 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
591 	crtc_state->savePIPECONF = REG_READ(map->conf);
592 	crtc_state->savePIPESRC = REG_READ(map->src);
593 	crtc_state->saveFP0 = REG_READ(map->fp0);
594 	crtc_state->saveFP1 = REG_READ(map->fp1);
595 	crtc_state->saveDPLL = REG_READ(map->dpll);
596 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
597 	crtc_state->saveHBLANK = REG_READ(map->hblank);
598 	crtc_state->saveHSYNC = REG_READ(map->hsync);
599 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
600 	crtc_state->saveVBLANK = REG_READ(map->vblank);
601 	crtc_state->saveVSYNC = REG_READ(map->vsync);
602 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
603 
604 	/* NOTE: DSPSIZE DSPPOS only for psb */
605 	crtc_state->saveDSPSIZE = REG_READ(map->size);
606 	crtc_state->saveDSPPOS = REG_READ(map->pos);
607 
608 	crtc_state->saveDSPBASE = REG_READ(map->base);
609 
610 	palette_reg = map->palette;
611 	for (i = 0; i < 256; ++i)
612 		crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
613 }
614 
615 /*
616  * Restore HW states of given crtc
617  */
618 void gma_crtc_restore(struct drm_crtc *crtc)
619 {
620 	struct drm_device *dev = crtc->dev;
621 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
622 	struct gma_crtc *gma_crtc =  to_gma_crtc(crtc);
623 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
624 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
625 	uint32_t palette_reg;
626 	int i;
627 
628 	if (!crtc_state) {
629 		dev_err(dev->dev, "No crtc state\n");
630 		return;
631 	}
632 
633 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
634 		REG_WRITE(map->dpll,
635 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
636 		REG_READ(map->dpll);
637 		udelay(150);
638 	}
639 
640 	REG_WRITE(map->fp0, crtc_state->saveFP0);
641 	REG_READ(map->fp0);
642 
643 	REG_WRITE(map->fp1, crtc_state->saveFP1);
644 	REG_READ(map->fp1);
645 
646 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
647 	REG_READ(map->dpll);
648 	udelay(150);
649 
650 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
651 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
652 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
653 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
654 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
655 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
656 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
657 
658 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
659 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
660 
661 	REG_WRITE(map->src, crtc_state->savePIPESRC);
662 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
663 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
664 
665 	gma_wait_for_vblank(dev);
666 
667 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
668 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
669 
670 	gma_wait_for_vblank(dev);
671 
672 	palette_reg = map->palette;
673 	for (i = 0; i < 256; ++i)
674 		REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
675 }
676 
677 void gma_encoder_prepare(struct drm_encoder *encoder)
678 {
679 	const struct drm_encoder_helper_funcs *encoder_funcs =
680 	    encoder->helper_private;
681 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
682 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
683 }
684 
685 void gma_encoder_commit(struct drm_encoder *encoder)
686 {
687 	const struct drm_encoder_helper_funcs *encoder_funcs =
688 	    encoder->helper_private;
689 	/* lvds has its own version of commit see psb_intel_lvds_commit */
690 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
691 }
692 
693 void gma_encoder_destroy(struct drm_encoder *encoder)
694 {
695 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
696 
697 	drm_encoder_cleanup(encoder);
698 	kfree(intel_encoder);
699 }
700 
701 /* Currently there is only a 1:1 mapping of encoders and connectors */
702 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
703 {
704 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
705 
706 	return &gma_encoder->base;
707 }
708 
709 void gma_connector_attach_encoder(struct gma_connector *connector,
710 				  struct gma_encoder *encoder)
711 {
712 	connector->encoder = encoder;
713 	drm_connector_attach_encoder(&connector->base,
714 					  &encoder->base);
715 }
716 
717 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
718 
719 bool gma_pll_is_valid(struct drm_crtc *crtc,
720 		      const struct gma_limit_t *limit,
721 		      struct gma_clock_t *clock)
722 {
723 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
724 		GMA_PLL_INVALID("p1 out of range");
725 	if (clock->p < limit->p.min || limit->p.max < clock->p)
726 		GMA_PLL_INVALID("p out of range");
727 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
728 		GMA_PLL_INVALID("m2 out of range");
729 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
730 		GMA_PLL_INVALID("m1 out of range");
731 	/* On CDV m1 is always 0 */
732 	if (clock->m1 <= clock->m2 && clock->m1 != 0)
733 		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
734 	if (clock->m < limit->m.min || limit->m.max < clock->m)
735 		GMA_PLL_INVALID("m out of range");
736 	if (clock->n < limit->n.min || limit->n.max < clock->n)
737 		GMA_PLL_INVALID("n out of range");
738 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
739 		GMA_PLL_INVALID("vco out of range");
740 	/* XXX: We may need to be checking "Dot clock"
741 	 * depending on the multiplier, connector, etc.,
742 	 * rather than just a single range.
743 	 */
744 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
745 		GMA_PLL_INVALID("dot out of range");
746 
747 	return true;
748 }
749 
750 bool gma_find_best_pll(const struct gma_limit_t *limit,
751 		       struct drm_crtc *crtc, int target, int refclk,
752 		       struct gma_clock_t *best_clock)
753 {
754 	struct drm_device *dev = crtc->dev;
755 	const struct gma_clock_funcs *clock_funcs =
756 						to_gma_crtc(crtc)->clock_funcs;
757 	struct gma_clock_t clock;
758 	int err = target;
759 
760 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
761 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
762 		/*
763 		 * For LVDS, if the panel is on, just rely on its current
764 		 * settings for dual-channel.  We haven't figured out how to
765 		 * reliably set up different single/dual channel state, if we
766 		 * even can.
767 		 */
768 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
769 		    LVDS_CLKB_POWER_UP)
770 			clock.p2 = limit->p2.p2_fast;
771 		else
772 			clock.p2 = limit->p2.p2_slow;
773 	} else {
774 		if (target < limit->p2.dot_limit)
775 			clock.p2 = limit->p2.p2_slow;
776 		else
777 			clock.p2 = limit->p2.p2_fast;
778 	}
779 
780 	memset(best_clock, 0, sizeof(*best_clock));
781 
782 	/* m1 is always 0 on CDV so the outmost loop will run just once */
783 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784 		for (clock.m2 = limit->m2.min;
785 		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
786 		      clock.m2 <= limit->m2.max; clock.m2++) {
787 			for (clock.n = limit->n.min;
788 			     clock.n <= limit->n.max; clock.n++) {
789 				for (clock.p1 = limit->p1.min;
790 				     clock.p1 <= limit->p1.max;
791 				     clock.p1++) {
792 					int this_err;
793 
794 					clock_funcs->clock(refclk, &clock);
795 
796 					if (!clock_funcs->pll_is_valid(crtc,
797 								limit, &clock))
798 						continue;
799 
800 					this_err = abs(clock.dot - target);
801 					if (this_err < err) {
802 						*best_clock = clock;
803 						err = this_err;
804 					}
805 				}
806 			}
807 		}
808 	}
809 
810 	return err != target;
811 }
812