xref: /linux/drivers/gpu/drm/amd/display/dc/resource/dcn32/dcn32_resource.c (revision bf5802238dc181b1f7375d358af1d01cd72d1c11)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32/dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32/dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hwseq.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73 
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76 
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91 
92 #include "dc_state_priv.h"
93 
94 #include "dml2/dml2_wrapper.h"
95 
96 #define DC_LOGGER_INIT(logger)
97 
98 enum dcn32_clk_src_array_id {
99 	DCN32_CLK_SRC_PLL0,
100 	DCN32_CLK_SRC_PLL1,
101 	DCN32_CLK_SRC_PLL2,
102 	DCN32_CLK_SRC_PLL3,
103 	DCN32_CLK_SRC_PLL4,
104 	DCN32_CLK_SRC_TOTAL
105 };
106 
107 /* begin *********************
108  * macros to expend register list macro defined in HW object header file
109  */
110 
111 /* DCN */
112 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
113 
114 #define BASE(seg) BASE_INNER(seg)
115 
116 #define SR(reg_name)\
117 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
118 					reg ## reg_name
119 #define SR_ARR(reg_name, id) \
120 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
121 
122 #define SR_ARR_INIT(reg_name, id, value) \
123 	REG_STRUCT[id].reg_name = value
124 
125 #define SRI(reg_name, block, id)\
126 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 		reg ## block ## id ## _ ## reg_name
128 
129 #define SRI_ARR(reg_name, block, id)\
130 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131 		reg ## block ## id ## _ ## reg_name
132 
133 #define SR_ARR_I2C(reg_name, id) \
134 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
135 
136 #define SRI_ARR_I2C(reg_name, block, id)\
137 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 		reg ## block ## id ## _ ## reg_name
139 
140 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
141 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
142 		reg ## block ## id ## _ ## reg_name
143 
144 #define SRI2(reg_name, block, id)\
145 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
146 		reg ## reg_name
147 #define SRI2_ARR(reg_name, block, id)\
148 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
149 		reg ## reg_name
150 
151 #define SRIR(var_name, reg_name, block, id)\
152 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 		reg ## block ## id ## _ ## reg_name
154 
155 #define SRII(reg_name, block, id)\
156 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 					reg ## block ## id ## _ ## reg_name
158 
159 #define SRII_ARR_2(reg_name, block, id, inst)\
160 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 		reg ## block ## id ## _ ## reg_name
162 
163 #define SRII_MPC_RMU(reg_name, block, id)\
164 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
165 		reg ## block ## id ## _ ## reg_name
166 
167 #define SRII_DWB(reg_name, temp_name, block, id)\
168 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
169 		reg ## block ## id ## _ ## temp_name
170 
171 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
172 	.field_name = reg_name ## __ ## field_name ## post_fix
173 
174 #define DCCG_SRII(reg_name, block, id)\
175 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
176 		reg ## block ## id ## _ ## reg_name
177 
178 #define VUPDATE_SRII(reg_name, block, id)\
179 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
180 		reg ## reg_name ## _ ## block ## id
181 
182 /* NBIO */
183 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
184 
185 #define NBIO_BASE(seg) \
186 	NBIO_BASE_INNER(seg)
187 
188 #define NBIO_SR(reg_name)\
189 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
190 			regBIF_BX0_ ## reg_name
191 #define NBIO_SR_ARR(reg_name, id)\
192 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
193 		regBIF_BX0_ ## reg_name
194 
195 #undef CTX
196 #define CTX ctx
197 #define REG(reg_name) \
198 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
199 
200 static struct bios_registers bios_regs;
201 
202 #define bios_regs_init() \
203 		( \
204 		NBIO_SR(BIOS_SCRATCH_3),\
205 		NBIO_SR(BIOS_SCRATCH_6)\
206 		)
207 
208 #define clk_src_regs_init(index, pllid)\
209 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
210 
211 static struct dce110_clk_src_regs clk_src_regs[5];
212 
213 static const struct dce110_clk_src_shift cs_shift = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
215 };
216 
217 static const struct dce110_clk_src_mask cs_mask = {
218 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
219 };
220 
221 #define abm_regs_init(id)\
222 		ABM_DCN32_REG_LIST_RI(id)
223 
224 static struct dce_abm_registers abm_regs[4];
225 
226 static const struct dce_abm_shift abm_shift = {
227 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
228 };
229 
230 static const struct dce_abm_mask abm_mask = {
231 		ABM_MASK_SH_LIST_DCN32(_MASK)
232 };
233 
234 #define audio_regs_init(id)\
235 		AUD_COMMON_REG_LIST_RI(id)
236 
237 static struct dce_audio_registers audio_regs[5];
238 
239 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
240 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
241 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
242 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
243 
244 static const struct dce_audio_shift audio_shift = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
246 };
247 
248 static const struct dce_audio_mask audio_mask = {
249 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
250 };
251 
252 #define vpg_regs_init(id)\
253 	VPG_DCN3_REG_LIST_RI(id)
254 
255 static struct dcn30_vpg_registers vpg_regs[10];
256 
257 static const struct dcn30_vpg_shift vpg_shift = {
258 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
259 };
260 
261 static const struct dcn30_vpg_mask vpg_mask = {
262 	DCN3_VPG_MASK_SH_LIST(_MASK)
263 };
264 
265 #define afmt_regs_init(id)\
266 	AFMT_DCN3_REG_LIST_RI(id)
267 
268 static struct dcn30_afmt_registers afmt_regs[6];
269 
270 static const struct dcn30_afmt_shift afmt_shift = {
271 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
272 };
273 
274 static const struct dcn30_afmt_mask afmt_mask = {
275 	DCN3_AFMT_MASK_SH_LIST(_MASK)
276 };
277 
278 #define apg_regs_init(id)\
279 	APG_DCN31_REG_LIST_RI(id)
280 
281 static struct dcn31_apg_registers apg_regs[4];
282 
283 static const struct dcn31_apg_shift apg_shift = {
284 	DCN31_APG_MASK_SH_LIST(__SHIFT)
285 };
286 
287 static const struct dcn31_apg_mask apg_mask = {
288 		DCN31_APG_MASK_SH_LIST(_MASK)
289 };
290 
291 #define stream_enc_regs_init(id)\
292 	SE_DCN32_REG_LIST_RI(id)
293 
294 static struct dcn10_stream_enc_registers stream_enc_regs[5];
295 
296 static const struct dcn10_stream_encoder_shift se_shift = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
298 };
299 
300 static const struct dcn10_stream_encoder_mask se_mask = {
301 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
302 };
303 
304 
305 #define aux_regs_init(id)\
306 	DCN2_AUX_REG_LIST_RI(id)
307 
308 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
309 
310 #define hpd_regs_init(id)\
311 	HPD_REG_LIST_RI(id)
312 
313 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
314 
315 #define link_regs_init(id, phyid)\
316 	( \
317 	LE_DCN31_REG_LIST_RI(id), \
318 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
319 	)
320 	/*DPCS_DCN31_REG_LIST(id),*/ \
321 
322 static struct dcn10_link_enc_registers link_enc_regs[5];
323 
324 static const struct dcn10_link_enc_shift le_shift = {
325 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
326 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
327 };
328 
329 static const struct dcn10_link_enc_mask le_mask = {
330 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
331 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
332 };
333 
334 #define hpo_dp_stream_encoder_reg_init(id)\
335 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
336 
337 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
338 
339 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
340 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
341 };
342 
343 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
344 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
345 };
346 
347 
348 #define hpo_dp_link_encoder_reg_init(id)\
349 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
350 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
351 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
352 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
353 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
354 
355 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
356 
357 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
358 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
359 };
360 
361 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
362 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
363 };
364 
365 #define dpp_regs_init(id)\
366 	DPP_REG_LIST_DCN30_COMMON_RI(id)
367 
368 static struct dcn3_dpp_registers dpp_regs[4];
369 
370 static const struct dcn3_dpp_shift tf_shift = {
371 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
372 };
373 
374 static const struct dcn3_dpp_mask tf_mask = {
375 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
376 };
377 
378 
379 #define opp_regs_init(id)\
380 	OPP_REG_LIST_DCN30_RI(id)
381 
382 static struct dcn20_opp_registers opp_regs[4];
383 
384 static const struct dcn20_opp_shift opp_shift = {
385 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
386 };
387 
388 static const struct dcn20_opp_mask opp_mask = {
389 	OPP_MASK_SH_LIST_DCN20(_MASK)
390 };
391 
392 #define aux_engine_regs_init(id)\
393 	( \
394 	AUX_COMMON_REG_LIST0_RI(id), \
395 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
396 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
397 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
398 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
399 	)
400 
401 static struct dce110_aux_registers aux_engine_regs[5];
402 
403 static const struct dce110_aux_registers_shift aux_shift = {
404 	DCN_AUX_MASK_SH_LIST(__SHIFT)
405 };
406 
407 static const struct dce110_aux_registers_mask aux_mask = {
408 	DCN_AUX_MASK_SH_LIST(_MASK)
409 };
410 
411 #define dwbc_regs_dcn3_init(id)\
412 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
413 
414 static struct dcn30_dwbc_registers dwbc30_regs[1];
415 
416 static const struct dcn30_dwbc_shift dwbc30_shift = {
417 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
418 };
419 
420 static const struct dcn30_dwbc_mask dwbc30_mask = {
421 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
422 };
423 
424 #define mcif_wb_regs_dcn3_init(id)\
425 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
426 
427 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
428 
429 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
430 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
431 };
432 
433 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
434 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
435 };
436 
437 #define dsc_regsDCN20_init(id)\
438 	DSC_REG_LIST_DCN20_RI(id)
439 
440 static struct dcn20_dsc_registers dsc_regs[4];
441 
442 static const struct dcn20_dsc_shift dsc_shift = {
443 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
444 };
445 
446 static const struct dcn20_dsc_mask dsc_mask = {
447 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
448 };
449 
450 static struct dcn30_mpc_registers mpc_regs;
451 
452 #define dcn_mpc_regs_init() \
453 	MPC_REG_LIST_DCN3_2_RI(0),\
454 	MPC_REG_LIST_DCN3_2_RI(1),\
455 	MPC_REG_LIST_DCN3_2_RI(2),\
456 	MPC_REG_LIST_DCN3_2_RI(3),\
457 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
458 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
459 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
460 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
461 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
462 
463 static const struct dcn30_mpc_shift mpc_shift = {
464 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
465 };
466 
467 static const struct dcn30_mpc_mask mpc_mask = {
468 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
469 };
470 
471 #define optc_regs_init(id)\
472 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
473 
474 static struct dcn_optc_registers optc_regs[4];
475 
476 static const struct dcn_optc_shift optc_shift = {
477 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
478 };
479 
480 static const struct dcn_optc_mask optc_mask = {
481 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
482 };
483 
484 #define hubp_regs_init(id)\
485 	HUBP_REG_LIST_DCN32_RI(id)
486 
487 static struct dcn_hubp2_registers hubp_regs[4];
488 
489 
490 static const struct dcn_hubp2_shift hubp_shift = {
491 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
492 };
493 
494 static const struct dcn_hubp2_mask hubp_mask = {
495 		HUBP_MASK_SH_LIST_DCN32(_MASK)
496 };
497 
498 static struct dcn_hubbub_registers hubbub_reg;
499 #define hubbub_reg_init()\
500 		HUBBUB_REG_LIST_DCN32_RI(0)
501 
502 static const struct dcn_hubbub_shift hubbub_shift = {
503 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
504 };
505 
506 static const struct dcn_hubbub_mask hubbub_mask = {
507 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
508 };
509 
510 static struct dccg_registers dccg_regs;
511 
512 #define dccg_regs_init()\
513 	DCCG_REG_LIST_DCN32_RI()
514 
515 static const struct dccg_shift dccg_shift = {
516 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
517 };
518 
519 static const struct dccg_mask dccg_mask = {
520 		DCCG_MASK_SH_LIST_DCN32(_MASK)
521 };
522 
523 
524 #define SRII2(reg_name_pre, reg_name_post, id)\
525 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
526 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
527 			reg ## reg_name_pre ## id ## _ ## reg_name_post
528 
529 
530 #define HWSEQ_DCN32_REG_LIST()\
531 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
532 	SR(DIO_MEM_PWR_CTRL), \
533 	SR(ODM_MEM_PWR_CTRL3), \
534 	SR(MMHUBBUB_MEM_PWR_CNTL), \
535 	SR(DCCG_GATE_DISABLE_CNTL), \
536 	SR(DCCG_GATE_DISABLE_CNTL2), \
537 	SR(DCFCLK_CNTL),\
538 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
539 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
540 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
541 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
542 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
543 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
544 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
545 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
546 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
547 	SR(MICROSECOND_TIME_BASE_DIV), \
548 	SR(MILLISECOND_TIME_BASE_DIV), \
549 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
550 	SR(RBBMIF_TIMEOUT_DIS), \
551 	SR(RBBMIF_TIMEOUT_DIS_2), \
552 	SR(DCHUBBUB_CRC_CTRL), \
553 	SR(DPP_TOP0_DPP_CRC_CTRL), \
554 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
555 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
556 	SR(MPC_CRC_CTRL), \
557 	SR(MPC_CRC_RESULT_GB), \
558 	SR(MPC_CRC_RESULT_C), \
559 	SR(MPC_CRC_RESULT_AR), \
560 	SR(DOMAIN0_PG_CONFIG), \
561 	SR(DOMAIN1_PG_CONFIG), \
562 	SR(DOMAIN2_PG_CONFIG), \
563 	SR(DOMAIN3_PG_CONFIG), \
564 	SR(DOMAIN16_PG_CONFIG), \
565 	SR(DOMAIN17_PG_CONFIG), \
566 	SR(DOMAIN18_PG_CONFIG), \
567 	SR(DOMAIN19_PG_CONFIG), \
568 	SR(DOMAIN0_PG_STATUS), \
569 	SR(DOMAIN1_PG_STATUS), \
570 	SR(DOMAIN2_PG_STATUS), \
571 	SR(DOMAIN3_PG_STATUS), \
572 	SR(DOMAIN16_PG_STATUS), \
573 	SR(DOMAIN17_PG_STATUS), \
574 	SR(DOMAIN18_PG_STATUS), \
575 	SR(DOMAIN19_PG_STATUS), \
576 	SR(D1VGA_CONTROL), \
577 	SR(D2VGA_CONTROL), \
578 	SR(D3VGA_CONTROL), \
579 	SR(D4VGA_CONTROL), \
580 	SR(D5VGA_CONTROL), \
581 	SR(D6VGA_CONTROL), \
582 	SR(DC_IP_REQUEST_CNTL), \
583 	SR(AZALIA_AUDIO_DTO), \
584 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
585 
586 static struct dce_hwseq_registers hwseq_reg;
587 
588 #define hwseq_reg_init()\
589 	HWSEQ_DCN32_REG_LIST()
590 
591 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
592 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
593 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
594 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
607 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
608 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
609 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
610 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
616 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
617 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
618 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
619 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
620 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
621 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
622 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
623 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
624 
625 static const struct dce_hwseq_shift hwseq_shift = {
626 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
627 };
628 
629 static const struct dce_hwseq_mask hwseq_mask = {
630 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
631 };
632 #define vmid_regs_init(id)\
633 		DCN20_VMID_REG_LIST_RI(id)
634 
635 static struct dcn_vmid_registers vmid_regs[16];
636 
637 static const struct dcn20_vmid_shift vmid_shifts = {
638 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
639 };
640 
641 static const struct dcn20_vmid_mask vmid_masks = {
642 		DCN20_VMID_MASK_SH_LIST(_MASK)
643 };
644 
645 static const struct resource_caps res_cap_dcn32 = {
646 	.num_timing_generator = 4,
647 	.num_opp = 4,
648 	.num_video_plane = 4,
649 	.num_audio = 5,
650 	.num_stream_encoder = 5,
651 	.num_hpo_dp_stream_encoder = 4,
652 	.num_hpo_dp_link_encoder = 2,
653 	.num_pll = 5,
654 	.num_dwb = 1,
655 	.num_ddc = 5,
656 	.num_vmid = 16,
657 	.num_mpc_3dlut = 4,
658 	.num_dsc = 4,
659 };
660 
661 static const struct dc_plane_cap plane_cap = {
662 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
663 	.per_pixel_alpha = true,
664 
665 	.pixel_format_support = {
666 			.argb8888 = true,
667 			.nv12 = true,
668 			.fp16 = true,
669 			.p010 = true,
670 			.ayuv = false,
671 	},
672 
673 	.max_upscale_factor = {
674 			.argb8888 = 16000,
675 			.nv12 = 16000,
676 			.fp16 = 16000
677 	},
678 
679 	// 6:1 downscaling ratio: 1000/6 = 166.666
680 	.max_downscale_factor = {
681 			.argb8888 = 167,
682 			.nv12 = 167,
683 			.fp16 = 167
684 	},
685 	64,
686 	64
687 };
688 
689 static const struct dc_debug_options debug_defaults_drv = {
690 	.disable_dmcu = true,
691 	.force_abm_enable = false,
692 	.timing_trace = false,
693 	.clock_trace = true,
694 	.disable_pplib_clock_request = false,
695 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696 	.force_single_disp_pipe_split = false,
697 	.disable_dcc = DCC_ENABLE,
698 	.vsr_support = true,
699 	.performance_trace = false,
700 	.max_downscale_src_width = 7680,/*upto 8K*/
701 	.disable_pplib_wm_range = false,
702 	.scl_reset_length10 = true,
703 	.sanity_checks = false,
704 	.underflow_assert_delay_us = 0xFFFFFFFF,
705 	.dwb_fi_phase = -1, // -1 = disable,
706 	.dmub_command_table = true,
707 	.enable_mem_low_power = {
708 		.bits = {
709 			.vga = false,
710 			.i2c = false,
711 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
712 			.dscl = false,
713 			.cm = false,
714 			.mpc = false,
715 			.optc = true,
716 		}
717 	},
718 	.use_max_lb = true,
719 	.force_disable_subvp = false,
720 	.exit_idle_opt_for_cursor_updates = true,
721 	.using_dml2 = false,
722 	.enable_single_display_2to1_odm_policy = true,
723 
724 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
725 	.enable_double_buffered_dsc_pg_support = true,
726 	.enable_dp_dig_pixel_rate_div_policy = 1,
727 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
728 	.alloc_extra_way_for_cursor = true,
729 	.min_prefetch_in_strobe_ns = 60000, // 60us
730 	.disable_unbounded_requesting = false,
731 	.override_dispclk_programming = true,
732 	.disable_fpo_optimizations = false,
733 	.fpo_vactive_margin_us = 2000, // 2000us
734 	.disable_fpo_vactive = false,
735 	.disable_boot_optimizations = false,
736 	.disable_subvp_high_refresh = false,
737 	.disable_dp_plus_plus_wa = true,
738 	.fpo_vactive_min_active_margin_us = 200,
739 	.fpo_vactive_max_blank_us = 1000,
740 	.enable_legacy_fast_update = false,
741 };
742 
743 static struct dce_aux *dcn32_aux_engine_create(
744 	struct dc_context *ctx,
745 	uint32_t inst)
746 {
747 	struct aux_engine_dce110 *aux_engine =
748 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
749 
750 	if (!aux_engine)
751 		return NULL;
752 
753 #undef REG_STRUCT
754 #define REG_STRUCT aux_engine_regs
755 	aux_engine_regs_init(0),
756 	aux_engine_regs_init(1),
757 	aux_engine_regs_init(2),
758 	aux_engine_regs_init(3),
759 	aux_engine_regs_init(4);
760 
761 	dce110_aux_engine_construct(aux_engine, ctx, inst,
762 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
763 				    &aux_engine_regs[inst],
764 					&aux_mask,
765 					&aux_shift,
766 					ctx->dc->caps.extended_aux_timeout_support);
767 
768 	return &aux_engine->base;
769 }
770 #define i2c_inst_regs_init(id)\
771 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
772 
773 static struct dce_i2c_registers i2c_hw_regs[5];
774 
775 static const struct dce_i2c_shift i2c_shifts = {
776 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
777 };
778 
779 static const struct dce_i2c_mask i2c_masks = {
780 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
781 };
782 
783 static struct dce_i2c_hw *dcn32_i2c_hw_create(
784 	struct dc_context *ctx,
785 	uint32_t inst)
786 {
787 	struct dce_i2c_hw *dce_i2c_hw =
788 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
789 
790 	if (!dce_i2c_hw)
791 		return NULL;
792 
793 #undef REG_STRUCT
794 #define REG_STRUCT i2c_hw_regs
795 	i2c_inst_regs_init(1),
796 	i2c_inst_regs_init(2),
797 	i2c_inst_regs_init(3),
798 	i2c_inst_regs_init(4),
799 	i2c_inst_regs_init(5);
800 
801 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
802 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
803 
804 	return dce_i2c_hw;
805 }
806 
807 static struct clock_source *dcn32_clock_source_create(
808 		struct dc_context *ctx,
809 		struct dc_bios *bios,
810 		enum clock_source_id id,
811 		const struct dce110_clk_src_regs *regs,
812 		bool dp_clk_src)
813 {
814 	struct dce110_clk_src *clk_src =
815 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
816 
817 	if (!clk_src)
818 		return NULL;
819 
820 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
821 			regs, &cs_shift, &cs_mask)) {
822 		clk_src->base.dp_clk_src = dp_clk_src;
823 		return &clk_src->base;
824 	}
825 
826 	kfree(clk_src);
827 	BREAK_TO_DEBUGGER();
828 	return NULL;
829 }
830 
831 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
832 {
833 	int i;
834 
835 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
836 					  GFP_KERNEL);
837 
838 	if (!hubbub2)
839 		return NULL;
840 
841 #undef REG_STRUCT
842 #define REG_STRUCT hubbub_reg
843 	hubbub_reg_init();
844 
845 #undef REG_STRUCT
846 #define REG_STRUCT vmid_regs
847 	vmid_regs_init(0),
848 	vmid_regs_init(1),
849 	vmid_regs_init(2),
850 	vmid_regs_init(3),
851 	vmid_regs_init(4),
852 	vmid_regs_init(5),
853 	vmid_regs_init(6),
854 	vmid_regs_init(7),
855 	vmid_regs_init(8),
856 	vmid_regs_init(9),
857 	vmid_regs_init(10),
858 	vmid_regs_init(11),
859 	vmid_regs_init(12),
860 	vmid_regs_init(13),
861 	vmid_regs_init(14),
862 	vmid_regs_init(15);
863 
864 	hubbub32_construct(hubbub2, ctx,
865 			&hubbub_reg,
866 			&hubbub_shift,
867 			&hubbub_mask,
868 			ctx->dc->dml.ip.det_buffer_size_kbytes,
869 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
870 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
871 
872 
873 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
874 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
875 
876 		vmid->ctx = ctx;
877 
878 		vmid->regs = &vmid_regs[i];
879 		vmid->shifts = &vmid_shifts;
880 		vmid->masks = &vmid_masks;
881 	}
882 
883 	return &hubbub2->base;
884 }
885 
886 static struct hubp *dcn32_hubp_create(
887 	struct dc_context *ctx,
888 	uint32_t inst)
889 {
890 	struct dcn20_hubp *hubp2 =
891 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
892 
893 	if (!hubp2)
894 		return NULL;
895 
896 #undef REG_STRUCT
897 #define REG_STRUCT hubp_regs
898 	hubp_regs_init(0),
899 	hubp_regs_init(1),
900 	hubp_regs_init(2),
901 	hubp_regs_init(3);
902 
903 	if (hubp32_construct(hubp2, ctx, inst,
904 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
905 		return &hubp2->base;
906 
907 	BREAK_TO_DEBUGGER();
908 	kfree(hubp2);
909 	return NULL;
910 }
911 
912 static void dcn32_dpp_destroy(struct dpp **dpp)
913 {
914 	kfree(TO_DCN30_DPP(*dpp));
915 	*dpp = NULL;
916 }
917 
918 static struct dpp *dcn32_dpp_create(
919 	struct dc_context *ctx,
920 	uint32_t inst)
921 {
922 	struct dcn3_dpp *dpp3 =
923 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
924 
925 	if (!dpp3)
926 		return NULL;
927 
928 #undef REG_STRUCT
929 #define REG_STRUCT dpp_regs
930 	dpp_regs_init(0),
931 	dpp_regs_init(1),
932 	dpp_regs_init(2),
933 	dpp_regs_init(3);
934 
935 	if (dpp32_construct(dpp3, ctx, inst,
936 			&dpp_regs[inst], &tf_shift, &tf_mask))
937 		return &dpp3->base;
938 
939 	BREAK_TO_DEBUGGER();
940 	kfree(dpp3);
941 	return NULL;
942 }
943 
944 static struct mpc *dcn32_mpc_create(
945 		struct dc_context *ctx,
946 		int num_mpcc,
947 		int num_rmu)
948 {
949 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
950 					  GFP_KERNEL);
951 
952 	if (!mpc30)
953 		return NULL;
954 
955 #undef REG_STRUCT
956 #define REG_STRUCT mpc_regs
957 	dcn_mpc_regs_init();
958 
959 	dcn32_mpc_construct(mpc30, ctx,
960 			&mpc_regs,
961 			&mpc_shift,
962 			&mpc_mask,
963 			num_mpcc,
964 			num_rmu);
965 
966 	return &mpc30->base;
967 }
968 
969 static struct output_pixel_processor *dcn32_opp_create(
970 	struct dc_context *ctx, uint32_t inst)
971 {
972 	struct dcn20_opp *opp2 =
973 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
974 
975 	if (!opp2) {
976 		BREAK_TO_DEBUGGER();
977 		return NULL;
978 	}
979 
980 #undef REG_STRUCT
981 #define REG_STRUCT opp_regs
982 	opp_regs_init(0),
983 	opp_regs_init(1),
984 	opp_regs_init(2),
985 	opp_regs_init(3);
986 
987 	dcn20_opp_construct(opp2, ctx, inst,
988 			&opp_regs[inst], &opp_shift, &opp_mask);
989 	return &opp2->base;
990 }
991 
992 
993 static struct timing_generator *dcn32_timing_generator_create(
994 		struct dc_context *ctx,
995 		uint32_t instance)
996 {
997 	struct optc *tgn10 =
998 		kzalloc(sizeof(struct optc), GFP_KERNEL);
999 
1000 	if (!tgn10)
1001 		return NULL;
1002 
1003 #undef REG_STRUCT
1004 #define REG_STRUCT optc_regs
1005 	optc_regs_init(0),
1006 	optc_regs_init(1),
1007 	optc_regs_init(2),
1008 	optc_regs_init(3);
1009 
1010 	tgn10->base.inst = instance;
1011 	tgn10->base.ctx = ctx;
1012 
1013 	tgn10->tg_regs = &optc_regs[instance];
1014 	tgn10->tg_shift = &optc_shift;
1015 	tgn10->tg_mask = &optc_mask;
1016 
1017 	dcn32_timing_generator_init(tgn10);
1018 
1019 	return &tgn10->base;
1020 }
1021 
1022 static const struct encoder_feature_support link_enc_feature = {
1023 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1024 		.max_hdmi_pixel_clock = 600000,
1025 		.hdmi_ycbcr420_supported = true,
1026 		.dp_ycbcr420_supported = true,
1027 		.fec_supported = true,
1028 		.flags.bits.IS_HBR2_CAPABLE = true,
1029 		.flags.bits.IS_HBR3_CAPABLE = true,
1030 		.flags.bits.IS_TPS3_CAPABLE = true,
1031 		.flags.bits.IS_TPS4_CAPABLE = true
1032 };
1033 
1034 static struct link_encoder *dcn32_link_encoder_create(
1035 	struct dc_context *ctx,
1036 	const struct encoder_init_data *enc_init_data)
1037 {
1038 	struct dcn20_link_encoder *enc20 =
1039 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1040 
1041 	if (!enc20)
1042 		return NULL;
1043 
1044 #undef REG_STRUCT
1045 #define REG_STRUCT link_enc_aux_regs
1046 	aux_regs_init(0),
1047 	aux_regs_init(1),
1048 	aux_regs_init(2),
1049 	aux_regs_init(3),
1050 	aux_regs_init(4);
1051 
1052 #undef REG_STRUCT
1053 #define REG_STRUCT link_enc_hpd_regs
1054 	hpd_regs_init(0),
1055 	hpd_regs_init(1),
1056 	hpd_regs_init(2),
1057 	hpd_regs_init(3),
1058 	hpd_regs_init(4);
1059 
1060 #undef REG_STRUCT
1061 #define REG_STRUCT link_enc_regs
1062 	link_regs_init(0, A),
1063 	link_regs_init(1, B),
1064 	link_regs_init(2, C),
1065 	link_regs_init(3, D),
1066 	link_regs_init(4, E);
1067 
1068 	dcn32_link_encoder_construct(enc20,
1069 			enc_init_data,
1070 			&link_enc_feature,
1071 			&link_enc_regs[enc_init_data->transmitter],
1072 			&link_enc_aux_regs[enc_init_data->channel - 1],
1073 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1074 			&le_shift,
1075 			&le_mask);
1076 
1077 	return &enc20->enc10.base;
1078 }
1079 
1080 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1081 {
1082 	struct dcn31_panel_cntl *panel_cntl =
1083 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1084 
1085 	if (!panel_cntl)
1086 		return NULL;
1087 
1088 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1089 
1090 	return &panel_cntl->base;
1091 }
1092 
1093 static void read_dce_straps(
1094 	struct dc_context *ctx,
1095 	struct resource_straps *straps)
1096 {
1097 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1098 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1099 
1100 }
1101 
1102 static struct audio *dcn32_create_audio(
1103 		struct dc_context *ctx, unsigned int inst)
1104 {
1105 
1106 #undef REG_STRUCT
1107 #define REG_STRUCT audio_regs
1108 	audio_regs_init(0),
1109 	audio_regs_init(1),
1110 	audio_regs_init(2),
1111 	audio_regs_init(3),
1112 	audio_regs_init(4);
1113 
1114 	return dce_audio_create(ctx, inst,
1115 			&audio_regs[inst], &audio_shift, &audio_mask);
1116 }
1117 
1118 static struct vpg *dcn32_vpg_create(
1119 	struct dc_context *ctx,
1120 	uint32_t inst)
1121 {
1122 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1123 
1124 	if (!vpg3)
1125 		return NULL;
1126 
1127 #undef REG_STRUCT
1128 #define REG_STRUCT vpg_regs
1129 	vpg_regs_init(0),
1130 	vpg_regs_init(1),
1131 	vpg_regs_init(2),
1132 	vpg_regs_init(3),
1133 	vpg_regs_init(4),
1134 	vpg_regs_init(5),
1135 	vpg_regs_init(6),
1136 	vpg_regs_init(7),
1137 	vpg_regs_init(8),
1138 	vpg_regs_init(9);
1139 
1140 	vpg3_construct(vpg3, ctx, inst,
1141 			&vpg_regs[inst],
1142 			&vpg_shift,
1143 			&vpg_mask);
1144 
1145 	return &vpg3->base;
1146 }
1147 
1148 static struct afmt *dcn32_afmt_create(
1149 	struct dc_context *ctx,
1150 	uint32_t inst)
1151 {
1152 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1153 
1154 	if (!afmt3)
1155 		return NULL;
1156 
1157 #undef REG_STRUCT
1158 #define REG_STRUCT afmt_regs
1159 	afmt_regs_init(0),
1160 	afmt_regs_init(1),
1161 	afmt_regs_init(2),
1162 	afmt_regs_init(3),
1163 	afmt_regs_init(4),
1164 	afmt_regs_init(5);
1165 
1166 	afmt3_construct(afmt3, ctx, inst,
1167 			&afmt_regs[inst],
1168 			&afmt_shift,
1169 			&afmt_mask);
1170 
1171 	return &afmt3->base;
1172 }
1173 
1174 static struct apg *dcn31_apg_create(
1175 	struct dc_context *ctx,
1176 	uint32_t inst)
1177 {
1178 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1179 
1180 	if (!apg31)
1181 		return NULL;
1182 
1183 #undef REG_STRUCT
1184 #define REG_STRUCT apg_regs
1185 	apg_regs_init(0),
1186 	apg_regs_init(1),
1187 	apg_regs_init(2),
1188 	apg_regs_init(3);
1189 
1190 	apg31_construct(apg31, ctx, inst,
1191 			&apg_regs[inst],
1192 			&apg_shift,
1193 			&apg_mask);
1194 
1195 	return &apg31->base;
1196 }
1197 
1198 static struct stream_encoder *dcn32_stream_encoder_create(
1199 	enum engine_id eng_id,
1200 	struct dc_context *ctx)
1201 {
1202 	struct dcn10_stream_encoder *enc1;
1203 	struct vpg *vpg;
1204 	struct afmt *afmt;
1205 	int vpg_inst;
1206 	int afmt_inst;
1207 
1208 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1209 	if (eng_id <= ENGINE_ID_DIGF) {
1210 		vpg_inst = eng_id;
1211 		afmt_inst = eng_id;
1212 	} else
1213 		return NULL;
1214 
1215 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1216 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1217 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1218 
1219 	if (!enc1 || !vpg || !afmt) {
1220 		kfree(enc1);
1221 		kfree(vpg);
1222 		kfree(afmt);
1223 		return NULL;
1224 	}
1225 
1226 #undef REG_STRUCT
1227 #define REG_STRUCT stream_enc_regs
1228 	stream_enc_regs_init(0),
1229 	stream_enc_regs_init(1),
1230 	stream_enc_regs_init(2),
1231 	stream_enc_regs_init(3),
1232 	stream_enc_regs_init(4);
1233 
1234 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1235 					eng_id, vpg, afmt,
1236 					&stream_enc_regs[eng_id],
1237 					&se_shift, &se_mask);
1238 
1239 	return &enc1->base;
1240 }
1241 
1242 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1243 	enum engine_id eng_id,
1244 	struct dc_context *ctx)
1245 {
1246 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1247 	struct vpg *vpg;
1248 	struct apg *apg;
1249 	uint32_t hpo_dp_inst;
1250 	uint32_t vpg_inst;
1251 	uint32_t apg_inst;
1252 
1253 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1254 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1255 
1256 	/* Mapping of VPG register blocks to HPO DP block instance:
1257 	 * VPG[6] -> HPO_DP[0]
1258 	 * VPG[7] -> HPO_DP[1]
1259 	 * VPG[8] -> HPO_DP[2]
1260 	 * VPG[9] -> HPO_DP[3]
1261 	 */
1262 	vpg_inst = hpo_dp_inst + 6;
1263 
1264 	/* Mapping of APG register blocks to HPO DP block instance:
1265 	 * APG[0] -> HPO_DP[0]
1266 	 * APG[1] -> HPO_DP[1]
1267 	 * APG[2] -> HPO_DP[2]
1268 	 * APG[3] -> HPO_DP[3]
1269 	 */
1270 	apg_inst = hpo_dp_inst;
1271 
1272 	/* allocate HPO stream encoder and create VPG sub-block */
1273 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1274 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1275 	apg = dcn31_apg_create(ctx, apg_inst);
1276 
1277 	if (!hpo_dp_enc31 || !vpg || !apg) {
1278 		kfree(hpo_dp_enc31);
1279 		kfree(vpg);
1280 		kfree(apg);
1281 		return NULL;
1282 	}
1283 
1284 #undef REG_STRUCT
1285 #define REG_STRUCT hpo_dp_stream_enc_regs
1286 	hpo_dp_stream_encoder_reg_init(0),
1287 	hpo_dp_stream_encoder_reg_init(1),
1288 	hpo_dp_stream_encoder_reg_init(2),
1289 	hpo_dp_stream_encoder_reg_init(3);
1290 
1291 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1292 					hpo_dp_inst, eng_id, vpg, apg,
1293 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1294 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1295 
1296 	return &hpo_dp_enc31->base;
1297 }
1298 
1299 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1300 	uint8_t inst,
1301 	struct dc_context *ctx)
1302 {
1303 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1304 
1305 	/* allocate HPO link encoder */
1306 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1307 
1308 #undef REG_STRUCT
1309 #define REG_STRUCT hpo_dp_link_enc_regs
1310 	hpo_dp_link_encoder_reg_init(0),
1311 	hpo_dp_link_encoder_reg_init(1);
1312 
1313 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1314 					&hpo_dp_link_enc_regs[inst],
1315 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1316 
1317 	return &hpo_dp_enc31->base;
1318 }
1319 
1320 static struct dce_hwseq *dcn32_hwseq_create(
1321 	struct dc_context *ctx)
1322 {
1323 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1324 
1325 #undef REG_STRUCT
1326 #define REG_STRUCT hwseq_reg
1327 	hwseq_reg_init();
1328 
1329 	if (hws) {
1330 		hws->ctx = ctx;
1331 		hws->regs = &hwseq_reg;
1332 		hws->shifts = &hwseq_shift;
1333 		hws->masks = &hwseq_mask;
1334 	}
1335 	return hws;
1336 }
1337 static const struct resource_create_funcs res_create_funcs = {
1338 	.read_dce_straps = read_dce_straps,
1339 	.create_audio = dcn32_create_audio,
1340 	.create_stream_encoder = dcn32_stream_encoder_create,
1341 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1342 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1343 	.create_hwseq = dcn32_hwseq_create,
1344 };
1345 
1346 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1347 {
1348 	unsigned int i;
1349 
1350 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1351 		if (pool->base.stream_enc[i] != NULL) {
1352 			if (pool->base.stream_enc[i]->vpg != NULL) {
1353 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1354 				pool->base.stream_enc[i]->vpg = NULL;
1355 			}
1356 			if (pool->base.stream_enc[i]->afmt != NULL) {
1357 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1358 				pool->base.stream_enc[i]->afmt = NULL;
1359 			}
1360 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1361 			pool->base.stream_enc[i] = NULL;
1362 		}
1363 	}
1364 
1365 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1366 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1367 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1368 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1369 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1370 			}
1371 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1372 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1373 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1374 			}
1375 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1376 			pool->base.hpo_dp_stream_enc[i] = NULL;
1377 		}
1378 	}
1379 
1380 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1381 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1382 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1383 			pool->base.hpo_dp_link_enc[i] = NULL;
1384 		}
1385 	}
1386 
1387 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1388 		if (pool->base.dscs[i] != NULL)
1389 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1390 	}
1391 
1392 	if (pool->base.mpc != NULL) {
1393 		kfree(TO_DCN20_MPC(pool->base.mpc));
1394 		pool->base.mpc = NULL;
1395 	}
1396 	if (pool->base.hubbub != NULL) {
1397 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1398 		pool->base.hubbub = NULL;
1399 	}
1400 	for (i = 0; i < pool->base.pipe_count; i++) {
1401 		if (pool->base.dpps[i] != NULL)
1402 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1403 
1404 		if (pool->base.ipps[i] != NULL)
1405 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1406 
1407 		if (pool->base.hubps[i] != NULL) {
1408 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1409 			pool->base.hubps[i] = NULL;
1410 		}
1411 
1412 		if (pool->base.irqs != NULL) {
1413 			dal_irq_service_destroy(&pool->base.irqs);
1414 		}
1415 	}
1416 
1417 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1418 		if (pool->base.engines[i] != NULL)
1419 			dce110_engine_destroy(&pool->base.engines[i]);
1420 		if (pool->base.hw_i2cs[i] != NULL) {
1421 			kfree(pool->base.hw_i2cs[i]);
1422 			pool->base.hw_i2cs[i] = NULL;
1423 		}
1424 		if (pool->base.sw_i2cs[i] != NULL) {
1425 			kfree(pool->base.sw_i2cs[i]);
1426 			pool->base.sw_i2cs[i] = NULL;
1427 		}
1428 	}
1429 
1430 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1431 		if (pool->base.opps[i] != NULL)
1432 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1433 	}
1434 
1435 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1436 		if (pool->base.timing_generators[i] != NULL)	{
1437 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1438 			pool->base.timing_generators[i] = NULL;
1439 		}
1440 	}
1441 
1442 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1443 		if (pool->base.dwbc[i] != NULL) {
1444 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1445 			pool->base.dwbc[i] = NULL;
1446 		}
1447 		if (pool->base.mcif_wb[i] != NULL) {
1448 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1449 			pool->base.mcif_wb[i] = NULL;
1450 		}
1451 	}
1452 
1453 	for (i = 0; i < pool->base.audio_count; i++) {
1454 		if (pool->base.audios[i])
1455 			dce_aud_destroy(&pool->base.audios[i]);
1456 	}
1457 
1458 	for (i = 0; i < pool->base.clk_src_count; i++) {
1459 		if (pool->base.clock_sources[i] != NULL) {
1460 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1461 			pool->base.clock_sources[i] = NULL;
1462 		}
1463 	}
1464 
1465 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1466 		if (pool->base.mpc_lut[i] != NULL) {
1467 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1468 			pool->base.mpc_lut[i] = NULL;
1469 		}
1470 		if (pool->base.mpc_shaper[i] != NULL) {
1471 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1472 			pool->base.mpc_shaper[i] = NULL;
1473 		}
1474 	}
1475 
1476 	if (pool->base.dp_clock_source != NULL) {
1477 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1478 		pool->base.dp_clock_source = NULL;
1479 	}
1480 
1481 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1482 		if (pool->base.multiple_abms[i] != NULL)
1483 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1484 	}
1485 
1486 	if (pool->base.psr != NULL)
1487 		dmub_psr_destroy(&pool->base.psr);
1488 
1489 	if (pool->base.dccg != NULL)
1490 		dcn_dccg_destroy(&pool->base.dccg);
1491 
1492 	if (pool->base.oem_device != NULL) {
1493 		struct dc *dc = pool->base.oem_device->ctx->dc;
1494 
1495 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1496 	}
1497 }
1498 
1499 
1500 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1501 {
1502 	int i;
1503 	uint32_t dwb_count = pool->res_cap->num_dwb;
1504 
1505 	for (i = 0; i < dwb_count; i++) {
1506 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1507 						    GFP_KERNEL);
1508 
1509 		if (!dwbc30) {
1510 			dm_error("DC: failed to create dwbc30!\n");
1511 			return false;
1512 		}
1513 
1514 #undef REG_STRUCT
1515 #define REG_STRUCT dwbc30_regs
1516 		dwbc_regs_dcn3_init(0);
1517 
1518 		dcn30_dwbc_construct(dwbc30, ctx,
1519 				&dwbc30_regs[i],
1520 				&dwbc30_shift,
1521 				&dwbc30_mask,
1522 				i);
1523 
1524 		pool->dwbc[i] = &dwbc30->base;
1525 	}
1526 	return true;
1527 }
1528 
1529 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1530 {
1531 	int i;
1532 	uint32_t dwb_count = pool->res_cap->num_dwb;
1533 
1534 	for (i = 0; i < dwb_count; i++) {
1535 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1536 						    GFP_KERNEL);
1537 
1538 		if (!mcif_wb30) {
1539 			dm_error("DC: failed to create mcif_wb30!\n");
1540 			return false;
1541 		}
1542 
1543 #undef REG_STRUCT
1544 #define REG_STRUCT mcif_wb30_regs
1545 		mcif_wb_regs_dcn3_init(0);
1546 
1547 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1548 				&mcif_wb30_regs[i],
1549 				&mcif_wb30_shift,
1550 				&mcif_wb30_mask,
1551 				i);
1552 
1553 		pool->mcif_wb[i] = &mcif_wb30->base;
1554 	}
1555 	return true;
1556 }
1557 
1558 static struct display_stream_compressor *dcn32_dsc_create(
1559 	struct dc_context *ctx, uint32_t inst)
1560 {
1561 	struct dcn20_dsc *dsc =
1562 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1563 
1564 	if (!dsc) {
1565 		BREAK_TO_DEBUGGER();
1566 		return NULL;
1567 	}
1568 
1569 #undef REG_STRUCT
1570 #define REG_STRUCT dsc_regs
1571 	dsc_regsDCN20_init(0),
1572 	dsc_regsDCN20_init(1),
1573 	dsc_regsDCN20_init(2),
1574 	dsc_regsDCN20_init(3);
1575 
1576 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1577 
1578 	dsc->max_image_width = 6016;
1579 
1580 	return &dsc->base;
1581 }
1582 
1583 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1584 {
1585 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1586 
1587 	dcn32_resource_destruct(dcn32_pool);
1588 	kfree(dcn32_pool);
1589 	*pool = NULL;
1590 }
1591 
1592 bool dcn32_acquire_post_bldn_3dlut(
1593 		struct resource_context *res_ctx,
1594 		const struct resource_pool *pool,
1595 		int mpcc_id,
1596 		struct dc_3dlut **lut,
1597 		struct dc_transfer_func **shaper)
1598 {
1599 	bool ret = false;
1600 
1601 	ASSERT(*lut == NULL && *shaper == NULL);
1602 	*lut = NULL;
1603 	*shaper = NULL;
1604 
1605 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1606 		*lut = pool->mpc_lut[mpcc_id];
1607 		*shaper = pool->mpc_shaper[mpcc_id];
1608 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1609 		ret = true;
1610 	}
1611 	return ret;
1612 }
1613 
1614 bool dcn32_release_post_bldn_3dlut(
1615 		struct resource_context *res_ctx,
1616 		const struct resource_pool *pool,
1617 		struct dc_3dlut **lut,
1618 		struct dc_transfer_func **shaper)
1619 {
1620 	int i;
1621 	bool ret = false;
1622 
1623 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1624 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1625 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1626 			pool->mpc_lut[i]->state.raw = 0;
1627 			*lut = NULL;
1628 			*shaper = NULL;
1629 			ret = true;
1630 			break;
1631 		}
1632 	}
1633 	return ret;
1634 }
1635 
1636 static void dcn32_enable_phantom_plane(struct dc *dc,
1637 		struct dc_state *context,
1638 		struct dc_stream_state *phantom_stream,
1639 		unsigned int dc_pipe_idx)
1640 {
1641 	struct dc_plane_state *phantom_plane = NULL;
1642 	struct dc_plane_state *prev_phantom_plane = NULL;
1643 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1644 
1645 	while (curr_pipe) {
1646 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1647 			phantom_plane = prev_phantom_plane;
1648 		else
1649 			phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
1650 
1651 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1652 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1653 				sizeof(phantom_plane->scaling_quality));
1654 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1655 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1656 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1657 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1658 				sizeof(phantom_plane->plane_size));
1659 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1660 				sizeof(phantom_plane->tiling_info));
1661 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1662 		phantom_plane->format = curr_pipe->plane_state->format;
1663 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1664 		phantom_plane->visible = curr_pipe->plane_state->visible;
1665 
1666 		/* Shadow pipe has small viewport. */
1667 		phantom_plane->clip_rect.y = 0;
1668 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1669 
1670 		dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
1671 
1672 		curr_pipe = curr_pipe->bottom_pipe;
1673 		prev_phantom_plane = phantom_plane;
1674 	}
1675 }
1676 
1677 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1678 		struct dc_state *context,
1679 		display_e2e_pipe_params_st *pipes,
1680 		unsigned int pipe_cnt,
1681 		unsigned int dc_pipe_idx)
1682 {
1683 	struct dc_stream_state *phantom_stream = NULL;
1684 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1685 
1686 	phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
1687 
1688 	/* stream has limited viewport and small timing */
1689 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1690 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1691 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1692 	DC_FP_START();
1693 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1694 	DC_FP_END();
1695 
1696 	dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
1697 	return phantom_stream;
1698 }
1699 
1700 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1701  * require a phantom pipe / stream
1702  */
1703 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1704 		display_e2e_pipe_params_st *pipes,
1705 		unsigned int pipe_cnt,
1706 		unsigned int index)
1707 {
1708 	struct dc_stream_state *phantom_stream = NULL;
1709 	unsigned int i;
1710 
1711 	// The index of the DC pipe passed into this function is guarenteed to
1712 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1713 	// already have phantom pipe assigned, etc.) by previous checks.
1714 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1715 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1716 
1717 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1718 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1719 
1720 		// Build scaling params for phantom pipes which were newly added.
1721 		// We determine which phantom pipes were added by comparing with
1722 		// the phantom stream.
1723 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1724 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1725 			pipe->stream->use_dynamic_meta = false;
1726 			pipe->plane_state->flip_immediate = false;
1727 			if (!resource_build_scaling_params(pipe)) {
1728 				// Log / remove phantom pipes since failed to build scaling params
1729 			}
1730 		}
1731 	}
1732 }
1733 
1734 static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
1735 {
1736 	bool out = false;
1737 
1738 	BW_VAL_TRACE_SETUP();
1739 
1740 	int vlevel = 0;
1741 	int pipe_cnt = 0;
1742 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1743 
1744 	/* To handle Freesync properly, setting FreeSync DML parameters
1745 	 * to its default state for the first stage of validation
1746 	 */
1747 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1748 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1749 
1750 	DC_LOGGER_INIT(dc->ctx->logger);
1751 
1752 	BW_VAL_TRACE_COUNT();
1753 
1754 	DC_FP_START();
1755 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1756 	DC_FP_END();
1757 
1758 	if (pipe_cnt == 0)
1759 		goto validate_out;
1760 
1761 	if (!out)
1762 		goto validate_fail;
1763 
1764 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1765 
1766 	if (fast_validate) {
1767 		BW_VAL_TRACE_SKIP(fast);
1768 		goto validate_out;
1769 	}
1770 
1771 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1772 
1773 	dcn32_override_min_req_memclk(dc, context);
1774 
1775 	BW_VAL_TRACE_END_WATERMARKS();
1776 
1777 	goto validate_out;
1778 
1779 validate_fail:
1780 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1781 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1782 
1783 	BW_VAL_TRACE_SKIP(fail);
1784 	out = false;
1785 
1786 validate_out:
1787 	kfree(pipes);
1788 
1789 	BW_VAL_TRACE_FINISH();
1790 
1791 	return out;
1792 }
1793 
1794 bool dcn32_validate_bandwidth(struct dc *dc,
1795 		struct dc_state *context,
1796 		bool fast_validate)
1797 {
1798 	bool out = false;
1799 
1800 	if (dc->debug.using_dml2)
1801 		out = dml2_validate(dc, context, fast_validate);
1802 	else
1803 		out = dml1_validate(dc, context, fast_validate);
1804 	return out;
1805 }
1806 
1807 int dcn32_populate_dml_pipes_from_context(
1808 	struct dc *dc, struct dc_state *context,
1809 	display_e2e_pipe_params_st *pipes,
1810 	bool fast_validate)
1811 {
1812 	int i, pipe_cnt;
1813 	struct resource_context *res_ctx = &context->res_ctx;
1814 	struct pipe_ctx *pipe = NULL;
1815 	bool subvp_in_use = false;
1816 	struct dc_crtc_timing *timing;
1817 
1818 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1819 
1820 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1821 
1822 		if (!res_ctx->pipe_ctx[i].stream)
1823 			continue;
1824 		pipe = &res_ctx->pipe_ctx[i];
1825 		timing = &pipe->stream->timing;
1826 
1827 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1828 		DC_FP_START();
1829 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1830 		DC_FP_END();
1831 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1832 		if (dc->config.enable_windowed_mpo_odm &&
1833 				dc->debug.enable_single_display_2to1_odm_policy) {
1834 			switch (resource_get_odm_slice_count(pipe)) {
1835 			case 2:
1836 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1837 				break;
1838 			case 4:
1839 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
1840 				break;
1841 			default:
1842 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1843 			}
1844 		} else {
1845 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1846 		}
1847 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1848 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1849 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1850 
1851 		/* Only populate DML input with subvp info for full updates.
1852 		 * This is just a workaround -- needs a proper fix.
1853 		 */
1854 		if (!fast_validate) {
1855 			switch (dc_state_get_pipe_subvp_type(context, pipe)) {
1856 			case SUBVP_MAIN:
1857 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1858 				subvp_in_use = true;
1859 				break;
1860 			case SUBVP_PHANTOM:
1861 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1862 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1863 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1864 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1865 				break;
1866 			case SUBVP_NONE:
1867 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1868 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1869 				break;
1870 			default:
1871 				break;
1872 			}
1873 		}
1874 
1875 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1876 		if (pipes[pipe_cnt].dout.dsc_enable) {
1877 			switch (timing->display_color_depth) {
1878 			case COLOR_DEPTH_888:
1879 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1880 				break;
1881 			case COLOR_DEPTH_101010:
1882 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1883 				break;
1884 			case COLOR_DEPTH_121212:
1885 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1886 				break;
1887 			default:
1888 				ASSERT(0);
1889 				break;
1890 			}
1891 		}
1892 
1893 
1894 		pipe_cnt++;
1895 	}
1896 
1897 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1898 	 * the DET available for each pipe). Use the DET override input to maintain our driver
1899 	 * policy.
1900 	 */
1901 	dcn32_set_det_allocations(dc, context, pipes);
1902 
1903 	// In general cases we want to keep the dram clock change requirement
1904 	// (prefer configs that support MCLK switch). Only override to false
1905 	// for SubVP
1906 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
1907 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
1908 	else
1909 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1910 
1911 	return pipe_cnt;
1912 }
1913 
1914 static struct dc_cap_funcs cap_funcs = {
1915 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
1916 	.get_subvp_en = dcn32_subvp_in_use,
1917 };
1918 
1919 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
1920 				display_e2e_pipe_params_st *pipes,
1921 				int pipe_cnt,
1922 				int vlevel)
1923 {
1924     DC_FP_START();
1925     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
1926     DC_FP_END();
1927 }
1928 
1929 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
1930 {
1931 	DC_FP_START();
1932 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
1933 	DC_FP_END();
1934 }
1935 
1936 static struct resource_funcs dcn32_res_pool_funcs = {
1937 	.destroy = dcn32_destroy_resource_pool,
1938 	.link_enc_create = dcn32_link_encoder_create,
1939 	.link_enc_create_minimal = NULL,
1940 	.panel_cntl_create = dcn32_panel_cntl_create,
1941 	.validate_bandwidth = dcn32_validate_bandwidth,
1942 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
1943 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
1944 	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
1945 	.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
1946 	.release_pipe = dcn20_release_pipe,
1947 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
1948 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
1949 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
1950 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
1951 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
1952 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
1953 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
1954 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
1955 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
1956 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
1957 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
1958 	.add_phantom_pipes = dcn32_add_phantom_pipes,
1959 	.build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
1960 };
1961 
1962 static uint32_t read_pipe_fuses(struct dc_context *ctx)
1963 {
1964 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
1965 	/* DCN32 support max 4 pipes */
1966 	value = value & 0xf;
1967 	return value;
1968 }
1969 
1970 
1971 static bool dcn32_resource_construct(
1972 	uint8_t num_virtual_links,
1973 	struct dc *dc,
1974 	struct dcn32_resource_pool *pool)
1975 {
1976 	int i, j;
1977 	struct dc_context *ctx = dc->ctx;
1978 	struct irq_service_init_data init_data;
1979 	struct ddc_service_init_data ddc_init_data = {0};
1980 	uint32_t pipe_fuses = 0;
1981 	uint32_t num_pipes  = 4;
1982 
1983 #undef REG_STRUCT
1984 #define REG_STRUCT bios_regs
1985 	bios_regs_init();
1986 
1987 #undef REG_STRUCT
1988 #define REG_STRUCT clk_src_regs
1989 	clk_src_regs_init(0, A),
1990 	clk_src_regs_init(1, B),
1991 	clk_src_regs_init(2, C),
1992 	clk_src_regs_init(3, D),
1993 	clk_src_regs_init(4, E);
1994 
1995 #undef REG_STRUCT
1996 #define REG_STRUCT abm_regs
1997 	abm_regs_init(0),
1998 	abm_regs_init(1),
1999 	abm_regs_init(2),
2000 	abm_regs_init(3);
2001 
2002 #undef REG_STRUCT
2003 #define REG_STRUCT dccg_regs
2004 	dccg_regs_init();
2005 
2006 	DC_FP_START();
2007 
2008 	ctx->dc_bios->regs = &bios_regs;
2009 
2010 	pool->base.res_cap = &res_cap_dcn32;
2011 	/* max number of pipes for ASIC before checking for pipe fuses */
2012 	num_pipes  = pool->base.res_cap->num_timing_generator;
2013 	pipe_fuses = read_pipe_fuses(ctx);
2014 
2015 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2016 		if (pipe_fuses & 1 << i)
2017 			num_pipes--;
2018 
2019 	if (pipe_fuses & 1)
2020 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2021 
2022 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2023 		ASSERT(0); //Entire DCN is harvested!
2024 
2025 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2026 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2027 	 */
2028 	dcn3_2_ip.max_num_dpp = num_pipes;
2029 	dcn3_2_ip.max_num_otg = num_pipes;
2030 
2031 	pool->base.funcs = &dcn32_res_pool_funcs;
2032 
2033 	/*************************************************
2034 	 *  Resource + asic cap harcoding                *
2035 	 *************************************************/
2036 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2037 	pool->base.timing_generator_count = num_pipes;
2038 	pool->base.pipe_count = num_pipes;
2039 	pool->base.mpcc_count = num_pipes;
2040 	dc->caps.max_downscale_ratio = 600;
2041 	dc->caps.i2c_speed_in_khz = 100;
2042 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2043 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2044 	dc->caps.max_cursor_size = 64;
2045 	dc->caps.min_horizontal_blanking_period = 80;
2046 	dc->caps.dmdata_alloc_size = 2048;
2047 	dc->caps.mall_size_per_mem_channel = 4;
2048 	dc->caps.mall_size_total = 0;
2049 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2050 
2051 	dc->caps.cache_line_size = 64;
2052 	dc->caps.cache_num_ways = 16;
2053 
2054 	/* Calculate the available MALL space */
2055 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2056 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2057 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2058 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2059 
2060 	dc->caps.subvp_fw_processing_delay_us = 15;
2061 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2062 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2063 	dc->caps.subvp_swath_height_margin_lines = 16;
2064 	dc->caps.subvp_pstate_allow_width_us = 20;
2065 	dc->caps.subvp_vertical_int_margin_us = 30;
2066 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2067 
2068 	dc->caps.max_slave_planes = 2;
2069 	dc->caps.max_slave_yuv_planes = 2;
2070 	dc->caps.max_slave_rgb_planes = 2;
2071 	dc->caps.post_blend_color_processing = true;
2072 	dc->caps.force_dp_tps4_for_cp2520 = true;
2073 	if (dc->config.forceHBR2CP2520)
2074 		dc->caps.force_dp_tps4_for_cp2520 = false;
2075 	dc->caps.dp_hpo = true;
2076 	dc->caps.dp_hdmi21_pcon_support = true;
2077 	dc->caps.edp_dsc_support = true;
2078 	dc->caps.extended_aux_timeout_support = true;
2079 	dc->caps.dmcub_support = true;
2080 	dc->caps.seamless_odm = true;
2081 	dc->caps.max_v_total = (1 << 15) - 1;
2082 
2083 	/* Color pipeline capabilities */
2084 	dc->caps.color.dpp.dcn_arch = 1;
2085 	dc->caps.color.dpp.input_lut_shared = 0;
2086 	dc->caps.color.dpp.icsc = 1;
2087 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2088 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2089 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2090 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2091 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2092 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2093 	dc->caps.color.dpp.post_csc = 1;
2094 	dc->caps.color.dpp.gamma_corr = 1;
2095 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2096 
2097 	dc->caps.color.dpp.hw_3d_lut = 1;
2098 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2099 	// no OGAM ROM on DCN2 and later ASICs
2100 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2101 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2102 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2103 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2104 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2105 	dc->caps.color.dpp.ocsc = 0;
2106 
2107 	dc->caps.color.mpc.gamut_remap = 1;
2108 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2109 	dc->caps.color.mpc.ogam_ram = 1;
2110 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2111 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2112 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2113 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2114 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2115 	dc->caps.color.mpc.ocsc = 1;
2116 
2117 	/* Use pipe context based otg sync logic */
2118 	dc->config.use_pipe_ctx_sync_logic = true;
2119 
2120 	dc->config.dc_mode_clk_limit_support = true;
2121 	/* read VBIOS LTTPR caps */
2122 	{
2123 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2124 			enum bp_result bp_query_result;
2125 			uint8_t is_vbios_lttpr_enable = 0;
2126 
2127 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2128 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2129 		}
2130 
2131 		/* interop bit is implicit */
2132 		{
2133 			dc->caps.vbios_lttpr_aware = true;
2134 		}
2135 	}
2136 
2137 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2138 		dc->debug = debug_defaults_drv;
2139 
2140 	// Init the vm_helper
2141 	if (dc->vm_helper)
2142 		vm_helper_init(dc->vm_helper, 16);
2143 
2144 	/*************************************************
2145 	 *  Create resources                             *
2146 	 *************************************************/
2147 
2148 	/* Clock Sources for Pixel Clock*/
2149 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2150 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2151 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2152 				&clk_src_regs[0], false);
2153 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2154 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2155 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2156 				&clk_src_regs[1], false);
2157 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2158 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2159 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2160 				&clk_src_regs[2], false);
2161 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2162 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2163 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2164 				&clk_src_regs[3], false);
2165 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2166 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2167 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2168 				&clk_src_regs[4], false);
2169 
2170 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2171 
2172 	/* todo: not reuse phy_pll registers */
2173 	pool->base.dp_clock_source =
2174 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2175 				CLOCK_SOURCE_ID_DP_DTO,
2176 				&clk_src_regs[0], true);
2177 
2178 	for (i = 0; i < pool->base.clk_src_count; i++) {
2179 		if (pool->base.clock_sources[i] == NULL) {
2180 			dm_error("DC: failed to create clock sources!\n");
2181 			BREAK_TO_DEBUGGER();
2182 			goto create_fail;
2183 		}
2184 	}
2185 
2186 	/* DCCG */
2187 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2188 	if (pool->base.dccg == NULL) {
2189 		dm_error("DC: failed to create dccg!\n");
2190 		BREAK_TO_DEBUGGER();
2191 		goto create_fail;
2192 	}
2193 
2194 	/* DML */
2195 	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2196 
2197 	/* IRQ Service */
2198 	init_data.ctx = dc->ctx;
2199 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2200 	if (!pool->base.irqs)
2201 		goto create_fail;
2202 
2203 	/* HUBBUB */
2204 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2205 	if (pool->base.hubbub == NULL) {
2206 		BREAK_TO_DEBUGGER();
2207 		dm_error("DC: failed to create hubbub!\n");
2208 		goto create_fail;
2209 	}
2210 
2211 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2212 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2213 
2214 		/* if pipe is disabled, skip instance of HW pipe,
2215 		 * i.e, skip ASIC register instance
2216 		 */
2217 		if (pipe_fuses & 1 << i)
2218 			continue;
2219 
2220 		/* HUBPs */
2221 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2222 		if (pool->base.hubps[j] == NULL) {
2223 			BREAK_TO_DEBUGGER();
2224 			dm_error(
2225 				"DC: failed to create hubps!\n");
2226 			goto create_fail;
2227 		}
2228 
2229 		/* DPPs */
2230 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2231 		if (pool->base.dpps[j] == NULL) {
2232 			BREAK_TO_DEBUGGER();
2233 			dm_error(
2234 				"DC: failed to create dpps!\n");
2235 			goto create_fail;
2236 		}
2237 
2238 		/* OPPs */
2239 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2240 		if (pool->base.opps[j] == NULL) {
2241 			BREAK_TO_DEBUGGER();
2242 			dm_error(
2243 				"DC: failed to create output pixel processor!\n");
2244 			goto create_fail;
2245 		}
2246 
2247 		/* TGs */
2248 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2249 				ctx, i);
2250 		if (pool->base.timing_generators[j] == NULL) {
2251 			BREAK_TO_DEBUGGER();
2252 			dm_error("DC: failed to create tg!\n");
2253 			goto create_fail;
2254 		}
2255 
2256 		/* ABMs */
2257 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2258 				&abm_regs[i],
2259 				&abm_shift,
2260 				&abm_mask);
2261 		if (pool->base.multiple_abms[j] == NULL) {
2262 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2263 			BREAK_TO_DEBUGGER();
2264 			goto create_fail;
2265 		}
2266 
2267 		/* index for resource pool arrays for next valid pipe */
2268 		j++;
2269 	}
2270 
2271 	/* PSR */
2272 	pool->base.psr = dmub_psr_create(ctx);
2273 	if (pool->base.psr == NULL) {
2274 		dm_error("DC: failed to create psr obj!\n");
2275 		BREAK_TO_DEBUGGER();
2276 		goto create_fail;
2277 	}
2278 
2279 	/* MPCCs */
2280 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2281 	if (pool->base.mpc == NULL) {
2282 		BREAK_TO_DEBUGGER();
2283 		dm_error("DC: failed to create mpc!\n");
2284 		goto create_fail;
2285 	}
2286 
2287 	/* DSCs */
2288 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2289 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2290 		if (pool->base.dscs[i] == NULL) {
2291 			BREAK_TO_DEBUGGER();
2292 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2293 			goto create_fail;
2294 		}
2295 	}
2296 
2297 	/* DWB */
2298 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2299 		BREAK_TO_DEBUGGER();
2300 		dm_error("DC: failed to create dwbc!\n");
2301 		goto create_fail;
2302 	}
2303 
2304 	/* MMHUBBUB */
2305 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2306 		BREAK_TO_DEBUGGER();
2307 		dm_error("DC: failed to create mcif_wb!\n");
2308 		goto create_fail;
2309 	}
2310 
2311 	/* AUX and I2C */
2312 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2313 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2314 		if (pool->base.engines[i] == NULL) {
2315 			BREAK_TO_DEBUGGER();
2316 			dm_error(
2317 				"DC:failed to create aux engine!!\n");
2318 			goto create_fail;
2319 		}
2320 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2321 		if (pool->base.hw_i2cs[i] == NULL) {
2322 			BREAK_TO_DEBUGGER();
2323 			dm_error(
2324 				"DC:failed to create hw i2c!!\n");
2325 			goto create_fail;
2326 		}
2327 		pool->base.sw_i2cs[i] = NULL;
2328 	}
2329 
2330 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2331 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2332 			&res_create_funcs))
2333 		goto create_fail;
2334 
2335 	/* HW Sequencer init functions and Plane caps */
2336 	dcn32_hw_sequencer_init_functions(dc);
2337 
2338 	dc->caps.max_planes =  pool->base.pipe_count;
2339 
2340 	for (i = 0; i < dc->caps.max_planes; ++i)
2341 		dc->caps.planes[i] = plane_cap;
2342 
2343 	dc->cap_funcs = cap_funcs;
2344 
2345 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2346 		ddc_init_data.ctx = dc->ctx;
2347 		ddc_init_data.link = NULL;
2348 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2349 		ddc_init_data.id.enum_id = 0;
2350 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2351 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2352 	} else {
2353 		pool->base.oem_device = NULL;
2354 	}
2355 
2356 	dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
2357 	dc->dml2_options.use_native_pstate_optimization = false;
2358 	dc->dml2_options.use_native_soc_bb_construction = true;
2359 	dc->dml2_options.minimize_dispclk_using_odm = true;
2360 
2361 	dc->dml2_options.callbacks.dc = dc;
2362 	dc->dml2_options.callbacks.build_scaling_params = &resource_build_scaling_params;
2363 	dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
2364 	dc->dml2_options.callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
2365 	dc->dml2_options.callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
2366 	dc->dml2_options.callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
2367 	dc->dml2_options.callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
2368 	dc->dml2_options.callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
2369 	dc->dml2_options.callbacks.get_opp_head = &resource_get_opp_head;
2370 
2371 	dc->dml2_options.svp_pstate.callbacks.dc = dc;
2372 	dc->dml2_options.svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
2373 	dc->dml2_options.svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
2374 	dc->dml2_options.svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
2375 	dc->dml2_options.svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
2376 	dc->dml2_options.svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
2377 	dc->dml2_options.svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
2378 	dc->dml2_options.svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
2379 	dc->dml2_options.svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
2380 	dc->dml2_options.svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
2381 	dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
2382 	dc->dml2_options.svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
2383 	dc->dml2_options.svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
2384 	dc->dml2_options.svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
2385 
2386 	dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
2387 	dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
2388 	dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
2389 	dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
2390 
2391 	dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
2392 	dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
2393 
2394 	dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
2395 	dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
2396 	dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
2397 	dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
2398 	dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
2399 	dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
2400 	dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
2401 
2402 	dc->dml2_options.max_segments_per_hubp = 18;
2403 	dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
2404 	dc->dml2_options.map_dc_pipes_with_callbacks = true;
2405 
2406 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2407 		dc->config.sdpif_request_limit_words_per_umc = 16;
2408 
2409 	DC_FP_END();
2410 
2411 	return true;
2412 
2413 create_fail:
2414 
2415 	DC_FP_END();
2416 
2417 	dcn32_resource_destruct(pool);
2418 
2419 	return false;
2420 }
2421 
2422 struct resource_pool *dcn32_create_resource_pool(
2423 		const struct dc_init_data *init_data,
2424 		struct dc *dc)
2425 {
2426 	struct dcn32_resource_pool *pool =
2427 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2428 
2429 	if (!pool)
2430 		return NULL;
2431 
2432 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2433 		return &pool->base;
2434 
2435 	BREAK_TO_DEBUGGER();
2436 	kfree(pool);
2437 	return NULL;
2438 }
2439 
2440 /*
2441  * Find the most optimal free pipe from res_ctx, which could be used as a
2442  * secondary dpp pipe for input opp head pipe.
2443  *
2444  * a free pipe - a pipe in input res_ctx not yet used for any streams or
2445  * planes.
2446  * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2447  * tree. This is typical used for rendering MPO planes or additional offset
2448  * areas in MPCC combine.
2449  *
2450  * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2451  * -------------------------------------------------------------------------
2452  *
2453  * PROBLEM:
2454  *
2455  * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2456  * transferred from one MPC blending tree to the other in a single frame.
2457  * Otherwise it could cause glitches on the screen.
2458  *
2459  * For instance, we cannot transition from state 1 to state 2 in one frame. This
2460  * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2461  * PIPE2's MPC blending tree, which is not supported by hardware.
2462  * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2463  * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2464  * in the next frame. This is not optimal as it will delay the flip for two
2465  * frames.
2466  *
2467  *	State 1:
2468  *	PIPE0 -- secondary DPP pipe --> (PIPE1)
2469  *	PIPE2 -- secondary DPP pipe --> NONE
2470  *
2471  *	State 2:
2472  *	PIPE0 -- secondary DPP pipe --> NONE
2473  *	PIPE2 -- secondary DPP pipe --> (PIPE1)
2474  *
2475  * 2. We want to in general minimize the unnecessary changes in pipe topology.
2476  * If a pipe is already added in current blending tree and there are no changes
2477  * to plane topology, we don't want to swap it with another free pipe
2478  * unnecessarily in every update. Powering up and down a pipe would require a
2479  * full update which delays the flip for 1 frame. If we use the original pipe
2480  * we don't have to toggle its power. So we can flip faster.
2481  */
2482 static int find_optimal_free_pipe_as_secondary_dpp_pipe(
2483 		const struct resource_context *cur_res_ctx,
2484 		struct resource_context *new_res_ctx,
2485 		const struct resource_pool *pool,
2486 		const struct pipe_ctx *new_opp_head)
2487 {
2488 	const struct pipe_ctx *cur_opp_head;
2489 	int free_pipe_idx;
2490 
2491 	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2492 	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2493 			cur_res_ctx, new_res_ctx, cur_opp_head);
2494 
2495 	/* Up until here if we have not found a free secondary pipe, we will
2496 	 * need to wait for at least one frame to complete the transition
2497 	 * sequence.
2498 	 */
2499 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2500 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2501 				cur_res_ctx, new_res_ctx, pool);
2502 
2503 	/* Up until here if we have not found a free secondary pipe, we will
2504 	 * need to wait for at least two frames to complete the transition
2505 	 * sequence. It really doesn't matter which pipe we decide take from
2506 	 * current enabled pipes. It won't save our frame time when we swap only
2507 	 * one pipe or more pipes.
2508 	 */
2509 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2510 		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2511 				cur_res_ctx, new_res_ctx, pool);
2512 
2513 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2514 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2515 
2516 	return free_pipe_idx;
2517 }
2518 
2519 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2520 		struct resource_context *res_ctx,
2521 		const struct resource_pool *pool,
2522 		const struct pipe_ctx *primary_pipe)
2523 {
2524 	int i;
2525 	struct pipe_ctx *secondary_pipe = NULL;
2526 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2527 	int primary_index, preferred_pipe_idx;
2528 	struct pipe_ctx *old_primary_pipe = NULL;
2529 
2530 	/*
2531 	 * Modified from find_idle_secondary_pipe
2532 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2533 	 *  free pipe for the left side but the free pipe is being used on the
2534 	 *  right side.
2535 	 * Add check on current_state if the primary_pipe is the left side,
2536 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2537 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2538 	 * - If so, then don't use this pipe
2539 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2540 	 * - in this case, the primary pipe has already gotten a free pipe for the
2541 	 *  MPO window in the left
2542 	 * - when it tries to get a free pipe for the MPO window on the right,
2543 	 *  it will see that it is already assigned to the right side
2544 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2545 	 *  free pipe, since it will be for the right side.  So add an
2546 	 *  additional condition, that skipping the free pipe on the right only
2547 	 *  applies if the primary pipe has no bottom pipe currently assigned
2548 	 */
2549 	if (primary_pipe) {
2550 		primary_index = primary_pipe->pipe_idx;
2551 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2552 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2553 			&& (!primary_pipe->bottom_pipe))
2554 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2555 
2556 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2557 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2558 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2559 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2560 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * search backwards for the second pipe to keep pipe
2566 	 * assignment more consistent
2567 	 */
2568 	if (!secondary_pipe)
2569 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2570 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2571 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2572 				secondary_pipe = &res_ctx->pipe_ctx[i];
2573 				secondary_pipe->pipe_idx = i;
2574 				break;
2575 			}
2576 		}
2577 
2578 	return secondary_pipe;
2579 }
2580 
2581 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2582 		struct dc_state *state,
2583 		const struct resource_pool *pool,
2584 		struct dc_stream_state *stream,
2585 		const struct pipe_ctx *head_pipe)
2586 {
2587 	struct resource_context *res_ctx = &state->res_ctx;
2588 	struct pipe_ctx *idle_pipe, *pipe;
2589 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2590 	int head_index;
2591 
2592 	if (!head_pipe)
2593 		ASSERT(0);
2594 
2595 	/*
2596 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2597 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2598 	 * - If so, check if that pipe is available in the current context.
2599 	 * --  If so, reuse pipe from old_context
2600 	 */
2601 	head_index = head_pipe->pipe_idx;
2602 	pipe = &old_ctx->pipe_ctx[head_index];
2603 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2604 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2605 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2606 	} else {
2607 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2608 		if (!idle_pipe)
2609 			return NULL;
2610 	}
2611 
2612 	idle_pipe->stream = head_pipe->stream;
2613 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2614 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2615 
2616 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2617 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2618 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2619 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2620 
2621 	return idle_pipe;
2622 }
2623 
2624 static int find_optimal_free_pipe_as_secondary_opp_head(
2625 		const struct resource_context *cur_res_ctx,
2626 		struct resource_context *new_res_ctx,
2627 		const struct resource_pool *pool,
2628 		const struct pipe_ctx *new_otg_master)
2629 {
2630 	const struct pipe_ctx *cur_otg_master;
2631 	int free_pipe_idx;
2632 
2633 	cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
2634 	free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
2635 			cur_res_ctx, new_res_ctx, cur_otg_master);
2636 
2637 	/* Up until here if we have not found a free secondary pipe, we will
2638 	 * need to wait for at least one frame to complete the transition
2639 	 * sequence.
2640 	 */
2641 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2642 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2643 				cur_res_ctx, new_res_ctx, pool);
2644 
2645 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2646 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2647 
2648 	return free_pipe_idx;
2649 }
2650 
2651 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2652 		const struct dc_state *cur_ctx,
2653 		struct dc_state *new_ctx,
2654 		const struct resource_pool *pool,
2655 		const struct pipe_ctx *opp_head_pipe)
2656 {
2657 
2658 	int free_pipe_idx;
2659 	struct pipe_ctx *free_pipe;
2660 
2661 	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2662 		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2663 				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2664 
2665 	free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
2666 					&cur_ctx->res_ctx, &new_ctx->res_ctx,
2667 					pool, opp_head_pipe);
2668 	if (free_pipe_idx >= 0) {
2669 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2670 		free_pipe->pipe_idx = free_pipe_idx;
2671 		free_pipe->stream = opp_head_pipe->stream;
2672 		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2673 		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2674 
2675 		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2676 		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2677 		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2678 		free_pipe->plane_res.mpcc_inst =
2679 				pool->dpps[free_pipe->pipe_idx]->inst;
2680 	} else {
2681 		ASSERT(opp_head_pipe);
2682 		free_pipe = NULL;
2683 	}
2684 
2685 	return free_pipe;
2686 }
2687 
2688 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
2689 		const struct dc_state *cur_ctx,
2690 		struct dc_state *new_ctx,
2691 		const struct resource_pool *pool,
2692 		const struct pipe_ctx *otg_master)
2693 {
2694 	int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
2695 			&cur_ctx->res_ctx, &new_ctx->res_ctx,
2696 			pool, otg_master);
2697 	struct pipe_ctx *free_pipe;
2698 
2699 	if (free_pipe_idx >= 0) {
2700 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2701 		free_pipe->pipe_idx = free_pipe_idx;
2702 		free_pipe->stream = otg_master->stream;
2703 		free_pipe->stream_res.tg = otg_master->stream_res.tg;
2704 		free_pipe->stream_res.dsc = NULL;
2705 		free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
2706 		free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
2707 		free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
2708 		free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
2709 		free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
2710 		free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
2711 		free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
2712 		if (free_pipe->stream->timing.flags.DSC == 1) {
2713 			dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
2714 					&new_ctx->res_ctx,
2715 					&free_pipe->stream_res.dsc,
2716 					free_pipe_idx);
2717 			ASSERT(free_pipe->stream_res.dsc);
2718 			if (free_pipe->stream_res.dsc == NULL) {
2719 				memset(free_pipe, 0, sizeof(*free_pipe));
2720 				free_pipe = NULL;
2721 			}
2722 		}
2723 	} else {
2724 		ASSERT(otg_master);
2725 		free_pipe = NULL;
2726 	}
2727 
2728 	return free_pipe;
2729 }
2730 
2731 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2732 {
2733 	/*
2734 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2735 	 *  but we may not be able to access all the MALL space.
2736 	 *  If the num_chans is power of 2, then we can access all
2737 	 *  of the available MALL space.  Otherwise, we can only
2738 	 *  access:
2739 	 *
2740 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2741 	 *    ((2^floor(log2(num_chans)))/num_chans)
2742 	 *
2743 	 * Calculating the MALL sizes for all available SKUs, we
2744 	 *  have come up with the follow simplified check.
2745 	 * - we have max_chans which provides the max MALL size.
2746 	 *  Each chans supports 4MB of MALL so:
2747 	 *
2748 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2749 	 *
2750 	 * - we have avail_chans which shows the number of channels
2751 	 *  we can use if we can't access the entire MALL space.
2752 	 *  It is generally half of max_chans
2753 	 * - so we use the following checks:
2754 	 *
2755 	 *   if (num_chans == max_chans), return max_chans
2756 	 *   if (num_chans < max_chans), return avail_chans
2757 	 *
2758 	 * - exception is GC_11_0_0 where we can't access max_chans,
2759 	 *  so we define max_avail_chans as the maximum available
2760 	 *  MALL space
2761 	 *
2762 	 */
2763 	int gc_11_0_0_max_chans = 48;
2764 	int gc_11_0_0_max_avail_chans = 32;
2765 	int gc_11_0_0_avail_chans = 16;
2766 	int gc_11_0_3_max_chans = 16;
2767 	int gc_11_0_3_avail_chans = 8;
2768 	int gc_11_0_2_max_chans = 8;
2769 	int gc_11_0_2_avail_chans = 4;
2770 
2771 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2772 		return (num_chans == gc_11_0_0_max_chans) ?
2773 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2774 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2775 		return (num_chans == gc_11_0_2_max_chans) ?
2776 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2777 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2778 		return (num_chans == gc_11_0_3_max_chans) ?
2779 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2780 	}
2781 }
2782