xref: /linux/drivers/gpu/drm/amd/display/dc/hwss/dce110/dce110_hwseq.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "gpio_service_interface.h"
37 
38 #include "dce110/dce110_compressor.h"
39 
40 #include "bios/bios_parser_helper.h"
41 #include "timing_generator.h"
42 #include "mem_input.h"
43 #include "opp.h"
44 #include "ipp.h"
45 #include "transform.h"
46 #include "stream_encoder.h"
47 #include "link_encoder.h"
48 #include "link_enc_cfg.h"
49 #include "link_hwss.h"
50 #include "link.h"
51 #include "dccg.h"
52 #include "clock_source.h"
53 #include "clk_mgr.h"
54 #include "abm.h"
55 #include "audio.h"
56 #include "reg_helper.h"
57 #include "panel_cntl.h"
58 #include "dc_state_priv.h"
59 #include "dpcd_defs.h"
60 /* include DCE11 register header files */
61 #include "dce/dce_11_0_d.h"
62 #include "dce/dce_11_0_sh_mask.h"
63 #include "custom_float.h"
64 
65 #include "atomfirmware.h"
66 
67 #include "dcn10/dcn10_hwseq.h"
68 
69 #define GAMMA_HW_POINTS_NUM 256
70 
71 /*
72  * All values are in milliseconds;
73  * For eDP, after power-up/power/down,
74  * 300/500 msec max. delay from LCDVCC to black video generation
75  */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81 
82 #define CTX \
83 	hws->ctx
84 
85 #define DC_LOGGER \
86 	ctx->logger
87 #define DC_LOGGER_INIT() \
88 	struct dc_context *ctx = dc->ctx
89 
90 #define REG(reg)\
91 	hws->regs->reg
92 
93 #undef FN
94 #define FN(reg_name, field_name) \
95 	hws->shifts->field_name, hws->masks->field_name
96 
97 struct dce110_hw_seq_reg_offsets {
98 	uint32_t crtc;
99 };
100 
101 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
102 {
103 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 },
111 {
112 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
113 }
114 };
115 
116 #define HW_REG_BLND(reg, id)\
117 	(reg + reg_offsets[id].blnd)
118 
119 #define HW_REG_CRTC(reg, id)\
120 	(reg + reg_offsets[id].crtc)
121 
122 #define MAX_WATERMARK 0xFFFF
123 #define SAFE_NBP_MARK 0x7FFF
124 
125 /*******************************************************************************
126  * Private definitions
127  ******************************************************************************/
128 /***************************PIPE_CONTROL***********************************/
129 static void dce110_init_pte(struct dc_context *ctx)
130 {
131 	uint32_t addr;
132 	uint32_t value = 0;
133 	uint32_t chunk_int = 0;
134 	uint32_t chunk_mul = 0;
135 
136 	addr = mmUNP_DVMM_PTE_CONTROL;
137 	value = dm_read_reg(ctx, addr);
138 
139 	set_reg_field_value(
140 		value,
141 		0,
142 		DVMM_PTE_CONTROL,
143 		DVMM_USE_SINGLE_PTE);
144 
145 	set_reg_field_value(
146 		value,
147 		1,
148 		DVMM_PTE_CONTROL,
149 		DVMM_PTE_BUFFER_MODE0);
150 
151 	set_reg_field_value(
152 		value,
153 		1,
154 		DVMM_PTE_CONTROL,
155 		DVMM_PTE_BUFFER_MODE1);
156 
157 	dm_write_reg(ctx, addr, value);
158 
159 	addr = mmDVMM_PTE_REQ;
160 	value = dm_read_reg(ctx, addr);
161 
162 	chunk_int = get_reg_field_value(
163 		value,
164 		DVMM_PTE_REQ,
165 		HFLIP_PTEREQ_PER_CHUNK_INT);
166 
167 	chunk_mul = get_reg_field_value(
168 		value,
169 		DVMM_PTE_REQ,
170 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
171 
172 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
173 
174 		set_reg_field_value(
175 			value,
176 			255,
177 			DVMM_PTE_REQ,
178 			MAX_PTEREQ_TO_ISSUE);
179 
180 		set_reg_field_value(
181 			value,
182 			4,
183 			DVMM_PTE_REQ,
184 			HFLIP_PTEREQ_PER_CHUNK_INT);
185 
186 		set_reg_field_value(
187 			value,
188 			4,
189 			DVMM_PTE_REQ,
190 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
191 
192 		dm_write_reg(ctx, addr, value);
193 	}
194 }
195 /**************************************************************************/
196 
197 static void enable_display_pipe_clock_gating(
198 	struct dc_context *ctx,
199 	bool clock_gating)
200 {
201 	/*TODO*/
202 }
203 
204 static bool dce110_enable_display_power_gating(
205 	struct dc *dc,
206 	uint8_t controller_id,
207 	struct dc_bios *dcb,
208 	enum pipe_gating_control power_gating)
209 {
210 	enum bp_result bp_result = BP_RESULT_OK;
211 	enum bp_pipe_control_action cntl;
212 	struct dc_context *ctx = dc->ctx;
213 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
214 
215 	if (power_gating == PIPE_GATING_CONTROL_INIT)
216 		cntl = ASIC_PIPE_INIT;
217 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
218 		cntl = ASIC_PIPE_ENABLE;
219 	else
220 		cntl = ASIC_PIPE_DISABLE;
221 
222 	if (controller_id == underlay_idx)
223 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
224 
225 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
226 
227 		bp_result = dcb->funcs->enable_disp_power_gating(
228 						dcb, controller_id + 1, cntl);
229 
230 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
231 		 * by default when command table is called
232 		 *
233 		 * Bios parser accepts controller_id = 6 as indicative of
234 		 * underlay pipe in dce110. But we do not support more
235 		 * than 3.
236 		 */
237 		if (controller_id < CONTROLLER_ID_MAX - 1)
238 			dm_write_reg(ctx,
239 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
240 				0);
241 	}
242 
243 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
244 		dce110_init_pte(ctx);
245 
246 	if (bp_result == BP_RESULT_OK)
247 		return true;
248 	else
249 		return false;
250 }
251 
252 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
253 		const struct dc_plane_state *plane_state)
254 {
255 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
256 
257 	switch (plane_state->format) {
258 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
259 		prescale_params->scale = 0x2082;
260 		break;
261 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
262 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
263 		prescale_params->scale = 0x2020;
264 		break;
265 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
266 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
267 		prescale_params->scale = 0x2008;
268 		break;
269 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
270 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
271 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
272 		prescale_params->scale = 0x2000;
273 		break;
274 	default:
275 		ASSERT(false);
276 		break;
277 	}
278 }
279 
280 static bool
281 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
282 			       const struct dc_plane_state *plane_state)
283 {
284 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
285 	const struct dc_transfer_func *tf = NULL;
286 	struct ipp_prescale_params prescale_params = { 0 };
287 	bool result = true;
288 
289 	if (ipp == NULL)
290 		return false;
291 
292 	if (plane_state->in_transfer_func)
293 		tf = plane_state->in_transfer_func;
294 
295 	build_prescale_params(&prescale_params, plane_state);
296 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
297 
298 	if (plane_state->gamma_correction &&
299 			!plane_state->gamma_correction->is_identity &&
300 			dce_use_lut(plane_state->format))
301 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
302 
303 	if (tf == NULL) {
304 		/* Default case if no input transfer function specified */
305 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
306 	} else if (tf->type == TF_TYPE_PREDEFINED) {
307 		switch (tf->tf) {
308 		case TRANSFER_FUNCTION_SRGB:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
310 			break;
311 		case TRANSFER_FUNCTION_BT709:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
313 			break;
314 		case TRANSFER_FUNCTION_LINEAR:
315 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
316 			break;
317 		case TRANSFER_FUNCTION_PQ:
318 		default:
319 			result = false;
320 			break;
321 		}
322 	} else if (tf->type == TF_TYPE_BYPASS) {
323 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
324 	} else {
325 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
326 		result = false;
327 	}
328 
329 	return result;
330 }
331 
332 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
333 				    struct curve_points *arr_points,
334 				    uint32_t hw_points_num)
335 {
336 	struct custom_float_format fmt;
337 
338 	struct pwl_result_data *rgb = rgb_resulted;
339 
340 	uint32_t i = 0;
341 
342 	fmt.exponenta_bits = 6;
343 	fmt.mantissa_bits = 12;
344 	fmt.sign = true;
345 
346 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
347 					    &arr_points[0].custom_float_x)) {
348 		BREAK_TO_DEBUGGER();
349 		return false;
350 	}
351 
352 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
353 					    &arr_points[0].custom_float_offset)) {
354 		BREAK_TO_DEBUGGER();
355 		return false;
356 	}
357 
358 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
359 					    &arr_points[0].custom_float_slope)) {
360 		BREAK_TO_DEBUGGER();
361 		return false;
362 	}
363 
364 	fmt.mantissa_bits = 10;
365 	fmt.sign = false;
366 
367 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
368 					    &arr_points[1].custom_float_x)) {
369 		BREAK_TO_DEBUGGER();
370 		return false;
371 	}
372 
373 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
374 					    &arr_points[1].custom_float_y)) {
375 		BREAK_TO_DEBUGGER();
376 		return false;
377 	}
378 
379 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
380 					    &arr_points[1].custom_float_slope)) {
381 		BREAK_TO_DEBUGGER();
382 		return false;
383 	}
384 
385 	fmt.mantissa_bits = 12;
386 	fmt.sign = true;
387 
388 	while (i != hw_points_num) {
389 		if (!convert_to_custom_float_format(rgb->red, &fmt,
390 						    &rgb->red_reg)) {
391 			BREAK_TO_DEBUGGER();
392 			return false;
393 		}
394 
395 		if (!convert_to_custom_float_format(rgb->green, &fmt,
396 						    &rgb->green_reg)) {
397 			BREAK_TO_DEBUGGER();
398 			return false;
399 		}
400 
401 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
402 						    &rgb->blue_reg)) {
403 			BREAK_TO_DEBUGGER();
404 			return false;
405 		}
406 
407 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
408 						    &rgb->delta_red_reg)) {
409 			BREAK_TO_DEBUGGER();
410 			return false;
411 		}
412 
413 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
414 						    &rgb->delta_green_reg)) {
415 			BREAK_TO_DEBUGGER();
416 			return false;
417 		}
418 
419 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
420 						    &rgb->delta_blue_reg)) {
421 			BREAK_TO_DEBUGGER();
422 			return false;
423 		}
424 
425 		++rgb;
426 		++i;
427 	}
428 
429 	return true;
430 }
431 
432 #define MAX_LOW_POINT      25
433 #define NUMBER_REGIONS     16
434 #define NUMBER_SW_SEGMENTS 16
435 
436 static bool
437 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
438 				      struct pwl_params *regamma_params)
439 {
440 	struct curve_points *arr_points;
441 	struct pwl_result_data *rgb_resulted;
442 	struct pwl_result_data *rgb;
443 	struct pwl_result_data *rgb_plus_1;
444 	struct fixed31_32 y_r;
445 	struct fixed31_32 y_g;
446 	struct fixed31_32 y_b;
447 	struct fixed31_32 y1_min;
448 	struct fixed31_32 y3_max;
449 
450 	int32_t region_start, region_end;
451 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
452 
453 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
454 		return false;
455 
456 	arr_points = regamma_params->arr_points;
457 	rgb_resulted = regamma_params->rgb_resulted;
458 	hw_points = 0;
459 
460 	memset(regamma_params, 0, sizeof(struct pwl_params));
461 
462 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
463 		/* 16 segments
464 		 * segments are from 2^-11 to 2^5
465 		 */
466 		region_start = -11;
467 		region_end = region_start + NUMBER_REGIONS;
468 
469 		for (i = 0; i < NUMBER_REGIONS; i++)
470 			seg_distr[i] = 4;
471 
472 	} else {
473 		/* 10 segments
474 		 * segment is from 2^-10 to 2^1
475 		 * We include an extra segment for range [2^0, 2^1). This is to
476 		 * ensure that colors with normalized values of 1 don't miss the
477 		 * LUT.
478 		 */
479 		region_start = -10;
480 		region_end = 1;
481 
482 		seg_distr[0] = 4;
483 		seg_distr[1] = 4;
484 		seg_distr[2] = 4;
485 		seg_distr[3] = 4;
486 		seg_distr[4] = 4;
487 		seg_distr[5] = 4;
488 		seg_distr[6] = 4;
489 		seg_distr[7] = 4;
490 		seg_distr[8] = 4;
491 		seg_distr[9] = 4;
492 		seg_distr[10] = 0;
493 		seg_distr[11] = -1;
494 		seg_distr[12] = -1;
495 		seg_distr[13] = -1;
496 		seg_distr[14] = -1;
497 		seg_distr[15] = -1;
498 	}
499 
500 	for (k = 0; k < 16; k++) {
501 		if (seg_distr[k] != -1)
502 			hw_points += (1 << seg_distr[k]);
503 	}
504 
505 	j = 0;
506 	for (k = 0; k < (region_end - region_start); k++) {
507 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
508 		start_index = (region_start + k + MAX_LOW_POINT) *
509 				NUMBER_SW_SEGMENTS;
510 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
511 				i += increment) {
512 			if (j == hw_points - 1)
513 				break;
514 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
515 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
516 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
517 			j++;
518 		}
519 	}
520 
521 	/* last point */
522 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
523 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
524 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
525 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
526 
527 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
528 					     dc_fixpt_from_int(region_start));
529 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
530 					     dc_fixpt_from_int(region_end));
531 
532 	y_r = rgb_resulted[0].red;
533 	y_g = rgb_resulted[0].green;
534 	y_b = rgb_resulted[0].blue;
535 
536 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
537 
538 	arr_points[0].y = y1_min;
539 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
540 						 arr_points[0].x);
541 
542 	y_r = rgb_resulted[hw_points - 1].red;
543 	y_g = rgb_resulted[hw_points - 1].green;
544 	y_b = rgb_resulted[hw_points - 1].blue;
545 
546 	/* see comment above, m_arrPoints[1].y should be the Y value for the
547 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
548 	 */
549 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
550 
551 	arr_points[1].y = y3_max;
552 
553 	arr_points[1].slope = dc_fixpt_zero;
554 
555 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
556 		/* for PQ, we want to have a straight line from last HW X point,
557 		 * and the slope to be such that we hit 1.0 at 10000 nits.
558 		 */
559 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
560 
561 		arr_points[1].slope = dc_fixpt_div(
562 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
563 				dc_fixpt_sub(end_value, arr_points[1].x));
564 	}
565 
566 	regamma_params->hw_points_num = hw_points;
567 
568 	k = 0;
569 	for (i = 1; i < 16; i++) {
570 		if (seg_distr[k] != -1) {
571 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
572 			regamma_params->arr_curve_points[i].offset =
573 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
574 		}
575 		k++;
576 	}
577 
578 	if (seg_distr[k] != -1)
579 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
580 
581 	rgb = rgb_resulted;
582 	rgb_plus_1 = rgb_resulted + 1;
583 
584 	i = 1;
585 
586 	while (i != hw_points + 1) {
587 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
588 			rgb_plus_1->red = rgb->red;
589 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
590 			rgb_plus_1->green = rgb->green;
591 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
592 			rgb_plus_1->blue = rgb->blue;
593 
594 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
595 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
596 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
597 
598 		++rgb_plus_1;
599 		++rgb;
600 		++i;
601 	}
602 
603 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
604 
605 	return true;
606 }
607 
608 static bool
609 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
610 				const struct dc_stream_state *stream)
611 {
612 	struct transform *xfm = pipe_ctx->plane_res.xfm;
613 
614 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
615 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
616 
617 	if (stream->out_transfer_func &&
618 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
619 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
620 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
621 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
622 							 &xfm->regamma_params)) {
623 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
624 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
625 	} else {
626 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
627 	}
628 
629 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
630 
631 	return true;
632 }
633 
634 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
635 {
636 	bool is_hdmi_tmds;
637 	bool is_dp;
638 
639 	ASSERT(pipe_ctx->stream);
640 
641 	if (pipe_ctx->stream_res.stream_enc == NULL)
642 		return;  /* this is not root pipe */
643 
644 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
645 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
646 
647 	if (!is_hdmi_tmds && !is_dp)
648 		return;
649 
650 	if (is_hdmi_tmds)
651 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
652 			pipe_ctx->stream_res.stream_enc,
653 			&pipe_ctx->stream_res.encoder_info_frame);
654 	else {
655 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
656 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
657 				pipe_ctx->stream_res.stream_enc,
658 				&pipe_ctx->stream_res.encoder_info_frame);
659 
660 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
661 			pipe_ctx->stream_res.stream_enc,
662 			&pipe_ctx->stream_res.encoder_info_frame);
663 	}
664 }
665 
666 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
667 {
668 	enum dc_lane_count lane_count =
669 		pipe_ctx->stream->link->cur_link_settings.lane_count;
670 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
671 	struct dc_link *link = pipe_ctx->stream->link;
672 	const struct dc *dc = link->dc;
673 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
674 	uint32_t active_total_with_borders;
675 	uint32_t early_control = 0;
676 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
677 
678 	link_hwss->setup_stream_encoder(pipe_ctx);
679 
680 	dc->hwss.update_info_frame(pipe_ctx);
681 
682 	/* enable early control to avoid corruption on DP monitor*/
683 	active_total_with_borders =
684 			timing->h_addressable
685 				+ timing->h_border_left
686 				+ timing->h_border_right;
687 
688 	if (lane_count != 0)
689 		early_control = active_total_with_borders % lane_count;
690 
691 	if (early_control == 0)
692 		early_control = lane_count;
693 
694 	tg->funcs->set_early_control(tg, early_control);
695 }
696 
697 static enum bp_result link_transmitter_control(
698 		struct dc_bios *bios,
699 	struct bp_transmitter_control *cntl)
700 {
701 	enum bp_result result;
702 
703 	result = bios->funcs->transmitter_control(bios, cntl);
704 
705 	return result;
706 }
707 
708 /*
709  * @brief
710  * eDP only.
711  */
712 void dce110_edp_wait_for_hpd_ready(
713 		struct dc_link *link,
714 		bool power_up)
715 {
716 	struct dc_context *ctx = link->ctx;
717 	struct graphics_object_id connector = link->link_enc->connector;
718 	struct gpio *hpd;
719 	bool edp_hpd_high = false;
720 	uint32_t time_elapsed = 0;
721 	uint32_t timeout = power_up ?
722 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
723 
724 	if (dal_graphics_object_id_get_connector_id(connector)
725 			!= CONNECTOR_ID_EDP) {
726 		BREAK_TO_DEBUGGER();
727 		return;
728 	}
729 
730 	if (!power_up)
731 		/*
732 		 * From KV, we will not HPD low after turning off VCC -
733 		 * instead, we will check the SW timer in power_up().
734 		 */
735 		return;
736 
737 	/*
738 	 * When we power on/off the eDP panel,
739 	 * we need to wait until SENSE bit is high/low.
740 	 */
741 
742 	/* obtain HPD */
743 	/* TODO what to do with this? */
744 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
745 
746 	if (!hpd) {
747 		BREAK_TO_DEBUGGER();
748 		return;
749 	}
750 
751 	if (link != NULL) {
752 		if (link->panel_config.pps.extra_t3_ms > 0) {
753 			int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
754 
755 			msleep(extra_t3_in_ms);
756 		}
757 	}
758 
759 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
760 
761 	/* wait until timeout or panel detected */
762 
763 	do {
764 		uint32_t detected = 0;
765 
766 		dal_gpio_get_value(hpd, &detected);
767 
768 		if (!(detected ^ power_up)) {
769 			edp_hpd_high = true;
770 			break;
771 		}
772 
773 		msleep(HPD_CHECK_INTERVAL);
774 
775 		time_elapsed += HPD_CHECK_INTERVAL;
776 	} while (time_elapsed < timeout);
777 
778 	dal_gpio_close(hpd);
779 
780 	dal_gpio_destroy_irq(&hpd);
781 
782 	/* ensure that the panel is detected */
783 	if (!edp_hpd_high)
784 		DC_LOG_DC("%s: wait timed out!\n", __func__);
785 }
786 
787 void dce110_edp_power_control(
788 		struct dc_link *link,
789 		bool power_up)
790 {
791 	struct dc_context *ctx = link->ctx;
792 	struct bp_transmitter_control cntl = { 0 };
793 	enum bp_result bp_result;
794 	uint8_t pwrseq_instance;
795 
796 
797 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
798 			!= CONNECTOR_ID_EDP) {
799 		BREAK_TO_DEBUGGER();
800 		return;
801 	}
802 
803 	if (!link->panel_cntl)
804 		return;
805 	if (power_up !=
806 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
807 
808 		unsigned long long current_ts = dm_get_timestamp(ctx);
809 		unsigned long long time_since_edp_poweroff_ms =
810 				div64_u64(dm_get_elapse_time_in_ns(
811 						ctx,
812 						current_ts,
813 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
814 		unsigned long long time_since_edp_poweron_ms =
815 				div64_u64(dm_get_elapse_time_in_ns(
816 						ctx,
817 						current_ts,
818 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
819 		DC_LOG_HW_RESUME_S3(
820 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
821 				__func__,
822 				power_up,
823 				current_ts,
824 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
825 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
826 				time_since_edp_poweroff_ms,
827 				time_since_edp_poweron_ms);
828 
829 		/* Send VBIOS command to prompt eDP panel power */
830 		if (power_up) {
831 			/* edp requires a min of 500ms from LCDVDD off to on */
832 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
833 
834 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
835 			if (link->local_sink != NULL)
836 				remaining_min_edp_poweroff_time_ms +=
837 					link->panel_config.pps.extra_t12_ms;
838 
839 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
840 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
841 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
842 					remaining_min_edp_poweroff_time_ms =
843 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
844 				else
845 					remaining_min_edp_poweroff_time_ms = 0;
846 			}
847 
848 			if (remaining_min_edp_poweroff_time_ms) {
849 				DC_LOG_HW_RESUME_S3(
850 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
851 						__func__, remaining_min_edp_poweroff_time_ms);
852 				msleep(remaining_min_edp_poweroff_time_ms);
853 				DC_LOG_HW_RESUME_S3(
854 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
855 						__func__, remaining_min_edp_poweroff_time_ms);
856 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
857 						__func__, remaining_min_edp_poweroff_time_ms);
858 			} else {
859 				DC_LOG_HW_RESUME_S3(
860 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
861 						__func__, remaining_min_edp_poweroff_time_ms);
862 			}
863 		}
864 
865 		DC_LOG_HW_RESUME_S3(
866 				"%s: BEGIN: Panel Power action: %s\n",
867 				__func__, (power_up ? "On":"Off"));
868 
869 		cntl.action = power_up ?
870 			TRANSMITTER_CONTROL_POWER_ON :
871 			TRANSMITTER_CONTROL_POWER_OFF;
872 		cntl.transmitter = link->link_enc->transmitter;
873 		cntl.connector_obj_id = link->link_enc->connector;
874 		cntl.coherent = false;
875 		cntl.lanes_number = LANE_COUNT_FOUR;
876 		cntl.hpd_sel = link->link_enc->hpd_source;
877 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
878 
879 		if (ctx->dc->ctx->dmub_srv &&
880 				ctx->dc->debug.dmub_command_table) {
881 
882 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
883 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
884 						LVTMA_CONTROL_POWER_ON,
885 						pwrseq_instance, link->link_powered_externally);
886 			} else {
887 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
888 						LVTMA_CONTROL_POWER_OFF,
889 						pwrseq_instance, link->link_powered_externally);
890 			}
891 		}
892 
893 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
894 
895 		DC_LOG_HW_RESUME_S3(
896 				"%s: END: Panel Power action: %s bp_result=%u\n",
897 				__func__, (power_up ? "On":"Off"),
898 				bp_result);
899 
900 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
901 
902 		DC_LOG_HW_RESUME_S3(
903 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
904 				__func__,
905 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
906 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
907 
908 		if (bp_result != BP_RESULT_OK)
909 			DC_LOG_ERROR(
910 					"%s: Panel Power bp_result: %d\n",
911 					__func__, bp_result);
912 	} else {
913 		DC_LOG_HW_RESUME_S3(
914 				"%s: Skipping Panel Power action: %s\n",
915 				__func__, (power_up ? "On":"Off"));
916 	}
917 }
918 
919 void dce110_edp_wait_for_T12(
920 		struct dc_link *link)
921 {
922 	struct dc_context *ctx = link->ctx;
923 
924 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
925 			!= CONNECTOR_ID_EDP) {
926 		BREAK_TO_DEBUGGER();
927 		return;
928 	}
929 
930 	if (!link->panel_cntl)
931 		return;
932 
933 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
934 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
935 		unsigned int t12_duration = 500; // Default T12 as per spec
936 		unsigned long long current_ts = dm_get_timestamp(ctx);
937 		unsigned long long time_since_edp_poweroff_ms =
938 				div64_u64(dm_get_elapse_time_in_ns(
939 						ctx,
940 						current_ts,
941 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
942 
943 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
944 
945 		if (time_since_edp_poweroff_ms < t12_duration)
946 			msleep(t12_duration - time_since_edp_poweroff_ms);
947 	}
948 }
949 /*todo: cloned in stream enc, fix*/
950 /*
951  * @brief
952  * eDP only. Control the backlight of the eDP panel
953  */
954 void dce110_edp_backlight_control(
955 		struct dc_link *link,
956 		bool enable)
957 {
958 	struct dc_context *ctx = link->ctx;
959 	struct bp_transmitter_control cntl = { 0 };
960 	uint8_t pwrseq_instance;
961 	unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
962 	unsigned int post_T7_delay = OLED_POST_T7_DELAY;
963 
964 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
965 		!= CONNECTOR_ID_EDP) {
966 		BREAK_TO_DEBUGGER();
967 		return;
968 	}
969 
970 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
971 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
972 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
973 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
974 
975 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
976 			DC_LOG_HW_RESUME_S3(
977 				"%s: panel already powered up/off. Do nothing.\n",
978 				__func__);
979 			return;
980 		}
981 	}
982 
983 	/* Send VBIOS command to control eDP panel backlight */
984 
985 	DC_LOG_HW_RESUME_S3(
986 			"%s: backlight action: %s\n",
987 			__func__, (enable ? "On":"Off"));
988 
989 	cntl.action = enable ?
990 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
991 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
992 
993 	/*cntl.engine_id = ctx->engine;*/
994 	cntl.transmitter = link->link_enc->transmitter;
995 	cntl.connector_obj_id = link->link_enc->connector;
996 	/*todo: unhardcode*/
997 	cntl.lanes_number = LANE_COUNT_FOUR;
998 	cntl.hpd_sel = link->link_enc->hpd_source;
999 	cntl.signal = SIGNAL_TYPE_EDP;
1000 
1001 	/* For eDP, the following delays might need to be considered
1002 	 * after link training completed:
1003 	 * idle period - min. accounts for required BS-Idle pattern,
1004 	 * max. allows for source frame synchronization);
1005 	 * 50 msec max. delay from valid video data from source
1006 	 * to video on dislpay or backlight enable.
1007 	 *
1008 	 * Disable the delay for now.
1009 	 * Enable it in the future if necessary.
1010 	 */
1011 	/* dc_service_sleep_in_milliseconds(50); */
1012 		/*edp 1.2*/
1013 	pwrseq_instance = link->panel_cntl->pwrseq_inst;
1014 
1015 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1016 		if (!link->dc->config.edp_no_power_sequencing)
1017 		/*
1018 		 * Sometimes, DP receiver chip power-controlled externally by an
1019 		 * Embedded Controller could be treated and used as eDP,
1020 		 * if it drives mobile display. In this case,
1021 		 * we shouldn't be doing power-sequencing, hence we can skip
1022 		 * waiting for T7-ready.
1023 		 */
1024 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1025 		else
1026 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1027 	}
1028 
1029 	/* Setting link_powered_externally will bypass delays in the backlight
1030 	 * as they are not required if the link is being powered by a different
1031 	 * source.
1032 	 */
1033 	if (ctx->dc->ctx->dmub_srv &&
1034 			ctx->dc->debug.dmub_command_table) {
1035 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1036 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1037 					LVTMA_CONTROL_LCD_BLON,
1038 					pwrseq_instance, link->link_powered_externally);
1039 		else
1040 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1041 					LVTMA_CONTROL_LCD_BLOFF,
1042 					pwrseq_instance, link->link_powered_externally);
1043 	}
1044 
1045 	link_transmitter_control(ctx->dc_bios, &cntl);
1046 
1047 	if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1048 	    !link->dc->config.edp_no_power_sequencing) {
1049 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1050 		msleep(post_T7_delay);
1051 	}
1052 
1053 	if (link->dpcd_sink_ext_caps.bits.oled ||
1054 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1055 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1056 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1057 
1058 	/*edp 1.2*/
1059 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1060 		if (!link->dc->config.edp_no_power_sequencing)
1061 		/*
1062 		 * Sometimes, DP receiver chip power-controlled externally by an
1063 		 * Embedded Controller could be treated and used as eDP,
1064 		 * if it drives mobile display. In this case,
1065 		 * we shouldn't be doing power-sequencing, hence we can skip
1066 		 * waiting for T9-ready.
1067 		 */
1068 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1069 		else
1070 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1071 	}
1072 
1073 	if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1074 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1075 		msleep(pre_T11_delay);
1076 	}
1077 }
1078 
1079 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1080 {
1081 	/* notify audio driver for audio modes of monitor */
1082 	struct dc *dc;
1083 	struct clk_mgr *clk_mgr;
1084 	unsigned int i, num_audio = 1;
1085 	const struct link_hwss *link_hwss;
1086 
1087 	if (!pipe_ctx->stream)
1088 		return;
1089 
1090 	dc = pipe_ctx->stream->ctx->dc;
1091 	clk_mgr = dc->clk_mgr;
1092 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1093 
1094 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1095 		return;
1096 
1097 	if (pipe_ctx->stream_res.audio) {
1098 		for (i = 0; i < MAX_PIPES; i++) {
1099 			/*current_state not updated yet*/
1100 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1101 				num_audio++;
1102 		}
1103 
1104 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1105 
1106 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1107 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1108 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1109 
1110 		link_hwss->enable_audio_packet(pipe_ctx);
1111 
1112 		if (pipe_ctx->stream_res.audio)
1113 			pipe_ctx->stream_res.audio->enabled = true;
1114 	}
1115 }
1116 
1117 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1118 {
1119 	struct dc *dc;
1120 	struct clk_mgr *clk_mgr;
1121 	const struct link_hwss *link_hwss;
1122 
1123 	if (!pipe_ctx || !pipe_ctx->stream)
1124 		return;
1125 
1126 	dc = pipe_ctx->stream->ctx->dc;
1127 	clk_mgr = dc->clk_mgr;
1128 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1129 
1130 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1131 		return;
1132 
1133 	link_hwss->disable_audio_packet(pipe_ctx);
1134 
1135 	if (pipe_ctx->stream_res.audio) {
1136 		pipe_ctx->stream_res.audio->enabled = false;
1137 
1138 		if (clk_mgr->funcs->enable_pme_wa)
1139 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1140 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1141 
1142 		/* TODO: notify audio driver for if audio modes list changed
1143 		 * add audio mode list change flag */
1144 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1145 		 * stream->stream_engine_id);
1146 		 */
1147 	}
1148 }
1149 
1150 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1151 {
1152 	struct dc_stream_state *stream = pipe_ctx->stream;
1153 	struct dc_link *link = stream->link;
1154 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1155 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1156 	struct dccg *dccg = dc->res_pool->dccg;
1157 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1158 	struct dtbclk_dto_params dto_params = {0};
1159 	int dp_hpo_inst;
1160 	struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1161 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1162 
1163 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1164 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1165 			pipe_ctx->stream_res.stream_enc);
1166 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1167 			pipe_ctx->stream_res.stream_enc);
1168 	}
1169 
1170 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1171 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1172 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1173 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1174 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1175 			pipe_ctx->stream_res.stream_enc);
1176 
1177 	dc->hwss.disable_audio_stream(pipe_ctx);
1178 
1179 	link_hwss->reset_stream_encoder(pipe_ctx);
1180 
1181 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1182 		dto_params.otg_inst = tg->inst;
1183 		dto_params.timing = &pipe_ctx->stream->timing;
1184 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1185 		if (dccg) {
1186 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1187 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1188 			dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1189 		}
1190 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1191 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1192 					       link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1193 	}
1194 
1195 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1196 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1197 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1198 		 * HW control only when HPOs for all streams are disabled?
1199 		 */
1200 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1201 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1202 					pipe_ctx->stream->ctx->dc->hwseq, false);
1203 	}
1204 }
1205 
1206 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1207 		struct dc_link_settings *link_settings)
1208 {
1209 	struct encoder_unblank_param params = { { 0 } };
1210 	struct dc_stream_state *stream = pipe_ctx->stream;
1211 	struct dc_link *link = stream->link;
1212 	struct dce_hwseq *hws = link->dc->hwseq;
1213 
1214 	/* only 3 items below are used by unblank */
1215 	params.timing = pipe_ctx->stream->timing;
1216 	params.link_settings.link_rate = link_settings->link_rate;
1217 
1218 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1219 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1220 
1221 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1222 		hws->funcs.edp_backlight_control(link, true);
1223 	}
1224 }
1225 
1226 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1227 {
1228 	struct dc_stream_state *stream = pipe_ctx->stream;
1229 	struct dc_link *link = stream->link;
1230 	struct dce_hwseq *hws = link->dc->hwseq;
1231 
1232 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1233 		if (!link->skip_implict_edp_power_control)
1234 			hws->funcs.edp_backlight_control(link, false);
1235 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1236 	}
1237 
1238 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1239 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1240 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1241 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1242 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1243 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1244 
1245 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1246 			/*
1247 			 * After output is idle pattern some sinks need time to recognize the stream
1248 			 * has changed or they enter protection state and hang.
1249 			 */
1250 			msleep(60);
1251 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1252 			if (!link->dc->config.edp_no_power_sequencing) {
1253 				/*
1254 				 * Sometimes, DP receiver chip power-controlled externally by an
1255 				 * Embedded Controller could be treated and used as eDP,
1256 				 * if it drives mobile display. In this case,
1257 				 * we shouldn't be doing power-sequencing, hence we can skip
1258 				 * waiting for T9-ready.
1259 				 */
1260 				link->dc->link_srv->edp_receiver_ready_T9(link);
1261 			}
1262 		}
1263 	}
1264 
1265 }
1266 
1267 
1268 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1269 {
1270 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1271 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1272 }
1273 
1274 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1275 {
1276 	switch (crtc_id) {
1277 	case CONTROLLER_ID_D0:
1278 		return DTO_SOURCE_ID0;
1279 	case CONTROLLER_ID_D1:
1280 		return DTO_SOURCE_ID1;
1281 	case CONTROLLER_ID_D2:
1282 		return DTO_SOURCE_ID2;
1283 	case CONTROLLER_ID_D3:
1284 		return DTO_SOURCE_ID3;
1285 	case CONTROLLER_ID_D4:
1286 		return DTO_SOURCE_ID4;
1287 	case CONTROLLER_ID_D5:
1288 		return DTO_SOURCE_ID5;
1289 	default:
1290 		return DTO_SOURCE_UNKNOWN;
1291 	}
1292 }
1293 
1294 static void build_audio_output(
1295 	struct dc_state *state,
1296 	const struct pipe_ctx *pipe_ctx,
1297 	struct audio_output *audio_output)
1298 {
1299 	const struct dc_stream_state *stream = pipe_ctx->stream;
1300 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1301 
1302 	audio_output->signal = pipe_ctx->stream->signal;
1303 
1304 	/* audio_crtc_info  */
1305 
1306 	audio_output->crtc_info.h_total =
1307 		stream->timing.h_total;
1308 
1309 	/*
1310 	 * Audio packets are sent during actual CRTC blank physical signal, we
1311 	 * need to specify actual active signal portion
1312 	 */
1313 	audio_output->crtc_info.h_active =
1314 			stream->timing.h_addressable
1315 			+ stream->timing.h_border_left
1316 			+ stream->timing.h_border_right;
1317 
1318 	audio_output->crtc_info.v_active =
1319 			stream->timing.v_addressable
1320 			+ stream->timing.v_border_top
1321 			+ stream->timing.v_border_bottom;
1322 
1323 	audio_output->crtc_info.pixel_repetition = 1;
1324 
1325 	audio_output->crtc_info.interlaced =
1326 			stream->timing.flags.INTERLACE;
1327 
1328 	audio_output->crtc_info.refresh_rate =
1329 		(stream->timing.pix_clk_100hz*100)/
1330 		(stream->timing.h_total*stream->timing.v_total);
1331 
1332 	audio_output->crtc_info.color_depth =
1333 		stream->timing.display_color_depth;
1334 
1335 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1336 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337 
1338 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1339 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1340 
1341 /*for HDMI, audio ACR is with deep color ratio factor*/
1342 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1343 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1344 				(stream->timing.pix_clk_100hz)) {
1345 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1346 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1347 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1348 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1349 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1350 
1351 		}
1352 	}
1353 
1354 	if (state->clk_mgr &&
1355 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1356 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1357 		audio_output->pll_info.audio_dto_source_clock_in_khz =
1358 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1359 						state->clk_mgr);
1360 	}
1361 
1362 	audio_output->pll_info.feed_back_divider =
1363 			pipe_ctx->pll_settings.feedback_divider;
1364 
1365 	audio_output->pll_info.dto_source =
1366 		translate_to_dto_source(
1367 			pipe_ctx->stream_res.tg->inst + 1);
1368 
1369 	/* TODO hard code to enable for now. Need get from stream */
1370 	audio_output->pll_info.ss_enabled = true;
1371 
1372 	audio_output->pll_info.ss_percentage =
1373 			pipe_ctx->pll_settings.ss_percentage;
1374 }
1375 
1376 static void program_scaler(const struct dc *dc,
1377 		const struct pipe_ctx *pipe_ctx)
1378 {
1379 	struct tg_color color = {0};
1380 
1381 	/* TOFPGA */
1382 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1383 		return;
1384 
1385 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1386 		get_surface_visual_confirm_color(pipe_ctx, &color);
1387 	else
1388 		color_space_to_black_color(dc,
1389 				pipe_ctx->stream->output_color_space,
1390 				&color);
1391 
1392 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1393 		pipe_ctx->plane_res.xfm,
1394 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1395 		&pipe_ctx->stream->bit_depth_params);
1396 
1397 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1398 		/*
1399 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1400 		 * alternate between Cb and Cr, so both channels need the pixel
1401 		 * value for Y
1402 		 */
1403 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1404 			color.color_r_cr = color.color_g_y;
1405 
1406 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1407 				pipe_ctx->stream_res.tg,
1408 				&color);
1409 	}
1410 
1411 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1412 		&pipe_ctx->plane_res.scl_data);
1413 }
1414 
1415 static enum dc_status dce110_enable_stream_timing(
1416 		struct pipe_ctx *pipe_ctx,
1417 		struct dc_state *context,
1418 		struct dc *dc)
1419 {
1420 	struct dc_stream_state *stream = pipe_ctx->stream;
1421 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1422 			pipe_ctx[pipe_ctx->pipe_idx];
1423 	struct tg_color black_color = {0};
1424 
1425 	if (!pipe_ctx_old->stream) {
1426 
1427 		/* program blank color */
1428 		color_space_to_black_color(dc,
1429 				stream->output_color_space, &black_color);
1430 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1431 				pipe_ctx->stream_res.tg,
1432 				&black_color);
1433 
1434 		/*
1435 		 * Must blank CRTC after disabling power gating and before any
1436 		 * programming, otherwise CRTC will be hung in bad state
1437 		 */
1438 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1439 
1440 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1441 				pipe_ctx->clock_source,
1442 				&pipe_ctx->stream_res.pix_clk_params,
1443 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1444 				&pipe_ctx->pll_settings)) {
1445 			BREAK_TO_DEBUGGER();
1446 			return DC_ERROR_UNEXPECTED;
1447 		}
1448 
1449 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1450 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1451 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1452 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1453 			else
1454 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1455 		}
1456 
1457 		pipe_ctx->stream_res.tg->funcs->program_timing(
1458 				pipe_ctx->stream_res.tg,
1459 				&stream->timing,
1460 				0,
1461 				0,
1462 				0,
1463 				0,
1464 				pipe_ctx->stream->signal,
1465 				true);
1466 	}
1467 
1468 	if (!pipe_ctx_old->stream) {
1469 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1470 				pipe_ctx->stream_res.tg)) {
1471 			BREAK_TO_DEBUGGER();
1472 			return DC_ERROR_UNEXPECTED;
1473 		}
1474 	}
1475 
1476 	return DC_OK;
1477 }
1478 
1479 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1480 		struct pipe_ctx *pipe_ctx,
1481 		struct dc_state *context,
1482 		struct dc *dc)
1483 {
1484 	struct dc_stream_state *stream = pipe_ctx->stream;
1485 	struct dc_link *link = stream->link;
1486 	struct drr_params params = {0};
1487 	unsigned int event_triggers = 0;
1488 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1489 	struct dce_hwseq *hws = dc->hwseq;
1490 	const struct link_hwss *link_hwss = get_link_hwss(
1491 			link, &pipe_ctx->link_res);
1492 
1493 
1494 	if (hws->funcs.disable_stream_gating) {
1495 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1496 	}
1497 
1498 	if (pipe_ctx->stream_res.audio != NULL) {
1499 		struct audio_output audio_output;
1500 
1501 		build_audio_output(context, pipe_ctx, &audio_output);
1502 
1503 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1504 				pipe_ctx->stream_res.audio->inst);
1505 
1506 		pipe_ctx->stream_res.audio->funcs->az_configure(
1507 				pipe_ctx->stream_res.audio,
1508 				pipe_ctx->stream->signal,
1509 				&audio_output.crtc_info,
1510 				&pipe_ctx->stream->audio_info);
1511 	}
1512 
1513 	/* make sure no pipes syncd to the pipe being enabled */
1514 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1515 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1516 
1517 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1518 		pipe_ctx->stream_res.opp,
1519 		&stream->bit_depth_params,
1520 		&stream->clamping);
1521 
1522 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1523 			pipe_ctx->stream_res.opp,
1524 			COLOR_SPACE_YCBCR601,
1525 			stream->timing.display_color_depth,
1526 			stream->signal);
1527 
1528 	while (odm_pipe) {
1529 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1530 				odm_pipe->stream_res.opp,
1531 				COLOR_SPACE_YCBCR601,
1532 				stream->timing.display_color_depth,
1533 				stream->signal);
1534 
1535 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1536 				odm_pipe->stream_res.opp,
1537 				&stream->bit_depth_params,
1538 				&stream->clamping);
1539 		odm_pipe = odm_pipe->next_odm_pipe;
1540 	}
1541 
1542 	/* DCN3.1 FPGA Workaround
1543 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1544 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1545 	 * function core_link_enable_stream
1546 	 */
1547 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1548 		/*  */
1549 		/* Do not touch stream timing on seamless boot optimization. */
1550 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1551 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1552 
1553 	if (hws->funcs.setup_vupdate_interrupt)
1554 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1555 
1556 	params.vertical_total_min = stream->adjust.v_total_min;
1557 	params.vertical_total_max = stream->adjust.v_total_max;
1558 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1559 		pipe_ctx->stream_res.tg->funcs->set_drr(
1560 			pipe_ctx->stream_res.tg, &params);
1561 
1562 	// DRR should set trigger event to monitor surface update event
1563 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1564 		event_triggers = 0x80;
1565 	/* Event triggers and num frames initialized for DRR, but can be
1566 	 * later updated for PSR use. Note DRR trigger events are generated
1567 	 * regardless of whether num frames met.
1568 	 */
1569 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1570 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1571 				pipe_ctx->stream_res.tg, event_triggers, 2);
1572 
1573 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1574 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1575 			pipe_ctx->stream_res.stream_enc,
1576 			pipe_ctx->stream_res.tg->inst);
1577 
1578 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1579 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1580 
1581 	if (!stream->dpms_off)
1582 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1583 
1584 	/* DCN3.1 FPGA Workaround
1585 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1586 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1587 	 * function core_link_enable_stream
1588 	 */
1589 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1590 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1591 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1592 	}
1593 
1594 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1595 
1596 	/* Phantom and main stream share the same link (because the stream
1597 	 * is constructed with the same sink). Make sure not to override
1598 	 * and link programming on the main.
1599 	 */
1600 	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1601 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1602 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1603 	}
1604 	return DC_OK;
1605 }
1606 
1607 /******************************************************************************/
1608 
1609 static void power_down_encoders(struct dc *dc)
1610 {
1611 	int i;
1612 
1613 	for (i = 0; i < dc->link_count; i++) {
1614 		enum signal_type signal = dc->links[i]->connector_signal;
1615 
1616 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1617 
1618 		if (signal != SIGNAL_TYPE_EDP)
1619 			signal = SIGNAL_TYPE_NONE;
1620 
1621 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1622 			dc->links[i]->link_enc->funcs->disable_output(
1623 					dc->links[i]->link_enc, signal);
1624 
1625 		dc->links[i]->link_status.link_active = false;
1626 		memset(&dc->links[i]->cur_link_settings, 0,
1627 				sizeof(dc->links[i]->cur_link_settings));
1628 	}
1629 }
1630 
1631 static void power_down_controllers(struct dc *dc)
1632 {
1633 	int i;
1634 
1635 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1636 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1637 				dc->res_pool->timing_generators[i]);
1638 	}
1639 }
1640 
1641 static void power_down_clock_sources(struct dc *dc)
1642 {
1643 	int i;
1644 
1645 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1646 		dc->res_pool->dp_clock_source) == false)
1647 		dm_error("Failed to power down pll! (dp clk src)\n");
1648 
1649 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1650 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1651 				dc->res_pool->clock_sources[i]) == false)
1652 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1653 	}
1654 }
1655 
1656 static void power_down_all_hw_blocks(struct dc *dc)
1657 {
1658 	power_down_encoders(dc);
1659 
1660 	power_down_controllers(dc);
1661 
1662 	power_down_clock_sources(dc);
1663 
1664 	if (dc->fbc_compressor)
1665 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1666 }
1667 
1668 static void disable_vga_and_power_gate_all_controllers(
1669 		struct dc *dc)
1670 {
1671 	int i;
1672 	struct timing_generator *tg;
1673 	struct dc_context *ctx = dc->ctx;
1674 
1675 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1676 		tg = dc->res_pool->timing_generators[i];
1677 
1678 		if (tg->funcs->disable_vga)
1679 			tg->funcs->disable_vga(tg);
1680 	}
1681 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1682 		/* Enable CLOCK gating for each pipe BEFORE controller
1683 		 * powergating. */
1684 		enable_display_pipe_clock_gating(ctx,
1685 				true);
1686 
1687 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1688 		dc->hwss.disable_plane(dc, dc->current_state,
1689 			&dc->current_state->res_ctx.pipe_ctx[i]);
1690 	}
1691 }
1692 
1693 
1694 static void get_edp_streams(struct dc_state *context,
1695 		struct dc_stream_state **edp_streams,
1696 		int *edp_stream_num)
1697 {
1698 	int i;
1699 
1700 	*edp_stream_num = 0;
1701 	for (i = 0; i < context->stream_count; i++) {
1702 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1703 			edp_streams[*edp_stream_num] = context->streams[i];
1704 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1705 				return;
1706 		}
1707 	}
1708 }
1709 
1710 static void get_edp_links_with_sink(
1711 		struct dc *dc,
1712 		struct dc_link **edp_links_with_sink,
1713 		int *edp_with_sink_num)
1714 {
1715 	int i;
1716 
1717 	/* check if there is an eDP panel not in use */
1718 	*edp_with_sink_num = 0;
1719 	for (i = 0; i < dc->link_count; i++) {
1720 		if (dc->links[i]->local_sink &&
1721 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1722 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1723 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1724 				return;
1725 		}
1726 	}
1727 }
1728 
1729 /*
1730  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1731  *  1. Power down all DC HW blocks
1732  *  2. Disable VGA engine on all controllers
1733  *  3. Enable power gating for controller
1734  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1735  */
1736 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1737 {
1738 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1739 	struct dc_link *edp_links[MAX_NUM_EDP];
1740 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1741 	struct dc_link *edp_link_with_sink = NULL;
1742 	struct dc_link *edp_link = NULL;
1743 	struct dce_hwseq *hws = dc->hwseq;
1744 	int edp_with_sink_num;
1745 	int edp_num;
1746 	int edp_stream_num;
1747 	int i;
1748 	bool can_apply_edp_fast_boot = false;
1749 	bool can_apply_seamless_boot = false;
1750 	bool keep_edp_vdd_on = false;
1751 	DC_LOGGER_INIT();
1752 
1753 
1754 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1755 	dc_get_edp_links(dc, edp_links, &edp_num);
1756 
1757 	if (hws->funcs.init_pipes)
1758 		hws->funcs.init_pipes(dc, context);
1759 
1760 	get_edp_streams(context, edp_streams, &edp_stream_num);
1761 
1762 	// Check fastboot support, disable on DCE8 because of blank screens
1763 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1764 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1765 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1766 		for (i = 0; i < edp_num; i++) {
1767 			edp_link = edp_links[i];
1768 			if (edp_link != edp_streams[0]->link)
1769 				continue;
1770 			// enable fastboot if backend is enabled on eDP
1771 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1772 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1773 			    edp_link->link_status.link_active) {
1774 				struct dc_stream_state *edp_stream = edp_streams[0];
1775 
1776 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1777 					edp_stream->sink, &edp_stream->timing);
1778 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1779 				if (can_apply_edp_fast_boot)
1780 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1781 
1782 				break;
1783 			}
1784 		}
1785 		// We are trying to enable eDP, don't power down VDD
1786 		if (can_apply_edp_fast_boot)
1787 			keep_edp_vdd_on = true;
1788 	}
1789 
1790 	// Check seamless boot support
1791 	for (i = 0; i < context->stream_count; i++) {
1792 		if (context->streams[i]->apply_seamless_boot_optimization) {
1793 			can_apply_seamless_boot = true;
1794 			break;
1795 		}
1796 	}
1797 
1798 	/* eDP should not have stream in resume from S4 and so even with VBios post
1799 	 * it should get turned off
1800 	 */
1801 	if (edp_with_sink_num)
1802 		edp_link_with_sink = edp_links_with_sink[0];
1803 
1804 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1805 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1806 			/*turn off backlight before DP_blank and encoder powered down*/
1807 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1808 		}
1809 		/*resume from S3, no vbios posting, no need to power down again*/
1810 		clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1811 
1812 		power_down_all_hw_blocks(dc);
1813 		disable_vga_and_power_gate_all_controllers(dc);
1814 		if (edp_link_with_sink && !keep_edp_vdd_on)
1815 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1816 		clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1817 	}
1818 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1819 }
1820 
1821 static uint32_t compute_pstate_blackout_duration(
1822 	struct bw_fixed blackout_duration,
1823 	const struct dc_stream_state *stream)
1824 {
1825 	uint32_t total_dest_line_time_ns;
1826 	uint32_t pstate_blackout_duration_ns;
1827 
1828 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1829 
1830 	total_dest_line_time_ns = 1000000UL *
1831 		(stream->timing.h_total * 10) /
1832 		stream->timing.pix_clk_100hz +
1833 		pstate_blackout_duration_ns;
1834 
1835 	return total_dest_line_time_ns;
1836 }
1837 
1838 static void dce110_set_displaymarks(
1839 	const struct dc *dc,
1840 	struct dc_state *context)
1841 {
1842 	uint8_t i, num_pipes;
1843 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1844 
1845 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1846 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1847 		uint32_t total_dest_line_time_ns;
1848 
1849 		if (pipe_ctx->stream == NULL)
1850 			continue;
1851 
1852 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1853 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1854 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1855 			pipe_ctx->plane_res.mi,
1856 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1857 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1858 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1859 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1860 			total_dest_line_time_ns);
1861 		if (i == underlay_idx) {
1862 			num_pipes++;
1863 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1864 				pipe_ctx->plane_res.mi,
1865 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1866 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1867 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1868 				total_dest_line_time_ns);
1869 		}
1870 		num_pipes++;
1871 	}
1872 }
1873 
1874 void dce110_set_safe_displaymarks(
1875 		struct resource_context *res_ctx,
1876 		const struct resource_pool *pool)
1877 {
1878 	int i;
1879 	int underlay_idx = pool->underlay_pipe_index;
1880 	struct dce_watermarks max_marks = {
1881 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1882 	struct dce_watermarks nbp_marks = {
1883 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1884 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1885 
1886 	for (i = 0; i < MAX_PIPES; i++) {
1887 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1888 			continue;
1889 
1890 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1891 				res_ctx->pipe_ctx[i].plane_res.mi,
1892 				nbp_marks,
1893 				max_marks,
1894 				min_marks,
1895 				max_marks,
1896 				MAX_WATERMARK);
1897 
1898 		if (i == underlay_idx)
1899 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1900 				res_ctx->pipe_ctx[i].plane_res.mi,
1901 				nbp_marks,
1902 				max_marks,
1903 				max_marks,
1904 				MAX_WATERMARK);
1905 
1906 	}
1907 }
1908 
1909 /*******************************************************************************
1910  * Public functions
1911  ******************************************************************************/
1912 
1913 static void set_drr(struct pipe_ctx **pipe_ctx,
1914 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1915 {
1916 	int i = 0;
1917 	struct drr_params params = {0};
1918 	// DRR should set trigger event to monitor surface update event
1919 	unsigned int event_triggers = 0x80;
1920 	// Note DRR trigger events are generated regardless of whether num frames met.
1921 	unsigned int num_frames = 2;
1922 
1923 	params.vertical_total_max = adjust.v_total_max;
1924 	params.vertical_total_min = adjust.v_total_min;
1925 
1926 	/* TODO: If multiple pipes are to be supported, you need
1927 	 * some GSL stuff. Static screen triggers may be programmed differently
1928 	 * as well.
1929 	 */
1930 	for (i = 0; i < num_pipes; i++) {
1931 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1932 			pipe_ctx[i]->stream_res.tg, &params);
1933 
1934 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1935 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1936 					pipe_ctx[i]->stream_res.tg,
1937 					event_triggers, num_frames);
1938 	}
1939 }
1940 
1941 static void get_position(struct pipe_ctx **pipe_ctx,
1942 		int num_pipes,
1943 		struct crtc_position *position)
1944 {
1945 	int i = 0;
1946 
1947 	/* TODO: handle pipes > 1
1948 	 */
1949 	for (i = 0; i < num_pipes; i++)
1950 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1951 }
1952 
1953 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1954 		int num_pipes, const struct dc_static_screen_params *params)
1955 {
1956 	unsigned int i;
1957 	unsigned int triggers = 0;
1958 
1959 	if (params->triggers.overlay_update)
1960 		triggers |= 0x100;
1961 	if (params->triggers.surface_update)
1962 		triggers |= 0x80;
1963 	if (params->triggers.cursor_update)
1964 		triggers |= 0x2;
1965 	if (params->triggers.force_trigger)
1966 		triggers |= 0x1;
1967 
1968 	if (num_pipes) {
1969 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1970 
1971 		if (dc->fbc_compressor)
1972 			triggers |= 0x84;
1973 	}
1974 
1975 	for (i = 0; i < num_pipes; i++)
1976 		pipe_ctx[i]->stream_res.tg->funcs->
1977 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1978 					triggers, params->num_frames);
1979 }
1980 
1981 /*
1982  *  Check if FBC can be enabled
1983  */
1984 static bool should_enable_fbc(struct dc *dc,
1985 		struct dc_state *context,
1986 		uint32_t *pipe_idx)
1987 {
1988 	uint32_t i;
1989 	struct pipe_ctx *pipe_ctx = NULL;
1990 	struct resource_context *res_ctx = &context->res_ctx;
1991 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1992 
1993 
1994 	ASSERT(dc->fbc_compressor);
1995 
1996 	/* FBC memory should be allocated */
1997 	if (!dc->ctx->fbc_gpu_addr)
1998 		return false;
1999 
2000 	/* Only supports single display */
2001 	if (context->stream_count != 1)
2002 		return false;
2003 
2004 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2005 		if (res_ctx->pipe_ctx[i].stream) {
2006 
2007 			pipe_ctx = &res_ctx->pipe_ctx[i];
2008 
2009 			/* fbc not applicable on underlay pipe */
2010 			if (pipe_ctx->pipe_idx != underlay_idx) {
2011 				*pipe_idx = i;
2012 				break;
2013 			}
2014 		}
2015 	}
2016 
2017 	if (i == dc->res_pool->pipe_count)
2018 		return false;
2019 
2020 	if (!pipe_ctx->stream->link)
2021 		return false;
2022 
2023 	/* Only supports eDP */
2024 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2025 		return false;
2026 
2027 	/* PSR should not be enabled */
2028 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2029 		return false;
2030 
2031 	/* Replay should not be enabled */
2032 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2033 		return false;
2034 
2035 	/* Nothing to compress */
2036 	if (!pipe_ctx->plane_state)
2037 		return false;
2038 
2039 	/* Only for non-linear tiling */
2040 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 /*
2047  *  Enable FBC
2048  */
2049 static void enable_fbc(
2050 		struct dc *dc,
2051 		struct dc_state *context)
2052 {
2053 	uint32_t pipe_idx = 0;
2054 
2055 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2056 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2057 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2058 		struct compressor *compr = dc->fbc_compressor;
2059 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2060 
2061 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2062 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2063 		params.inst = pipe_ctx->stream_res.tg->inst;
2064 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2065 
2066 		compr->funcs->surface_address_and_pitch(compr, &params);
2067 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2068 
2069 		compr->funcs->enable_fbc(compr, &params);
2070 	}
2071 }
2072 
2073 static void dce110_reset_hw_ctx_wrap(
2074 		struct dc *dc,
2075 		struct dc_state *context)
2076 {
2077 	int i;
2078 
2079 	/* Reset old context */
2080 	/* look up the targets that have been removed since last commit */
2081 	for (i = 0; i < MAX_PIPES; i++) {
2082 		struct pipe_ctx *pipe_ctx_old =
2083 			&dc->current_state->res_ctx.pipe_ctx[i];
2084 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2085 
2086 		/* Note: We need to disable output if clock sources change,
2087 		 * since bios does optimization and doesn't apply if changing
2088 		 * PHY when not already disabled.
2089 		 */
2090 
2091 		/* Skip underlay pipe since it will be handled in commit surface*/
2092 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2093 			continue;
2094 
2095 		if (!pipe_ctx->stream ||
2096 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2097 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2098 
2099 			/* Disable if new stream is null. O/w, if stream is
2100 			 * disabled already, no need to disable again.
2101 			 */
2102 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2103 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2104 
2105 				/* free acquired resources*/
2106 				if (pipe_ctx_old->stream_res.audio) {
2107 					/*disable az_endpoint*/
2108 					pipe_ctx_old->stream_res.audio->funcs->
2109 							az_disable(pipe_ctx_old->stream_res.audio);
2110 
2111 					/*free audio*/
2112 					if (dc->caps.dynamic_audio == true) {
2113 						/*we have to dynamic arbitrate the audio endpoints*/
2114 						/*we free the resource, need reset is_audio_acquired*/
2115 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2116 								pipe_ctx_old->stream_res.audio, false);
2117 						pipe_ctx_old->stream_res.audio = NULL;
2118 					}
2119 				}
2120 			}
2121 
2122 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2123 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2124 				dm_error("DC: failed to blank crtc!\n");
2125 				BREAK_TO_DEBUGGER();
2126 			}
2127 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2128 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2129 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2130 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2131 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2132 
2133 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2134 										dc->res_pool,
2135 										old_clk))
2136 				old_clk->funcs->cs_power_down(old_clk);
2137 
2138 			dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2139 
2140 			pipe_ctx_old->stream = NULL;
2141 		}
2142 	}
2143 }
2144 
2145 static void dce110_setup_audio_dto(
2146 		struct dc *dc,
2147 		struct dc_state *context)
2148 {
2149 	int i;
2150 
2151 	/* program audio wall clock. use HDMI as clock source if HDMI
2152 	 * audio active. Otherwise, use DP as clock source
2153 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2154 	 */
2155 	/* Setup audio rate clock source */
2156 	/* Issue:
2157 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2158 	*
2159 	* Cause:
2160 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2161 	* is set to either dto0 or dto1, audio should work fine.
2162 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2163 	* set to dto0 will cause audio lag.
2164 	*
2165 	* Solution:
2166 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2167 	* find first available pipe with audio, setup audio wall DTO per topology
2168 	* instead of per pipe.
2169 	*/
2170 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2171 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2172 
2173 		if (pipe_ctx->stream == NULL)
2174 			continue;
2175 
2176 		if (pipe_ctx->top_pipe)
2177 			continue;
2178 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2179 			continue;
2180 		if (pipe_ctx->stream_res.audio != NULL) {
2181 			struct audio_output audio_output;
2182 
2183 			build_audio_output(context, pipe_ctx, &audio_output);
2184 
2185 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2186 				struct dtbclk_dto_params dto_params = {0};
2187 
2188 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2189 					dc->res_pool->dccg, &dto_params);
2190 
2191 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2192 						pipe_ctx->stream_res.audio,
2193 						pipe_ctx->stream->signal,
2194 						&audio_output.crtc_info,
2195 						&audio_output.pll_info);
2196 			} else
2197 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2198 					pipe_ctx->stream_res.audio,
2199 					pipe_ctx->stream->signal,
2200 					&audio_output.crtc_info,
2201 					&audio_output.pll_info);
2202 			break;
2203 		}
2204 	}
2205 
2206 	/* no HDMI audio is found, try DP audio */
2207 	if (i == dc->res_pool->pipe_count) {
2208 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2209 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2210 
2211 			if (pipe_ctx->stream == NULL)
2212 				continue;
2213 
2214 			if (pipe_ctx->top_pipe)
2215 				continue;
2216 
2217 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2218 				continue;
2219 
2220 			if (pipe_ctx->stream_res.audio != NULL) {
2221 				struct audio_output audio_output;
2222 
2223 				build_audio_output(context, pipe_ctx, &audio_output);
2224 
2225 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2226 					pipe_ctx->stream_res.audio,
2227 					pipe_ctx->stream->signal,
2228 					&audio_output.crtc_info,
2229 					&audio_output.pll_info);
2230 				break;
2231 			}
2232 		}
2233 	}
2234 }
2235 
2236 enum dc_status dce110_apply_ctx_to_hw(
2237 		struct dc *dc,
2238 		struct dc_state *context)
2239 {
2240 	struct dce_hwseq *hws = dc->hwseq;
2241 	struct dc_bios *dcb = dc->ctx->dc_bios;
2242 	enum dc_status status;
2243 	int i;
2244 
2245 	/* reset syncd pipes from disabled pipes */
2246 	if (dc->config.use_pipe_ctx_sync_logic)
2247 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2248 
2249 	/* Reset old context */
2250 	/* look up the targets that have been removed since last commit */
2251 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2252 
2253 	/* Skip applying if no targets */
2254 	if (context->stream_count <= 0)
2255 		return DC_OK;
2256 
2257 	/* Apply new context */
2258 	dcb->funcs->set_scratch_critical_state(dcb, true);
2259 
2260 	/* below is for real asic only */
2261 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2262 		struct pipe_ctx *pipe_ctx_old =
2263 					&dc->current_state->res_ctx.pipe_ctx[i];
2264 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2265 
2266 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2267 			continue;
2268 
2269 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2270 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2271 				dce_crtc_switch_to_clk_src(dc->hwseq,
2272 						pipe_ctx->clock_source, i);
2273 			continue;
2274 		}
2275 
2276 		hws->funcs.enable_display_power_gating(
2277 				dc, i, dc->ctx->dc_bios,
2278 				PIPE_GATING_CONTROL_DISABLE);
2279 	}
2280 
2281 	if (dc->fbc_compressor)
2282 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2283 
2284 	dce110_setup_audio_dto(dc, context);
2285 
2286 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2287 		struct pipe_ctx *pipe_ctx_old =
2288 					&dc->current_state->res_ctx.pipe_ctx[i];
2289 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2290 
2291 		if (pipe_ctx->stream == NULL)
2292 			continue;
2293 
2294 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2295 			pipe_ctx->stream->link->link_state_valid) {
2296 			continue;
2297 		}
2298 
2299 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2300 			continue;
2301 
2302 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2303 			continue;
2304 
2305 		status = dce110_apply_single_controller_ctx_to_hw(
2306 				pipe_ctx,
2307 				context,
2308 				dc);
2309 
2310 		if (DC_OK != status)
2311 			return status;
2312 
2313 #ifdef CONFIG_DRM_AMD_DC_FP
2314 		if (hws->funcs.resync_fifo_dccg_dio)
2315 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2316 #endif
2317 	}
2318 
2319 	if (dc->fbc_compressor)
2320 		enable_fbc(dc, dc->current_state);
2321 
2322 	dcb->funcs->set_scratch_critical_state(dcb, false);
2323 
2324 	return DC_OK;
2325 }
2326 
2327 /*******************************************************************************
2328  * Front End programming
2329  ******************************************************************************/
2330 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2331 {
2332 	struct default_adjustment default_adjust = { 0 };
2333 
2334 	default_adjust.force_hw_default = false;
2335 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2336 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2337 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2338 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2339 
2340 	/* display color depth */
2341 	default_adjust.color_depth =
2342 		pipe_ctx->stream->timing.display_color_depth;
2343 
2344 	/* Lb color depth */
2345 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2346 
2347 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2348 					pipe_ctx->plane_res.xfm, &default_adjust);
2349 }
2350 
2351 
2352 /*******************************************************************************
2353  * In order to turn on/off specific surface we will program
2354  * Blender + CRTC
2355  *
2356  * In case that we have two surfaces and they have a different visibility
2357  * we can't turn off the CRTC since it will turn off the entire display
2358  *
2359  * |----------------------------------------------- |
2360  * |bottom pipe|curr pipe  |              |         |
2361  * |Surface    |Surface    | Blender      |  CRCT   |
2362  * |visibility |visibility | Configuration|         |
2363  * |------------------------------------------------|
2364  * |   off     |    off    | CURRENT_PIPE | blank   |
2365  * |   off     |    on     | CURRENT_PIPE | unblank |
2366  * |   on      |    off    | OTHER_PIPE   | unblank |
2367  * |   on      |    on     | BLENDING     | unblank |
2368  * -------------------------------------------------|
2369  *
2370  ******************************************************************************/
2371 static void program_surface_visibility(const struct dc *dc,
2372 		struct pipe_ctx *pipe_ctx)
2373 {
2374 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2375 	bool blank_target = false;
2376 
2377 	if (pipe_ctx->bottom_pipe) {
2378 
2379 		/* For now we are supporting only two pipes */
2380 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2381 
2382 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2383 			if (pipe_ctx->plane_state->visible)
2384 				blender_mode = BLND_MODE_BLENDING;
2385 			else
2386 				blender_mode = BLND_MODE_OTHER_PIPE;
2387 
2388 		} else if (!pipe_ctx->plane_state->visible)
2389 			blank_target = true;
2390 
2391 	} else if (!pipe_ctx->plane_state->visible)
2392 		blank_target = true;
2393 
2394 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2395 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2396 
2397 }
2398 
2399 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2400 {
2401 	int i = 0;
2402 	struct xfm_grph_csc_adjustment adjust;
2403 	memset(&adjust, 0, sizeof(adjust));
2404 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2405 
2406 
2407 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2408 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2409 
2410 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2411 			adjust.temperature_matrix[i] =
2412 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2413 	}
2414 
2415 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2416 }
2417 static void update_plane_addr(const struct dc *dc,
2418 		struct pipe_ctx *pipe_ctx)
2419 {
2420 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2421 
2422 	if (plane_state == NULL)
2423 		return;
2424 
2425 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2426 			pipe_ctx->plane_res.mi,
2427 			&plane_state->address,
2428 			plane_state->flip_immediate);
2429 
2430 	plane_state->status.requested_address = plane_state->address;
2431 }
2432 
2433 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2434 {
2435 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2436 
2437 	if (plane_state == NULL)
2438 		return;
2439 
2440 	plane_state->status.is_flip_pending =
2441 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2442 					pipe_ctx->plane_res.mi);
2443 
2444 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2445 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2446 
2447 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2448 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2449 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2450 		plane_state->status.is_right_eye =\
2451 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2452 	}
2453 }
2454 
2455 void dce110_power_down(struct dc *dc)
2456 {
2457 	power_down_all_hw_blocks(dc);
2458 	disable_vga_and_power_gate_all_controllers(dc);
2459 }
2460 
2461 static bool wait_for_reset_trigger_to_occur(
2462 	struct dc_context *dc_ctx,
2463 	struct timing_generator *tg)
2464 {
2465 	struct dc_context *ctx = dc_ctx;
2466 	bool rc = false;
2467 
2468 	/* To avoid endless loop we wait at most
2469 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2470 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2471 	uint32_t i;
2472 
2473 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2474 
2475 		if (!tg->funcs->is_counter_moving(tg)) {
2476 			DC_ERROR("TG counter is not moving!\n");
2477 			break;
2478 		}
2479 
2480 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2481 			rc = true;
2482 			/* usually occurs at i=1 */
2483 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2484 					i);
2485 			break;
2486 		}
2487 
2488 		/* Wait for one frame. */
2489 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2490 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2491 	}
2492 
2493 	if (false == rc)
2494 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2495 
2496 	return rc;
2497 }
2498 
2499 /* Enable timing synchronization for a group of Timing Generators. */
2500 static void dce110_enable_timing_synchronization(
2501 		struct dc *dc,
2502 		struct dc_state *state,
2503 		int group_index,
2504 		int group_size,
2505 		struct pipe_ctx *grouped_pipes[])
2506 {
2507 	struct dc_context *dc_ctx = dc->ctx;
2508 	struct dcp_gsl_params gsl_params = { 0 };
2509 	int i;
2510 	DC_LOGGER_INIT();
2511 
2512 	DC_SYNC_INFO("GSL: Setting-up...\n");
2513 
2514 	/* Designate a single TG in the group as a master.
2515 	 * Since HW doesn't care which one, we always assign
2516 	 * the 1st one in the group. */
2517 	gsl_params.gsl_group = 0;
2518 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2519 
2520 	for (i = 0; i < group_size; i++)
2521 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2522 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2523 
2524 	/* Reset slave controllers on master VSync */
2525 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2526 
2527 	for (i = 1 /* skip the master */; i < group_size; i++)
2528 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2529 				grouped_pipes[i]->stream_res.tg,
2530 				gsl_params.gsl_group);
2531 
2532 	for (i = 1 /* skip the master */; i < group_size; i++) {
2533 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2534 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2535 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2536 				grouped_pipes[i]->stream_res.tg);
2537 	}
2538 
2539 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2540 	 * is that the sync'ed displays will not drift out of sync over time*/
2541 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2542 	for (i = 0; i < group_size; i++)
2543 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2544 
2545 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2546 }
2547 
2548 static void dce110_enable_per_frame_crtc_position_reset(
2549 		struct dc *dc,
2550 		int group_size,
2551 		struct pipe_ctx *grouped_pipes[])
2552 {
2553 	struct dc_context *dc_ctx = dc->ctx;
2554 	struct dcp_gsl_params gsl_params = { 0 };
2555 	int i;
2556 	DC_LOGGER_INIT();
2557 
2558 	gsl_params.gsl_group = 0;
2559 	gsl_params.gsl_master = 0;
2560 
2561 	for (i = 0; i < group_size; i++)
2562 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2563 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2564 
2565 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2566 
2567 	for (i = 1; i < group_size; i++)
2568 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2569 				grouped_pipes[i]->stream_res.tg,
2570 				gsl_params.gsl_master,
2571 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2572 
2573 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2574 	for (i = 1; i < group_size; i++)
2575 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2576 
2577 	for (i = 0; i < group_size; i++)
2578 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2579 
2580 }
2581 
2582 static void init_pipes(struct dc *dc, struct dc_state *context)
2583 {
2584 	// Do nothing
2585 }
2586 
2587 static void init_hw(struct dc *dc)
2588 {
2589 	int i;
2590 	struct dc_bios *bp;
2591 	struct transform *xfm;
2592 	struct abm *abm;
2593 	struct dmcu *dmcu;
2594 	struct dce_hwseq *hws = dc->hwseq;
2595 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2596 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2597 
2598 	bp = dc->ctx->dc_bios;
2599 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2600 		xfm = dc->res_pool->transforms[i];
2601 		xfm->funcs->transform_reset(xfm);
2602 
2603 		hws->funcs.enable_display_power_gating(
2604 				dc, i, bp,
2605 				PIPE_GATING_CONTROL_INIT);
2606 		hws->funcs.enable_display_power_gating(
2607 				dc, i, bp,
2608 				PIPE_GATING_CONTROL_DISABLE);
2609 		hws->funcs.enable_display_pipe_clock_gating(
2610 			dc->ctx,
2611 			true);
2612 	}
2613 
2614 	dce_clock_gating_power_up(dc->hwseq, false);
2615 	/***************************************/
2616 
2617 	for (i = 0; i < dc->link_count; i++) {
2618 		/****************************************/
2619 		/* Power up AND update implementation according to the
2620 		 * required signal (which may be different from the
2621 		 * default signal on connector). */
2622 		struct dc_link *link = dc->links[i];
2623 
2624 		link->link_enc->funcs->hw_init(link->link_enc);
2625 	}
2626 
2627 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2628 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2629 
2630 		tg->funcs->disable_vga(tg);
2631 
2632 		/* Blank controller using driver code instead of
2633 		 * command table. */
2634 		tg->funcs->set_blank(tg, true);
2635 		hwss_wait_for_blank_complete(tg);
2636 	}
2637 
2638 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2639 		struct audio *audio = dc->res_pool->audios[i];
2640 		audio->funcs->hw_init(audio);
2641 	}
2642 
2643 	for (i = 0; i < dc->link_count; i++) {
2644 		struct dc_link *link = dc->links[i];
2645 
2646 		if (link->panel_cntl) {
2647 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2648 			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2649 		}
2650 	}
2651 
2652 	abm = dc->res_pool->abm;
2653 	if (abm != NULL)
2654 		abm->funcs->abm_init(abm, backlight, user_level);
2655 
2656 	dmcu = dc->res_pool->dmcu;
2657 	if (dmcu != NULL && abm != NULL)
2658 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2659 
2660 	if (dc->fbc_compressor)
2661 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2662 
2663 }
2664 
2665 
2666 void dce110_prepare_bandwidth(
2667 		struct dc *dc,
2668 		struct dc_state *context)
2669 {
2670 	struct clk_mgr *dccg = dc->clk_mgr;
2671 
2672 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2673 	if (dccg)
2674 		dccg->funcs->update_clocks(
2675 				dccg,
2676 				context,
2677 				false);
2678 }
2679 
2680 void dce110_optimize_bandwidth(
2681 		struct dc *dc,
2682 		struct dc_state *context)
2683 {
2684 	struct clk_mgr *dccg = dc->clk_mgr;
2685 
2686 	dce110_set_displaymarks(dc, context);
2687 
2688 	if (dccg)
2689 		dccg->funcs->update_clocks(
2690 				dccg,
2691 				context,
2692 				true);
2693 }
2694 
2695 static void dce110_program_front_end_for_pipe(
2696 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2697 {
2698 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2699 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2700 	struct xfm_grph_csc_adjustment adjust;
2701 	struct out_csc_color_matrix tbl_entry;
2702 	unsigned int i;
2703 	struct dce_hwseq *hws = dc->hwseq;
2704 
2705 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2706 
2707 	memset(&adjust, 0, sizeof(adjust));
2708 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2709 
2710 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2711 
2712 	set_default_colors(pipe_ctx);
2713 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2714 			== true) {
2715 		tbl_entry.color_space =
2716 			pipe_ctx->stream->output_color_space;
2717 
2718 		for (i = 0; i < 12; i++)
2719 			tbl_entry.regval[i] =
2720 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2721 
2722 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2723 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2724 	}
2725 
2726 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2727 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2728 
2729 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2730 			adjust.temperature_matrix[i] =
2731 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2732 	}
2733 
2734 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2735 
2736 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2737 
2738 	program_scaler(dc, pipe_ctx);
2739 
2740 	mi->funcs->mem_input_program_surface_config(
2741 			mi,
2742 			plane_state->format,
2743 			&plane_state->tiling_info,
2744 			&plane_state->plane_size,
2745 			plane_state->rotation,
2746 			NULL,
2747 			false);
2748 	if (mi->funcs->set_blank)
2749 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2750 
2751 	if (dc->config.gpu_vm_support)
2752 		mi->funcs->mem_input_program_pte_vm(
2753 				pipe_ctx->plane_res.mi,
2754 				plane_state->format,
2755 				&plane_state->tiling_info,
2756 				plane_state->rotation);
2757 
2758 	/* Moved programming gamma from dc to hwss */
2759 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2760 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2761 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2762 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2763 
2764 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2765 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2766 
2767 	DC_LOG_SURFACE(
2768 			"Pipe:%d %p: addr hi:0x%x, "
2769 			"addr low:0x%x, "
2770 			"src: %d, %d, %d,"
2771 			" %d; dst: %d, %d, %d, %d;"
2772 			"clip: %d, %d, %d, %d\n",
2773 			pipe_ctx->pipe_idx,
2774 			(void *) pipe_ctx->plane_state,
2775 			pipe_ctx->plane_state->address.grph.addr.high_part,
2776 			pipe_ctx->plane_state->address.grph.addr.low_part,
2777 			pipe_ctx->plane_state->src_rect.x,
2778 			pipe_ctx->plane_state->src_rect.y,
2779 			pipe_ctx->plane_state->src_rect.width,
2780 			pipe_ctx->plane_state->src_rect.height,
2781 			pipe_ctx->plane_state->dst_rect.x,
2782 			pipe_ctx->plane_state->dst_rect.y,
2783 			pipe_ctx->plane_state->dst_rect.width,
2784 			pipe_ctx->plane_state->dst_rect.height,
2785 			pipe_ctx->plane_state->clip_rect.x,
2786 			pipe_ctx->plane_state->clip_rect.y,
2787 			pipe_ctx->plane_state->clip_rect.width,
2788 			pipe_ctx->plane_state->clip_rect.height);
2789 
2790 	DC_LOG_SURFACE(
2791 			"Pipe %d: width, height, x, y\n"
2792 			"viewport:%d, %d, %d, %d\n"
2793 			"recout:  %d, %d, %d, %d\n",
2794 			pipe_ctx->pipe_idx,
2795 			pipe_ctx->plane_res.scl_data.viewport.width,
2796 			pipe_ctx->plane_res.scl_data.viewport.height,
2797 			pipe_ctx->plane_res.scl_data.viewport.x,
2798 			pipe_ctx->plane_res.scl_data.viewport.y,
2799 			pipe_ctx->plane_res.scl_data.recout.width,
2800 			pipe_ctx->plane_res.scl_data.recout.height,
2801 			pipe_ctx->plane_res.scl_data.recout.x,
2802 			pipe_ctx->plane_res.scl_data.recout.y);
2803 }
2804 
2805 static void dce110_apply_ctx_for_surface(
2806 		struct dc *dc,
2807 		const struct dc_stream_state *stream,
2808 		int num_planes,
2809 		struct dc_state *context)
2810 {
2811 	int i;
2812 
2813 	if (num_planes == 0)
2814 		return;
2815 
2816 	if (dc->fbc_compressor)
2817 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2818 
2819 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2820 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2821 
2822 		if (pipe_ctx->stream != stream)
2823 			continue;
2824 
2825 		/* Need to allocate mem before program front end for Fiji */
2826 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2827 				pipe_ctx->plane_res.mi,
2828 				pipe_ctx->stream->timing.h_total,
2829 				pipe_ctx->stream->timing.v_total,
2830 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2831 				context->stream_count);
2832 
2833 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2834 
2835 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2836 
2837 		program_surface_visibility(dc, pipe_ctx);
2838 
2839 	}
2840 
2841 	if (dc->fbc_compressor)
2842 		enable_fbc(dc, context);
2843 }
2844 
2845 static void dce110_post_unlock_program_front_end(
2846 		struct dc *dc,
2847 		struct dc_state *context)
2848 {
2849 }
2850 
2851 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
2852 {
2853 	struct dce_hwseq *hws = dc->hwseq;
2854 	int fe_idx = pipe_ctx->plane_res.mi ?
2855 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2856 
2857 	/* Do not power down fe when stream is active on dce*/
2858 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2859 		return;
2860 
2861 	hws->funcs.enable_display_power_gating(
2862 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2863 
2864 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2865 				dc->res_pool->transforms[fe_idx]);
2866 }
2867 
2868 static void dce110_wait_for_mpcc_disconnect(
2869 		struct dc *dc,
2870 		struct resource_pool *res_pool,
2871 		struct pipe_ctx *pipe_ctx)
2872 {
2873 	/* do nothing*/
2874 }
2875 
2876 static void program_output_csc(struct dc *dc,
2877 		struct pipe_ctx *pipe_ctx,
2878 		enum dc_color_space colorspace,
2879 		uint16_t *matrix,
2880 		int opp_id)
2881 {
2882 	int i;
2883 	struct out_csc_color_matrix tbl_entry;
2884 
2885 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2886 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2887 
2888 		for (i = 0; i < 12; i++)
2889 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2890 
2891 		tbl_entry.color_space = color_space;
2892 
2893 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2894 				pipe_ctx->plane_res.xfm, &tbl_entry);
2895 	}
2896 }
2897 
2898 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2899 {
2900 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2901 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2902 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2903 	struct dc_cursor_mi_param param = {
2904 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2905 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2906 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2907 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2908 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2909 		.rotation = pipe_ctx->plane_state->rotation,
2910 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2911 	};
2912 
2913 	/**
2914 	 * If the cursor's source viewport is clipped then we need to
2915 	 * translate the cursor to appear in the correct position on
2916 	 * the screen.
2917 	 *
2918 	 * This translation isn't affected by scaling so it needs to be
2919 	 * done *after* we adjust the position for the scale factor.
2920 	 *
2921 	 * This is only done by opt-in for now since there are still
2922 	 * some usecases like tiled display that might enable the
2923 	 * cursor on both streams while expecting dc to clip it.
2924 	 */
2925 	if (pos_cpy.translate_by_source) {
2926 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2927 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2928 	}
2929 
2930 	if (pipe_ctx->plane_state->address.type
2931 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2932 		pos_cpy.enable = false;
2933 
2934 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2935 		pos_cpy.enable = false;
2936 
2937 	if (ipp->funcs->ipp_cursor_set_position)
2938 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2939 	if (mi->funcs->set_cursor_position)
2940 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2941 }
2942 
2943 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2944 {
2945 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2946 
2947 	if (pipe_ctx->plane_res.ipp &&
2948 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2949 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2950 				pipe_ctx->plane_res.ipp, attributes);
2951 
2952 	if (pipe_ctx->plane_res.mi &&
2953 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2954 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2955 				pipe_ctx->plane_res.mi, attributes);
2956 
2957 	if (pipe_ctx->plane_res.xfm &&
2958 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2959 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2960 				pipe_ctx->plane_res.xfm, attributes);
2961 }
2962 
2963 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2964 		uint32_t backlight_pwm_u16_16,
2965 		uint32_t frame_ramp)
2966 {
2967 	struct dc_link *link = pipe_ctx->stream->link;
2968 	struct dc  *dc = link->ctx->dc;
2969 	struct abm *abm = pipe_ctx->stream_res.abm;
2970 	struct panel_cntl *panel_cntl = link->panel_cntl;
2971 	struct dmcu *dmcu = dc->res_pool->dmcu;
2972 	bool fw_set_brightness = true;
2973 	/* DMCU -1 for all controller id values,
2974 	 * therefore +1 here
2975 	 */
2976 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2977 
2978 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2979 		return false;
2980 
2981 	if (dmcu)
2982 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2983 
2984 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2985 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2986 	else
2987 		abm->funcs->set_backlight_level_pwm(
2988 				abm,
2989 				backlight_pwm_u16_16,
2990 				frame_ramp,
2991 				controller_id,
2992 				link->panel_cntl->inst);
2993 
2994 	return true;
2995 }
2996 
2997 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2998 {
2999 	struct abm *abm = pipe_ctx->stream_res.abm;
3000 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3001 
3002 	if (abm)
3003 		abm->funcs->set_abm_immediate_disable(abm,
3004 				pipe_ctx->stream->link->panel_cntl->inst);
3005 
3006 	if (panel_cntl)
3007 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3008 }
3009 
3010 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3011 {
3012 	struct abm *abm = pipe_ctx->stream_res.abm;
3013 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3014 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3015 
3016 	if (abm && panel_cntl)
3017 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3018 }
3019 
3020 void dce110_enable_lvds_link_output(struct dc_link *link,
3021 		const struct link_resource *link_res,
3022 		enum clock_source_id clock_source,
3023 		uint32_t pixel_clock)
3024 {
3025 	link->link_enc->funcs->enable_lvds_output(
3026 			link->link_enc,
3027 			clock_source,
3028 			pixel_clock);
3029 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3030 }
3031 
3032 void dce110_enable_tmds_link_output(struct dc_link *link,
3033 		const struct link_resource *link_res,
3034 		enum signal_type signal,
3035 		enum clock_source_id clock_source,
3036 		enum dc_color_depth color_depth,
3037 		uint32_t pixel_clock)
3038 {
3039 	link->link_enc->funcs->enable_tmds_output(
3040 			link->link_enc,
3041 			clock_source,
3042 			color_depth,
3043 			signal,
3044 			pixel_clock);
3045 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3046 }
3047 
3048 void dce110_enable_dp_link_output(
3049 		struct dc_link *link,
3050 		const struct link_resource *link_res,
3051 		enum signal_type signal,
3052 		enum clock_source_id clock_source,
3053 		const struct dc_link_settings *link_settings)
3054 {
3055 	struct dc  *dc = link->ctx->dc;
3056 	struct dmcu *dmcu = dc->res_pool->dmcu;
3057 	struct pipe_ctx *pipes =
3058 			link->dc->current_state->res_ctx.pipe_ctx;
3059 	struct clock_source *dp_cs =
3060 			link->dc->res_pool->dp_clock_source;
3061 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3062 	unsigned int i;
3063 
3064 	/*
3065 	 * Add the logic to extract BOTH power up and power down sequences
3066 	 * from enable/disable link output and only call edp panel control
3067 	 * in enable_link_dp and disable_link_dp once.
3068 	 */
3069 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3070 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3071 	}
3072 
3073 	/* If the current pixel clock source is not DTO(happens after
3074 	 * switching from HDMI passive dongle to DP on the same connector),
3075 	 * switch the pixel clock source to DTO.
3076 	 */
3077 
3078 	for (i = 0; i < MAX_PIPES; i++) {
3079 		if (pipes[i].stream != NULL &&
3080 				pipes[i].stream->link == link) {
3081 			if (pipes[i].clock_source != NULL &&
3082 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3083 				pipes[i].clock_source = dp_cs;
3084 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3085 						pipes[i].stream->timing.pix_clk_100hz;
3086 				pipes[i].clock_source->funcs->program_pix_clk(
3087 						pipes[i].clock_source,
3088 						&pipes[i].stream_res.pix_clk_params,
3089 						dc->link_srv->dp_get_encoding_format(link_settings),
3090 						&pipes[i].pll_settings);
3091 			}
3092 		}
3093 	}
3094 
3095 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3096 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3097 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3098 	}
3099 
3100 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3101 		dmcu->funcs->lock_phy(dmcu);
3102 
3103 	if (link_hwss->ext.enable_dp_link_output)
3104 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3105 				clock_source, link_settings);
3106 
3107 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3108 
3109 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3110 		dmcu->funcs->unlock_phy(dmcu);
3111 
3112 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3113 }
3114 
3115 void dce110_disable_link_output(struct dc_link *link,
3116 		const struct link_resource *link_res,
3117 		enum signal_type signal)
3118 {
3119 	struct dc *dc = link->ctx->dc;
3120 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3121 	struct dmcu *dmcu = dc->res_pool->dmcu;
3122 
3123 	if (signal == SIGNAL_TYPE_EDP &&
3124 			link->dc->hwss.edp_backlight_control &&
3125 			!link->skip_implict_edp_power_control)
3126 		link->dc->hwss.edp_backlight_control(link, false);
3127 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3128 		dmcu->funcs->lock_phy(dmcu);
3129 
3130 	link_hwss->disable_link_output(link, link_res, signal);
3131 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3132 	/*
3133 	 * Add the logic to extract BOTH power up and power down sequences
3134 	 * from enable/disable link output and only call edp panel control
3135 	 * in enable_link_dp and disable_link_dp once.
3136 	 */
3137 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3138 		dmcu->funcs->unlock_phy(dmcu);
3139 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3140 }
3141 
3142 static const struct hw_sequencer_funcs dce110_funcs = {
3143 	.program_gamut_remap = program_gamut_remap,
3144 	.program_output_csc = program_output_csc,
3145 	.init_hw = init_hw,
3146 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3147 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3148 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3149 	.update_plane_addr = update_plane_addr,
3150 	.update_pending_status = dce110_update_pending_status,
3151 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3152 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3153 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3154 	.update_info_frame = dce110_update_info_frame,
3155 	.enable_stream = dce110_enable_stream,
3156 	.disable_stream = dce110_disable_stream,
3157 	.unblank_stream = dce110_unblank_stream,
3158 	.blank_stream = dce110_blank_stream,
3159 	.enable_audio_stream = dce110_enable_audio_stream,
3160 	.disable_audio_stream = dce110_disable_audio_stream,
3161 	.disable_plane = dce110_power_down_fe,
3162 	.pipe_control_lock = dce_pipe_control_lock,
3163 	.interdependent_update_lock = NULL,
3164 	.cursor_lock = dce_pipe_control_lock,
3165 	.prepare_bandwidth = dce110_prepare_bandwidth,
3166 	.optimize_bandwidth = dce110_optimize_bandwidth,
3167 	.set_drr = set_drr,
3168 	.get_position = get_position,
3169 	.set_static_screen_control = set_static_screen_control,
3170 	.setup_stereo = NULL,
3171 	.set_avmute = dce110_set_avmute,
3172 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3173 	.edp_backlight_control = dce110_edp_backlight_control,
3174 	.edp_power_control = dce110_edp_power_control,
3175 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3176 	.set_cursor_position = dce110_set_cursor_position,
3177 	.set_cursor_attribute = dce110_set_cursor_attribute,
3178 	.set_backlight_level = dce110_set_backlight_level,
3179 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3180 	.set_pipe = dce110_set_pipe,
3181 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3182 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3183 	.enable_dp_link_output = dce110_enable_dp_link_output,
3184 	.disable_link_output = dce110_disable_link_output,
3185 };
3186 
3187 static const struct hwseq_private_funcs dce110_private_funcs = {
3188 	.init_pipes = init_pipes,
3189 	.update_plane_addr = update_plane_addr,
3190 	.set_input_transfer_func = dce110_set_input_transfer_func,
3191 	.set_output_transfer_func = dce110_set_output_transfer_func,
3192 	.power_down = dce110_power_down,
3193 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3194 	.enable_display_power_gating = dce110_enable_display_power_gating,
3195 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3196 	.enable_stream_timing = dce110_enable_stream_timing,
3197 	.disable_stream_gating = NULL,
3198 	.enable_stream_gating = NULL,
3199 	.edp_backlight_control = dce110_edp_backlight_control,
3200 };
3201 
3202 void dce110_hw_sequencer_construct(struct dc *dc)
3203 {
3204 	dc->hwss = dce110_funcs;
3205 	dc->hwseq->funcs = dce110_private_funcs;
3206 }
3207 
3208