xref: /linux/drivers/gpu/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c (revision bf5802238dc181b1f7375d358af1d01cd72d1c11)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36 
37 #define DC_LOGGER_INIT(logger)
38 
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 			.min_refresh = 120,
41 			.max_refresh = 175,
42 			.res = {
43 				{.width = 3840, .height = 2160, },
44 				{.width = 3440, .height = 1440, },
45 				{.width = 2560, .height = 1440, },
46 				{.width = 1920, .height = 1080, }},
47 };
48 
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 			.min_refresh = 55,
51 			.max_refresh = 65,
52 			.res = {
53 				{.width = 2560, .height = 1440, },
54 				{.width = 1920, .height = 1080, }},
55 };
56 
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 	.gpuvm_enable = 0,
59 	.gpuvm_max_page_table_levels = 4,
60 	.hostvm_enable = 0,
61 	.rob_buffer_size_kbytes = 128,
62 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 	.config_return_buffer_size_in_kbytes = 1280,
64 	.compressed_buffer_segment_size_in_kbytes = 64,
65 	.meta_fifo_size_in_kentries = 22,
66 	.zero_size_buffer_entries = 512,
67 	.compbuf_reserved_space_64b = 256,
68 	.compbuf_reserved_space_zs = 64,
69 	.dpp_output_buffer_pixels = 2560,
70 	.opp_output_buffer_lines = 1,
71 	.pixel_chunk_size_kbytes = 8,
72 	.alpha_pixel_chunk_size_kbytes = 4,
73 	.min_pixel_chunk_size_bytes = 1024,
74 	.dcc_meta_buffer_size_bytes = 6272,
75 	.meta_chunk_size_kbytes = 2,
76 	.min_meta_chunk_size_bytes = 256,
77 	.writeback_chunk_size_kbytes = 8,
78 	.ptoi_supported = false,
79 	.num_dsc = 4,
80 	.maximum_dsc_bits_per_component = 12,
81 	.maximum_pixels_per_line_per_dsc_unit = 6016,
82 	.dsc422_native_support = true,
83 	.is_line_buffer_bpp_fixed = true,
84 	.line_buffer_fixed_bpp = 57,
85 	.line_buffer_size_bits = 1171920,
86 	.max_line_buffer_lines = 32,
87 	.writeback_interface_buffer_size_kbytes = 90,
88 	.max_num_dpp = 4,
89 	.max_num_otg = 4,
90 	.max_num_hdmi_frl_outputs = 1,
91 	.max_num_wb = 1,
92 	.max_dchub_pscl_bw_pix_per_clk = 4,
93 	.max_pscl_lb_bw_pix_per_clk = 2,
94 	.max_lb_vscl_bw_pix_per_clk = 4,
95 	.max_vscl_hscl_bw_pix_per_clk = 4,
96 	.max_hscl_ratio = 6,
97 	.max_vscl_ratio = 6,
98 	.max_hscl_taps = 8,
99 	.max_vscl_taps = 8,
100 	.dpte_buffer_size_in_pte_reqs_luma = 64,
101 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
102 	.dispclk_ramp_margin_percent = 1,
103 	.max_inter_dcn_tile_repeaters = 8,
104 	.cursor_buffer_size = 16,
105 	.cursor_chunk_size = 2,
106 	.writeback_line_buffer_buffer_size = 0,
107 	.writeback_min_hscl_ratio = 1,
108 	.writeback_min_vscl_ratio = 1,
109 	.writeback_max_hscl_ratio = 1,
110 	.writeback_max_vscl_ratio = 1,
111 	.writeback_max_hscl_taps = 1,
112 	.writeback_max_vscl_taps = 1,
113 	.dppclk_delay_subtotal = 47,
114 	.dppclk_delay_scl = 50,
115 	.dppclk_delay_scl_lb_only = 16,
116 	.dppclk_delay_cnvc_formatter = 28,
117 	.dppclk_delay_cnvc_cursor = 6,
118 	.dispclk_delay_subtotal = 125,
119 	.dynamic_metadata_vm_enabled = false,
120 	.odm_combine_4to1_supported = false,
121 	.dcc_supported = true,
122 	.max_num_dp2p0_outputs = 2,
123 	.max_num_dp2p0_streams = 4,
124 };
125 
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 	.clock_limits = {
128 		{
129 			.state = 0,
130 			.dcfclk_mhz = 1564.0,
131 			.fabricclk_mhz = 2500.0,
132 			.dispclk_mhz = 2150.0,
133 			.dppclk_mhz = 2150.0,
134 			.phyclk_mhz = 810.0,
135 			.phyclk_d18_mhz = 667.0,
136 			.phyclk_d32_mhz = 625.0,
137 			.socclk_mhz = 1200.0,
138 			.dscclk_mhz = 716.667,
139 			.dram_speed_mts = 18000.0,
140 			.dtbclk_mhz = 1564.0,
141 		},
142 	},
143 	.num_states = 1,
144 	.sr_exit_time_us = 42.97,
145 	.sr_enter_plus_exit_time_us = 49.94,
146 	.sr_exit_z8_time_us = 285.0,
147 	.sr_enter_plus_exit_z8_time_us = 320,
148 	.writeback_latency_us = 12.0,
149 	.round_trip_ping_latency_dcfclk_cycles = 263,
150 	.urgent_latency_pixel_data_only_us = 4.0,
151 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 	.urgent_latency_vm_data_only_us = 4.0,
153 	.fclk_change_latency_us = 25,
154 	.usr_retraining_latency_us = 2,
155 	.smn_latency_us = 2,
156 	.mall_allocated_for_dcn_mbytes = 64,
157 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 	.pct_ideal_sdp_bw_after_urgent = 90.0,
161 	.pct_ideal_fabric_bw_after_urgent = 67.0,
162 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
164 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
165 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 	.max_avg_sdp_bw_use_normal_percent = 80.0,
167 	.max_avg_fabric_bw_use_normal_percent = 60.0,
168 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 	.max_avg_dram_bw_use_normal_percent = 15.0,
170 	.num_chans = 24,
171 	.dram_channel_width_bytes = 2,
172 	.fabric_datapath_to_dcn_data_return_bytes = 64,
173 	.return_bus_width_bytes = 64,
174 	.downspread_percent = 0.38,
175 	.dcn_downspread_percent = 0.5,
176 	.dram_clock_change_latency_us = 400,
177 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
178 	.do_urgent_latency_adjustment = true,
179 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182 
183 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
184 {
185 	/* defaults */
186 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
187 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
188 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
189 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
190 	/* For min clocks use as reported by PM FW and report those as min */
191 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
192 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
194 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
195 
196 	dc_assert_fp_enabled();
197 
198 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
199 	if (dcfclk_mhz_for_the_second_state)
200 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
201 	else
202 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
203 
204 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
205 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
206 
207 	/* Set A - Normal - default values */
208 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
209 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
218 
219 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
220 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
221 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
222 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
223 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
224 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
225 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
226 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
227 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
228 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
229 
230 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
231 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
232 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
233 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
234 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
236 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
237 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
238 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
239 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
240 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
241 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
242 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
243 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
244 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
245 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
246 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
247 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
248 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
249 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
250 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
251 	}
252 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
253 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
254 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
255 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
256 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
257 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
258 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
259 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
260 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
261 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
262 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
263 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
264 }
265 
266 /*
267  * Finds dummy_latency_index when MCLK switching using firmware based
268  * vblank stretch is enabled. This function will iterate through the
269  * table of dummy pstate latencies until the lowest value that allows
270  * dm_allow_self_refresh_and_mclk_switch to happen is found
271  */
272 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
273 							    struct dc_state *context,
274 							    display_e2e_pipe_params_st *pipes,
275 							    int pipe_cnt,
276 							    int vlevel)
277 {
278 	const int max_latency_table_entries = 4;
279 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
280 	int dummy_latency_index = 0;
281 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
282 
283 	dc_assert_fp_enabled();
284 
285 	while (dummy_latency_index < max_latency_table_entries) {
286 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
287 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
288 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
289 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
290 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
291 
292 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
293 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
294 				dcn32_subvp_in_use(dc, context))
295 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
296 
297 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
298 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
299 			break;
300 
301 		dummy_latency_index++;
302 	}
303 
304 	if (dummy_latency_index == max_latency_table_entries) {
305 		ASSERT(dummy_latency_index != max_latency_table_entries);
306 		/* If the execution gets here, it means dummy p_states are
307 		 * not possible. This should never happen and would mean
308 		 * something is severely wrong.
309 		 * Here we reset dummy_latency_index to 3, because it is
310 		 * better to have underflows than system crashes.
311 		 */
312 		dummy_latency_index = max_latency_table_entries - 1;
313 	}
314 
315 	return dummy_latency_index;
316 }
317 
318 /**
319  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
320  * and populate pipe_ctx with those params.
321  * @dc: [in] current dc state
322  * @context: [in] new dc state
323  * @pipes: [in] DML pipe params array
324  * @pipe_cnt: [in] DML pipe count
325  *
326  * This function must be called AFTER the phantom pipes are added to context
327  * and run through DML (so that the DLG params for the phantom pipes can be
328  * populated), and BEFORE we program the timing for the phantom pipes.
329  */
330 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
331 					      struct dc_state *context,
332 					      display_e2e_pipe_params_st *pipes,
333 					      int pipe_cnt)
334 {
335 	uint32_t i, pipe_idx;
336 
337 	dc_assert_fp_enabled();
338 
339 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
340 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
341 
342 		if (!pipe->stream)
343 			continue;
344 
345 		if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
346 			pipes[pipe_idx].pipe.dest.vstartup_start =
347 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
348 			pipes[pipe_idx].pipe.dest.vupdate_offset =
349 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
350 			pipes[pipe_idx].pipe.dest.vupdate_width =
351 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
352 			pipes[pipe_idx].pipe.dest.vready_offset =
353 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
354 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
355 		}
356 		pipe_idx++;
357 	}
358 }
359 
360 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
361 {
362 	float memory_bw_kbytes_sec;
363 	float fabric_bw_kbytes_sec;
364 	float sdp_bw_kbytes_sec;
365 	float limiting_bw_kbytes_sec;
366 
367 	memory_bw_kbytes_sec = entry->dram_speed_mts *
368 				dcn3_2_soc.num_chans *
369 				dcn3_2_soc.dram_channel_width_bytes *
370 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
371 
372 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
373 				dcn3_2_soc.return_bus_width_bytes *
374 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
375 
376 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
377 				dcn3_2_soc.return_bus_width_bytes *
378 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
379 
380 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
381 
382 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
383 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
384 
385 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
387 
388 	return limiting_bw_kbytes_sec;
389 }
390 
391 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
392 {
393 	if (entry->dcfclk_mhz > 0) {
394 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
395 
396 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
397 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
398 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
399 	} else if (entry->fabricclk_mhz > 0) {
400 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
401 
402 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
403 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
404 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
405 	} else if (entry->dram_speed_mts > 0) {
406 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
407 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
408 
409 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
410 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
411 	}
412 }
413 
414 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
415 				    unsigned int *num_entries,
416 				    struct _vcs_dpi_voltage_scaling_st *entry)
417 {
418 	int i = 0;
419 	int index = 0;
420 
421 	dc_assert_fp_enabled();
422 
423 	if (*num_entries == 0) {
424 		table[0] = *entry;
425 		(*num_entries)++;
426 	} else {
427 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
428 			index++;
429 			if (index >= *num_entries)
430 				break;
431 		}
432 
433 		for (i = *num_entries; i > index; i--)
434 			table[i] = table[i - 1];
435 
436 		table[index] = *entry;
437 		(*num_entries)++;
438 	}
439 }
440 
441 /**
442  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
443  * @dc: current dc state
444  * @context: new dc state
445  * @ref_pipe: Main pipe for the phantom stream
446  * @phantom_stream: target phantom stream state
447  * @pipes: DML pipe params
448  * @pipe_cnt: number of DML pipes
449  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
450  *
451  * Set timing params of the phantom stream based on calculated output from DML.
452  * This function first gets the DML pipe index using the DC pipe index, then
453  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
454  * lines required for SubVP MCLK switching and assigns to the phantom stream
455  * accordingly.
456  *
457  * - The number of SubVP lines calculated in DML does not take into account
458  * FW processing delays and required pstate allow width, so we must include
459  * that separately.
460  *
461  * - Set phantom backporch = vstartup of main pipe
462  */
463 void dcn32_set_phantom_stream_timing(struct dc *dc,
464 				     struct dc_state *context,
465 				     struct pipe_ctx *ref_pipe,
466 				     struct dc_stream_state *phantom_stream,
467 				     display_e2e_pipe_params_st *pipes,
468 				     unsigned int pipe_cnt,
469 				     unsigned int dc_pipe_idx)
470 {
471 	unsigned int i, pipe_idx;
472 	struct pipe_ctx *pipe;
473 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
474 	unsigned int num_dpp;
475 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
476 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
477 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
478 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
479 	struct dc_stream_state *main_stream = ref_pipe->stream;
480 
481 	dc_assert_fp_enabled();
482 
483 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
484 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
485 		pipe = &context->res_ctx.pipe_ctx[i];
486 
487 		if (!pipe->stream)
488 			continue;
489 
490 		if (i == dc_pipe_idx)
491 			break;
492 
493 		pipe_idx++;
494 	}
495 
496 	// Calculate lines required for pstate allow width and FW processing delays
497 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
498 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
499 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
500 			(double)ref_pipe->stream->timing.h_total;
501 
502 	// Update clks_cfg for calling into recalculate
503 	pipes[0].clks_cfg.voltage = vlevel;
504 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
505 	pipes[0].clks_cfg.socclk_mhz = socclk;
506 
507 	// DML calculation for MALL region doesn't take into account FW delay
508 	// and required pstate allow width for multi-display cases
509 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
510 	 * to 2 swaths (i.e. 16 lines)
511 	 */
512 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
513 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
514 
515 	// W/A for DCC corruption with certain high resolution timings.
516 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
517 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
518 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
519 
520 	/* dc->debug.subvp_extra_lines 0 by default*/
521 	phantom_vactive += dc->debug.subvp_extra_lines;
522 
523 	// For backporch of phantom pipe, use vstartup of the main pipe
524 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
525 
526 	phantom_stream->dst.y = 0;
527 	phantom_stream->dst.height = phantom_vactive;
528 	/* When scaling, DML provides the end to end required number of lines for MALL.
529 	 * dst.height is always correct for this case, but src.height is not which causes a
530 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
531 	 * phantom for this case.
532 	 */
533 	phantom_stream->src.y = 0;
534 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
535 
536 	phantom_stream->timing.v_addressable = phantom_vactive;
537 	phantom_stream->timing.v_front_porch = 1;
538 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
539 						phantom_stream->timing.v_front_porch +
540 						phantom_stream->timing.v_sync_width +
541 						phantom_bp;
542 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
543 }
544 
545 /**
546  * dcn32_get_num_free_pipes - Calculate number of free pipes
547  * @dc: current dc state
548  * @context: new dc state
549  *
550  * This function assumes that a "used" pipe is a pipe that has
551  * both a stream and a plane assigned to it.
552  *
553  * Return: Number of free pipes available in the context
554  */
555 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
556 {
557 	unsigned int i;
558 	unsigned int free_pipes = 0;
559 	unsigned int num_pipes = 0;
560 
561 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
562 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
563 
564 		if (pipe->stream && !pipe->top_pipe) {
565 			while (pipe) {
566 				num_pipes++;
567 				pipe = pipe->bottom_pipe;
568 			}
569 		}
570 	}
571 
572 	free_pipes = dc->res_pool->pipe_count - num_pipes;
573 	return free_pipes;
574 }
575 
576 /**
577  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
578  * @dc: current dc state
579  * @context: new dc state
580  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
581  *
582  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
583  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
584  * we are forcing SubVP P-State switching on the current config.
585  *
586  * The number of pipes used for the chosen surface must be less than or equal to the
587  * number of free pipes available.
588  *
589  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
590  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
591  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
592  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
593  *
594  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
595  */
596 static bool dcn32_assign_subvp_pipe(struct dc *dc,
597 				    struct dc_state *context,
598 				    unsigned int *index)
599 {
600 	unsigned int i, pipe_idx;
601 	unsigned int max_frame_time = 0;
602 	bool valid_assignment_found = false;
603 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
604 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
605 
606 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
607 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
608 		unsigned int num_pipes = 0;
609 		unsigned int refresh_rate = 0;
610 
611 		if (!pipe->stream)
612 			continue;
613 
614 		// Round up
615 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
616 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
617 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
618 		/* SubVP pipe candidate requirements:
619 		 * - Refresh rate < 120hz
620 		 * - Not able to switch in vactive naturally (switching in active means the
621 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
622 		 *   to combine this with SubVP can cause issues with the scheduling).
623 		 * - Not TMZ surface
624 		 */
625 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
626 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
627 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
628 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
629 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
630 				!pipe->plane_state->address.tmz_surface &&
631 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
632 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
633 						dcn32_allow_subvp_with_active_margin(pipe)))) {
634 			while (pipe) {
635 				num_pipes++;
636 				pipe = pipe->bottom_pipe;
637 			}
638 
639 			pipe = &context->res_ctx.pipe_ctx[i];
640 			if (num_pipes <= free_pipes) {
641 				struct dc_stream_state *stream = pipe->stream;
642 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
643 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
644 				if (frame_us > max_frame_time) {
645 					*index = i;
646 					max_frame_time = frame_us;
647 					valid_assignment_found = true;
648 				}
649 			}
650 		}
651 		pipe_idx++;
652 	}
653 	return valid_assignment_found;
654 }
655 
656 /**
657  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
658  * @dc: current dc state
659  * @context: new dc state
660  *
661  * This function returns true if there are enough free pipes
662  * to create the required phantom pipes for any given stream
663  * (that does not already have phantom pipe assigned).
664  *
665  * e.g. For a 2 stream config where the first stream uses one
666  * pipe and the second stream uses 2 pipes (i.e. pipe split),
667  * this function will return true because there is 1 remaining
668  * pipe which can be used as the phantom pipe for the non pipe
669  * split pipe.
670  *
671  * Return:
672  * True if there are enough free pipes to assign phantom pipes to at least one
673  * stream that does not already have phantom pipes assigned. Otherwise false.
674  */
675 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
676 {
677 	unsigned int i, split_cnt, free_pipes;
678 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
679 	bool subvp_possible = false;
680 
681 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
682 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
683 
684 		// Find the minimum pipe split count for non SubVP pipes
685 		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
686 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
687 			split_cnt = 0;
688 			while (pipe) {
689 				split_cnt++;
690 				pipe = pipe->bottom_pipe;
691 			}
692 
693 			if (split_cnt < min_pipe_split)
694 				min_pipe_split = split_cnt;
695 		}
696 	}
697 
698 	free_pipes = dcn32_get_num_free_pipes(dc, context);
699 
700 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
701 	// should not equal to the pipe_count)
702 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
703 		subvp_possible = true;
704 
705 	return subvp_possible;
706 }
707 
708 /**
709  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
710  * @dc: current dc state
711  * @context: new dc state
712  *
713  * High level algorithm:
714  * 1. Find longest microschedule length (in us) between the two SubVP pipes
715  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
716  * pipes still allows for the maximum microschedule to fit in the active
717  * region for both pipes.
718  *
719  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
720  */
721 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
722 {
723 	struct pipe_ctx *subvp_pipes[2];
724 	struct dc_stream_state *phantom = NULL;
725 	uint32_t microschedule_lines = 0;
726 	uint32_t index = 0;
727 	uint32_t i;
728 	uint32_t max_microschedule_us = 0;
729 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
730 
731 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
732 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
733 		uint32_t time_us = 0;
734 
735 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
736 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
737 		 */
738 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
739 			dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
740 			phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
741 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
742 					phantom->timing.v_addressable;
743 
744 			// Round up when calculating microschedule time (+ 1 at the end)
745 			time_us = (microschedule_lines * phantom->timing.h_total) /
746 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
747 						dc->caps.subvp_prefetch_end_to_mall_start_us +
748 						dc->caps.subvp_fw_processing_delay_us + 1;
749 			if (time_us > max_microschedule_us)
750 				max_microschedule_us = time_us;
751 
752 			subvp_pipes[index] = pipe;
753 			index++;
754 
755 			// Maximum 2 SubVP pipes
756 			if (index == 2)
757 				break;
758 		}
759 	}
760 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
761 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
762 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
763 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
764 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
765 			subvp_pipes[0]->stream->timing.h_total) /
766 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
768 			subvp_pipes[1]->stream->timing.h_total) /
769 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
770 
771 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
772 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
773 		return true;
774 
775 	return false;
776 }
777 
778 /**
779  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
780  * @dc: current dc state
781  * @context: new dc state
782  *
783  * High level algorithm:
784  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
785  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
786  * (the margin is equal to the MALL region + DRR margin (500us))
787  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
788  * then report the configuration as supported
789  *
790  * Return: True if the SubVP + DRR config is schedulable, false otherwise
791  */
792 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
793 {
794 	bool schedulable = false;
795 	uint32_t i;
796 	struct pipe_ctx *pipe = NULL;
797 	struct pipe_ctx *drr_pipe = NULL;
798 	struct dc_crtc_timing *main_timing = NULL;
799 	struct dc_crtc_timing *phantom_timing = NULL;
800 	struct dc_crtc_timing *drr_timing = NULL;
801 	int16_t prefetch_us = 0;
802 	int16_t mall_region_us = 0;
803 	int16_t drr_frame_us = 0;	// nominal frame time
804 	int16_t subvp_active_us = 0;
805 	int16_t stretched_drr_us = 0;
806 	int16_t drr_stretched_vblank_us = 0;
807 	int16_t max_vblank_mallregion = 0;
808 	struct dc_stream_state *phantom_stream;
809 	bool subvp_found = false;
810 	bool drr_found = false;
811 
812 	// Find SubVP pipe
813 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 		pipe = &context->res_ctx.pipe_ctx[i];
815 
816 		// We check for master pipe, but it shouldn't matter since we only need
817 		// the pipe for timing info (stream should be same for any pipe splits)
818 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
819 				!resource_is_pipe_type(pipe, DPP_PIPE))
820 			continue;
821 
822 		// Find the SubVP pipe
823 		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
824 			subvp_found = true;
825 			break;
826 		}
827 	}
828 
829 	// Find the DRR pipe
830 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
831 		drr_pipe = &context->res_ctx.pipe_ctx[i];
832 
833 		// We check for master pipe only
834 		if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
835 				!resource_is_pipe_type(drr_pipe, DPP_PIPE))
836 			continue;
837 
838 		if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
839 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
840 			drr_found = true;
841 			break;
842 		}
843 	}
844 
845 	if (subvp_found && drr_found) {
846 		phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
847 		main_timing = &pipe->stream->timing;
848 		phantom_timing = &phantom_stream->timing;
849 		drr_timing = &drr_pipe->stream->timing;
850 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
851 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
852 				dc->caps.subvp_prefetch_end_to_mall_start_us;
853 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
854 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
855 		drr_frame_us = drr_timing->v_total * drr_timing->h_total /
856 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
857 		// P-State allow width and FW delays already included phantom_timing->v_addressable
858 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
859 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
860 		stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
861 		drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
862 				(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
863 		max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
864 	}
865 
866 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
867 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
868 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
869 	 * and the max of (VBLANK blanking time, MALL region)).
870 	 */
871 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
872 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
873 		schedulable = true;
874 
875 	return schedulable;
876 }
877 
878 
879 /**
880  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
881  * @dc: current dc state
882  * @context: new dc state
883  *
884  * High level algorithm:
885  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
886  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
887  * then report the configuration as supported
888  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
889  *
890  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
891  */
892 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
893 {
894 	struct pipe_ctx *pipe = NULL;
895 	struct pipe_ctx *subvp_pipe = NULL;
896 	bool found = false;
897 	bool schedulable = false;
898 	uint32_t i = 0;
899 	uint8_t vblank_index = 0;
900 	uint16_t prefetch_us = 0;
901 	uint16_t mall_region_us = 0;
902 	uint16_t vblank_frame_us = 0;
903 	uint16_t subvp_active_us = 0;
904 	uint16_t vblank_blank_us = 0;
905 	uint16_t max_vblank_mallregion = 0;
906 	struct dc_crtc_timing *main_timing = NULL;
907 	struct dc_crtc_timing *phantom_timing = NULL;
908 	struct dc_crtc_timing *vblank_timing = NULL;
909 	struct dc_stream_state *phantom_stream;
910 	enum mall_stream_type pipe_mall_type;
911 
912 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
913 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
914 	 * is supported, it is either a single VBLANK case or two VBLANK
915 	 * displays which are synchronized (in which case they have identical
916 	 * timings).
917 	 */
918 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
919 		pipe = &context->res_ctx.pipe_ctx[i];
920 		pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
921 
922 		// We check for master pipe, but it shouldn't matter since we only need
923 		// the pipe for timing info (stream should be same for any pipe splits)
924 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
925 				!resource_is_pipe_type(pipe, DPP_PIPE))
926 			continue;
927 
928 		if (!found && pipe_mall_type == SUBVP_NONE) {
929 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
930 			vblank_index = i;
931 			found = true;
932 		}
933 
934 		if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
935 			subvp_pipe = pipe;
936 	}
937 	if (found) {
938 		phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
939 		main_timing = &subvp_pipe->stream->timing;
940 		phantom_timing = &phantom_stream->timing;
941 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
942 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
943 		// Also include the prefetch end to mallstart delay time
944 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
945 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
946 				dc->caps.subvp_prefetch_end_to_mall_start_us;
947 		// P-State allow width and FW delays already included phantom_timing->v_addressable
948 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
949 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
950 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
951 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
952 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
953 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
954 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
955 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
956 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
957 
958 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
959 		// and the max of (VBLANK blanking time, MALL region)
960 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
961 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
962 			schedulable = true;
963 	}
964 	return schedulable;
965 }
966 
967 /**
968  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
969  *
970  * @dc: Current DC state
971  * @context: New DC state to be programmed
972  *
973  * SubVP + SubVP is admissible under the following conditions:
974  * - All SubVP pipes are < 120Hz OR
975  * - All SubVP pipes are >= 120hz
976  *
977  * Return: True if admissible, false otherwise
978  */
979 static bool subvp_subvp_admissable(struct dc *dc,
980 				struct dc_state *context)
981 {
982 	bool result = false;
983 	uint32_t i;
984 	uint8_t subvp_count = 0;
985 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
986 	uint64_t refresh_rate = 0;
987 
988 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
989 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
990 
991 		if (!pipe->stream)
992 			continue;
993 
994 		if (pipe->plane_state && !pipe->top_pipe &&
995 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
996 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
997 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
998 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
999 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1000 
1001 			if ((uint32_t)refresh_rate < min_refresh)
1002 				min_refresh = (uint32_t)refresh_rate;
1003 			if ((uint32_t)refresh_rate > max_refresh)
1004 				max_refresh = (uint32_t)refresh_rate;
1005 			subvp_count++;
1006 		}
1007 	}
1008 
1009 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1010 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1011 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1012 		result = true;
1013 
1014 	return result;
1015 }
1016 
1017 /**
1018  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1019  * and handle static analysis based on the case.
1020  * @dc: current dc state
1021  * @context: new dc state
1022  * @vlevel: Voltage level calculated by DML
1023  *
1024  * Three cases:
1025  * 1. SubVP + SubVP
1026  * 2. SubVP + VBLANK (DRR checked internally)
1027  * 3. SubVP + VACTIVE (currently unsupported)
1028  *
1029  * Return: True if statically schedulable, false otherwise
1030  */
1031 static bool subvp_validate_static_schedulability(struct dc *dc,
1032 				struct dc_state *context,
1033 				int vlevel)
1034 {
1035 	bool schedulable = false;
1036 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1037 	uint32_t i, pipe_idx;
1038 	uint8_t subvp_count = 0;
1039 	uint8_t vactive_count = 0;
1040 	uint8_t non_subvp_pipes = 0;
1041 
1042 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1043 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1044 		enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1045 
1046 		if (!pipe->stream)
1047 			continue;
1048 
1049 		if (pipe->plane_state && !pipe->top_pipe) {
1050 			if (pipe_mall_type == SUBVP_MAIN)
1051 				subvp_count++;
1052 			if (pipe_mall_type == SUBVP_NONE)
1053 				non_subvp_pipes++;
1054 		}
1055 
1056 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1057 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1058 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1059 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1060 				pipe_mall_type == SUBVP_NONE) {
1061 			vactive_count++;
1062 		}
1063 		pipe_idx++;
1064 	}
1065 
1066 	if (subvp_count == 2) {
1067 		// Static schedulability check for SubVP + SubVP case
1068 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1069 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1070 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1071 		schedulable = true;
1072 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1073 		if (dcn32_subvp_drr_admissable(dc, context))
1074 			schedulable = subvp_drr_schedulable(dc, context);
1075 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1076 			schedulable = subvp_vblank_schedulable(dc, context);
1077 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1078 			vactive_count > 0) {
1079 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1080 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1081 		// SubVP + VACTIVE currently unsupported
1082 		schedulable = false;
1083 	}
1084 	return schedulable;
1085 }
1086 
1087 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1088 {
1089 	int i;
1090 	int index = 0;
1091 
1092 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1093 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1094 
1095 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1096 				dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1097 			pipe_ctx->subvp_index = index++;
1098 		} else {
1099 			pipe_ctx->subvp_index = 0;
1100 		}
1101 	}
1102 }
1103 
1104 struct pipe_slice_table {
1105 	struct {
1106 		struct dc_stream_state *stream;
1107 		int slice_count;
1108 	} odm_combines[MAX_STREAMS];
1109 	int odm_combine_count;
1110 
1111 	struct {
1112 		struct pipe_ctx *pri_pipe;
1113 		struct dc_plane_state *plane;
1114 		int slice_count;
1115 	} mpc_combines[MAX_PLANES];
1116 	int mpc_combine_count;
1117 };
1118 
1119 
1120 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1121 		struct dc_stream_state *stream, int diff)
1122 {
1123 	int i;
1124 
1125 	for (i = 0; i < table->odm_combine_count; i++) {
1126 		if (table->odm_combines[i].stream == stream) {
1127 			table->odm_combines[i].slice_count += diff;
1128 			break;
1129 		}
1130 	}
1131 
1132 	if (i == table->odm_combine_count) {
1133 		table->odm_combine_count++;
1134 		table->odm_combines[i].stream = stream;
1135 		table->odm_combines[i].slice_count = diff;
1136 	}
1137 }
1138 
1139 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1140 		struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1141 {
1142 	int i;
1143 	struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1144 
1145 	for (i = 0; i < table->mpc_combine_count; i++) {
1146 		if (table->mpc_combines[i].plane == plane &&
1147 				table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1148 			table->mpc_combines[i].slice_count += diff;
1149 			break;
1150 		}
1151 	}
1152 
1153 	if (i == table->mpc_combine_count) {
1154 		table->mpc_combine_count++;
1155 		table->mpc_combines[i].plane = plane;
1156 		table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1157 		table->mpc_combines[i].slice_count = diff;
1158 	}
1159 }
1160 
1161 static void init_pipe_slice_table_from_context(
1162 		struct pipe_slice_table *table,
1163 		struct dc_state *context)
1164 {
1165 	int i, j;
1166 	struct pipe_ctx *otg_master;
1167 	struct pipe_ctx *dpp_pipes[MAX_PIPES];
1168 	struct dc_stream_state *stream;
1169 	int count;
1170 
1171 	memset(table, 0, sizeof(*table));
1172 
1173 	for (i = 0; i < context->stream_count; i++) {
1174 		stream = context->streams[i];
1175 		otg_master = resource_get_otg_master_for_stream(
1176 				&context->res_ctx, stream);
1177 		count = resource_get_odm_slice_count(otg_master);
1178 		update_slice_table_for_stream(table, stream, count);
1179 
1180 		count = resource_get_dpp_pipes_for_opp_head(otg_master,
1181 				&context->res_ctx, dpp_pipes);
1182 		for (j = 0; j < count; j++)
1183 			if (dpp_pipes[j]->plane_state)
1184 				update_slice_table_for_plane(table, dpp_pipes[j],
1185 						dpp_pipes[j]->plane_state, 1);
1186 	}
1187 }
1188 
1189 static bool update_pipe_slice_table_with_split_flags(
1190 		struct pipe_slice_table *table,
1191 		struct dc *dc,
1192 		struct dc_state *context,
1193 		struct vba_vars_st *vba,
1194 		int split[MAX_PIPES],
1195 		bool merge[MAX_PIPES])
1196 {
1197 	/* NOTE: we are deprecating the support for the concept of pipe splitting
1198 	 * or pipe merging. Instead we append slices to the end and remove
1199 	 * slices from the end. The following code converts a pipe split or
1200 	 * merge to an append or remove operation.
1201 	 *
1202 	 * For example:
1203 	 * When split flags describe the following pipe connection transition
1204 	 *
1205 	 * from:
1206 	 *  pipe 0 (split=2) -> pipe 1 (split=2)
1207 	 * to: (old behavior)
1208 	 *  pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1209 	 *
1210 	 * the code below actually does:
1211 	 *  pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1212 	 *
1213 	 * This is the new intended behavior and for future DCNs we will retire
1214 	 * the old concept completely.
1215 	 */
1216 	struct pipe_ctx *pipe;
1217 	bool odm;
1218 	int dc_pipe_idx, dml_pipe_idx = 0;
1219 	bool updated = false;
1220 
1221 	for (dc_pipe_idx = 0;
1222 			dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1223 		pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1224 		if (resource_is_pipe_type(pipe, FREE_PIPE))
1225 			continue;
1226 
1227 		if (merge[dc_pipe_idx]) {
1228 			if (resource_is_pipe_type(pipe, OPP_HEAD))
1229 				/* merging OPP head means reducing ODM slice
1230 				 * count by 1
1231 				 */
1232 				update_slice_table_for_stream(table, pipe->stream, -1);
1233 			else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1234 					resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1235 				/* merging DPP pipe of the first ODM slice means
1236 				 * reducing MPC slice count by 1
1237 				 */
1238 				update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1239 			updated = true;
1240 		}
1241 
1242 		if (split[dc_pipe_idx]) {
1243 			odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1244 					dm_odm_combine_mode_disabled;
1245 			if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1246 				update_slice_table_for_stream(
1247 						table, pipe->stream, split[dc_pipe_idx] - 1);
1248 			else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1249 				update_slice_table_for_plane(table, pipe,
1250 						pipe->plane_state, split[dc_pipe_idx] - 1);
1251 			updated = true;
1252 		}
1253 		dml_pipe_idx++;
1254 	}
1255 	return updated;
1256 }
1257 
1258 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1259 		struct pipe_slice_table *table)
1260 {
1261 	int i;
1262 
1263 	for (i = 0; i < table->odm_combine_count; i++)
1264 		resource_update_pipes_for_stream_with_slice_count(context,
1265 				dc->current_state, dc->res_pool,
1266 				table->odm_combines[i].stream,
1267 				table->odm_combines[i].slice_count);
1268 
1269 	for (i = 0; i < table->mpc_combine_count; i++)
1270 		resource_update_pipes_for_plane_with_slice_count(context,
1271 				dc->current_state, dc->res_pool,
1272 				table->mpc_combines[i].plane,
1273 				table->mpc_combines[i].slice_count);
1274 }
1275 
1276 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1277 		struct vba_vars_st *vba, int split[MAX_PIPES],
1278 		bool merge[MAX_PIPES])
1279 {
1280 	struct pipe_slice_table slice_table;
1281 	bool updated;
1282 
1283 	init_pipe_slice_table_from_context(&slice_table, context);
1284 	updated = update_pipe_slice_table_with_split_flags(
1285 			&slice_table, dc, context, vba,
1286 			split, merge);
1287 	update_pipes_with_slice_table(dc, context, &slice_table);
1288 	return updated;
1289 }
1290 
1291 static bool should_apply_odm_power_optimization(struct dc *dc,
1292 		struct dc_state *context, struct vba_vars_st *v, int *split,
1293 		bool *merge)
1294 {
1295 	struct dc_stream_state *stream = context->streams[0];
1296 	struct pipe_slice_table slice_table;
1297 	int i;
1298 
1299 	/*
1300 	 * this debug flag allows us to disable ODM power optimization feature
1301 	 * unconditionally. we force the feature off if this is set to false.
1302 	 */
1303 	if (!dc->debug.enable_single_display_2to1_odm_policy)
1304 		return false;
1305 
1306 	/* current design and test coverage is only limited to allow ODM power
1307 	 * optimization for single stream. Supporting it for multiple streams
1308 	 * use case would require additional algorithm to decide how to
1309 	 * optimize power consumption when there are not enough free pipes to
1310 	 * allocate for all the streams. This level of optimization would
1311 	 * require multiple attempts of revalidation to make an optimized
1312 	 * decision. Unfortunately We do not support revalidation flow in
1313 	 * current version of DML.
1314 	 */
1315 	if (context->stream_count != 1)
1316 		return false;
1317 
1318 	/*
1319 	 * Our hardware doesn't support ODM for HDMI TMDS
1320 	 */
1321 	if (dc_is_hdmi_signal(stream->signal))
1322 		return false;
1323 
1324 	/*
1325 	 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1326 	 * ODM segment has the same size.
1327 	 */
1328 	if (!is_h_timing_divisible_by_2(stream))
1329 		return false;
1330 
1331 	/*
1332 	 * No power benefits if the timing's pixel clock is not high enough to
1333 	 * raise display clock from minimum power state.
1334 	 */
1335 	if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1336 		return false;
1337 
1338 	if (dc->config.enable_windowed_mpo_odm) {
1339 		/*
1340 		 * ODM power optimization should only be allowed if the feature
1341 		 * can be seamlessly toggled off within an update. This would
1342 		 * require that the feature is applied on top of a minimal
1343 		 * state. A minimal state is defined as a state validated
1344 		 * without the need of pipe split. Therefore, when transition to
1345 		 * toggle the feature off, the same stream and plane
1346 		 * configuration can be supported by the pipe resource in the
1347 		 * first ODM slice alone without the need to acquire extra
1348 		 * resources.
1349 		 */
1350 		init_pipe_slice_table_from_context(&slice_table, context);
1351 		update_pipe_slice_table_with_split_flags(
1352 				&slice_table, dc, context, v,
1353 				split, merge);
1354 		for (i = 0; i < slice_table.mpc_combine_count; i++)
1355 			if (slice_table.mpc_combines[i].slice_count > 1)
1356 				return false;
1357 
1358 		for (i = 0; i < slice_table.odm_combine_count; i++)
1359 			if (slice_table.odm_combines[i].slice_count > 1)
1360 				return false;
1361 	} else {
1362 		/*
1363 		 * the new ODM power optimization feature reduces software
1364 		 * design limitation and allows ODM power optimization to be
1365 		 * supported even with presence of overlay planes. The new
1366 		 * feature is enabled based on enable_windowed_mpo_odm flag. If
1367 		 * the flag is not set, we limit our feature scope due to
1368 		 * previous software design limitation
1369 		 */
1370 		if (context->stream_status[0].plane_count != 1)
1371 			return false;
1372 
1373 		if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1374 				&stream->src, sizeof(struct rect)) != 0)
1375 			return false;
1376 
1377 		if (stream->src.width >= 5120 &&
1378 				stream->src.width > stream->dst.width)
1379 			return false;
1380 	}
1381 	return true;
1382 }
1383 
1384 static void try_odm_power_optimization_and_revalidate(
1385 		struct dc *dc,
1386 		struct dc_state *context,
1387 		display_e2e_pipe_params_st *pipes,
1388 		int *split,
1389 		bool *merge,
1390 		unsigned int *vlevel,
1391 		int pipe_cnt)
1392 {
1393 	int i;
1394 	unsigned int new_vlevel;
1395 	unsigned int cur_policy[MAX_PIPES];
1396 
1397 	for (i = 0; i < pipe_cnt; i++) {
1398 		cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1399 		pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1400 	}
1401 
1402 	new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1403 
1404 	if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1405 		memset(split, 0, MAX_PIPES * sizeof(int));
1406 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1407 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1408 		context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1409 	} else {
1410 		for (i = 0; i < pipe_cnt; i++)
1411 			pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1412 	}
1413 }
1414 
1415 static bool is_test_pattern_enabled(
1416 		struct dc_state *context)
1417 {
1418 	int i;
1419 
1420 	for (i = 0; i < context->stream_count; i++) {
1421 		if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1422 			return true;
1423 	}
1424 
1425 	return false;
1426 }
1427 
1428 static void dcn32_full_validate_bw_helper(struct dc *dc,
1429 				   struct dc_state *context,
1430 				   display_e2e_pipe_params_st *pipes,
1431 				   int *vlevel,
1432 				   int *split,
1433 				   bool *merge,
1434 				   int *pipe_cnt)
1435 {
1436 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1437 	unsigned int dc_pipe_idx = 0;
1438 	int i = 0;
1439 	bool found_supported_config = false;
1440 	int vlevel_temp = 0;
1441 
1442 	dc_assert_fp_enabled();
1443 
1444 	/*
1445 	 * DML favors voltage over p-state, but we're more interested in
1446 	 * supporting p-state over voltage. We can't support p-state in
1447 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1448 	 * Override present for testing.
1449 	 */
1450 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1451 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1452 			dm_prefetch_support_uclk_fclk_and_stutter;
1453 	else
1454 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1455 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1456 
1457 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1458 	/* This may adjust vlevel and maxMpcComb */
1459 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1460 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1461 		vba->VoltageLevel = *vlevel;
1462 	}
1463 
1464 	/* Conditions for setting up phantom pipes for SubVP:
1465 	 * 1. Not force disable SubVP
1466 	 * 2. Full update (i.e. !fast_validate)
1467 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1468 	 * 4. Display configuration passes validation
1469 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1470 	 */
1471 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1472 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1473 		(*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1474 				vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1475 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1476 	    dc->debug.force_subvp_mclk_switch)) {
1477 
1478 		dcn32_merge_pipes_for_subvp(dc, context);
1479 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1480 
1481 		vlevel_temp = *vlevel;
1482 		/* to re-initialize viewport after the pipe merge */
1483 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1484 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1485 
1486 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1487 				continue;
1488 
1489 			resource_build_scaling_params(pipe_ctx);
1490 		}
1491 
1492 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1493 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1494 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1495 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1496 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1497 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1498 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1499 			 * enough to support MCLK switching.
1500 			 */
1501 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1502 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1503 					dm_prefetch_support_uclk_fclk_and_stutter) {
1504 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1505 								dm_prefetch_support_fclk_and_stutter;
1506 				/* There are params (such as FabricClock) that need to be recalculated
1507 				 * after validation fails (otherwise it will be 0). Calculation for
1508 				 * phantom vactive requires call into DML, so we must ensure all the
1509 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1510 				 */
1511 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1512 			}
1513 
1514 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1515 
1516 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1517 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1518 			// so the phantom pipe DLG params can be assigned correctly.
1519 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1520 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1521 
1522 			/* Check that vlevel requested supports pstate or not
1523 			 * if not, select the lowest vlevel that supports it
1524 			 */
1525 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1526 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1527 					*vlevel = i;
1528 					break;
1529 				}
1530 			}
1531 
1532 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1533 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1534 				found_supported_config = true;
1535 			if (found_supported_config) {
1536 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1537 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1538 					/* find lowest vlevel that supports the config */
1539 					for (i = *vlevel; i >= 0; i--) {
1540 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1541 							*vlevel = i;
1542 						} else {
1543 							break;
1544 						}
1545 					}
1546 				}
1547 			}
1548 		}
1549 
1550 		if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1551 			found_supported_config = false;
1552 
1553 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1554 		// remove phantom pipes and repopulate dml pipes
1555 		if (!found_supported_config) {
1556 			dc_state_remove_phantom_streams_and_planes(dc, context);
1557 			dc_state_release_phantom_streams_and_planes(dc, context);
1558 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1559 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1560 
1561 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1562 			/* This may adjust vlevel and maxMpcComb */
1563 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1564 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1565 				vba->VoltageLevel = *vlevel;
1566 			}
1567 		} else {
1568 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1569 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1570 
1571 			/* Call validate_apply_pipe_split flags after calling DML getters for
1572 			 * phantom dlg params, or some of the VBA params indicating pipe split
1573 			 * can be overwritten by the getters.
1574 			 *
1575 			 * When setting up SubVP config, all pipes are merged before attempting to
1576 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1577 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1578 			 */
1579 			memset(split, 0, MAX_PIPES * sizeof(int));
1580 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1581 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1582 			vba->VoltageLevel = *vlevel;
1583 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1584 			// until driver has acquired the DMCUB lock to do it safely.
1585 			assign_subvp_index(dc, context);
1586 		}
1587 	}
1588 
1589 	if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1590 		try_odm_power_optimization_and_revalidate(
1591 				dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1592 
1593 }
1594 
1595 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1596 {
1597 	int i;
1598 
1599 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1600 		if (!context->res_ctx.pipe_ctx[i].stream)
1601 			continue;
1602 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1603 			return true;
1604 	}
1605 	return false;
1606 }
1607 
1608 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1609 {
1610 	struct dc_crtc_timing patched_crtc_timing;
1611 	uint32_t asic_blank_end   = 0;
1612 	uint32_t asic_blank_start = 0;
1613 	uint32_t newVstartup	  = 0;
1614 
1615 	patched_crtc_timing = *dc_crtc_timing;
1616 
1617 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1618 		if (patched_crtc_timing.v_front_porch < 2)
1619 			patched_crtc_timing.v_front_porch = 2;
1620 	} else {
1621 		if (patched_crtc_timing.v_front_porch < 1)
1622 			patched_crtc_timing.v_front_porch = 1;
1623 	}
1624 
1625 	/* blank_start = frame end - front porch */
1626 	asic_blank_start = patched_crtc_timing.v_total -
1627 					patched_crtc_timing.v_front_porch;
1628 
1629 	/* blank_end = blank_start - active */
1630 	asic_blank_end = asic_blank_start -
1631 					patched_crtc_timing.v_border_bottom -
1632 					patched_crtc_timing.v_addressable -
1633 					patched_crtc_timing.v_border_top;
1634 
1635 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1636 
1637 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1638 }
1639 
1640 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1641 				       display_e2e_pipe_params_st *pipes,
1642 				       int pipe_cnt, int vlevel)
1643 {
1644 	int i, pipe_idx, active_hubp_count = 0;
1645 	bool usr_retraining_support = false;
1646 	bool unbounded_req_enabled = false;
1647 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1648 
1649 	dc_assert_fp_enabled();
1650 
1651 	/* Writeback MCIF_WB arbitration parameters */
1652 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1653 
1654 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1655 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1656 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1657 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1658 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1659 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1660 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1661 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1662 					!= dm_dram_clock_change_unsupported;
1663 
1664 	/* Pstate change might not be supported by hardware, but it might be
1665 	 * possible with firmware driven vertical blank stretching.
1666 	 */
1667 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1668 
1669 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1670 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1671 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1672 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1673 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1674 	else
1675 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1676 
1677 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1678 	ASSERT(usr_retraining_support);
1679 
1680 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1681 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1682 
1683 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1684 
1685 	if (unbounded_req_enabled && pipe_cnt > 1) {
1686 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1687 		ASSERT(false);
1688 		unbounded_req_enabled = false;
1689 	}
1690 
1691 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1692 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1693 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1694 
1695 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1696 		if (!context->res_ctx.pipe_ctx[i].stream)
1697 			continue;
1698 		if (context->res_ctx.pipe_ctx[i].plane_state)
1699 			active_hubp_count++;
1700 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1701 				pipe_idx);
1702 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1703 				pipe_idx);
1704 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1705 				pipe_idx);
1706 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1707 				pipe_idx);
1708 
1709 		if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1710 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1711 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1712 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1713 		} else {
1714 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1715 							pipe_idx);
1716 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1717 		}
1718 
1719 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1720 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1721 		if (context->res_ctx.pipe_ctx[i].plane_state)
1722 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1723 		else
1724 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1725 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1726 
1727 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1728 
1729 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1730 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1731 		else
1732 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1733 
1734 		/* MALL Allocation Sizes */
1735 		/* count from active, top pipes per plane only */
1736 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1737 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1738 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1739 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1740 			/* SS: all active surfaces stored in MALL */
1741 			if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1742 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1743 
1744 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1745 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1746 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1747 				}
1748 			} else {
1749 				/* SUBVP: phantom surfaces only stored in MALL */
1750 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1751 			}
1752 		}
1753 
1754 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1755 			dcn20_adjust_freesync_v_startup(
1756 				&context->res_ctx.pipe_ctx[i].stream->timing,
1757 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1758 
1759 		pipe_idx++;
1760 	}
1761 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1762 	if (!active_hubp_count) {
1763 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1764 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1765 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1766 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1767 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1768 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1769 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1770 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1771 	}
1772 	/*save a original dppclock copy*/
1773 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1774 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1775 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1776 			* 1000;
1777 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1778 			* 1000;
1779 
1780 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1781 
1782 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1783 
1784 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1785 		if (context->res_ctx.pipe_ctx[i].stream)
1786 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1787 	}
1788 
1789 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1790 
1791 		if (!context->res_ctx.pipe_ctx[i].stream)
1792 			continue;
1793 
1794 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1795 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1796 				pipe_cnt, pipe_idx);
1797 
1798 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1799 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1800 		pipe_idx++;
1801 	}
1802 }
1803 
1804 static struct pipe_ctx *dcn32_find_split_pipe(
1805 		struct dc *dc,
1806 		struct dc_state *context,
1807 		int old_index)
1808 {
1809 	struct pipe_ctx *pipe = NULL;
1810 	int i;
1811 
1812 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1813 		pipe = &context->res_ctx.pipe_ctx[old_index];
1814 		pipe->pipe_idx = old_index;
1815 	}
1816 
1817 	if (!pipe)
1818 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1819 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1820 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1821 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1822 					pipe = &context->res_ctx.pipe_ctx[i];
1823 					pipe->pipe_idx = i;
1824 					break;
1825 				}
1826 			}
1827 		}
1828 
1829 	/*
1830 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1831 	 * Add for debugging transient underflow during topology updates:
1832 	 * ASSERT(pipe);
1833 	 */
1834 	if (!pipe)
1835 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1836 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1837 				pipe = &context->res_ctx.pipe_ctx[i];
1838 				pipe->pipe_idx = i;
1839 				break;
1840 			}
1841 		}
1842 
1843 	return pipe;
1844 }
1845 
1846 static bool dcn32_split_stream_for_mpc_or_odm(
1847 		const struct dc *dc,
1848 		struct resource_context *res_ctx,
1849 		struct pipe_ctx *pri_pipe,
1850 		struct pipe_ctx *sec_pipe,
1851 		bool odm)
1852 {
1853 	int pipe_idx = sec_pipe->pipe_idx;
1854 	const struct resource_pool *pool = dc->res_pool;
1855 
1856 	DC_LOGGER_INIT(dc->ctx->logger);
1857 
1858 	if (odm && pri_pipe->plane_state) {
1859 		/* ODM + window MPO, where MPO window is on left half only */
1860 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1861 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1862 
1863 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1864 					__func__,
1865 					pri_pipe->pipe_idx);
1866 			return true;
1867 		}
1868 
1869 		/* ODM + window MPO, where MPO window is on right half only */
1870 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1871 
1872 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1873 					__func__,
1874 					pri_pipe->pipe_idx);
1875 			return true;
1876 		}
1877 	}
1878 
1879 	*sec_pipe = *pri_pipe;
1880 
1881 	sec_pipe->pipe_idx = pipe_idx;
1882 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1883 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1884 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1885 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1886 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1887 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1888 	sec_pipe->stream_res.dsc = NULL;
1889 	if (odm) {
1890 		if (pri_pipe->next_odm_pipe) {
1891 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1892 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1893 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1894 		}
1895 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1896 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1897 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1898 		}
1899 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1900 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1901 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1902 		}
1903 		pri_pipe->next_odm_pipe = sec_pipe;
1904 		sec_pipe->prev_odm_pipe = pri_pipe;
1905 		ASSERT(sec_pipe->top_pipe == NULL);
1906 
1907 		if (!sec_pipe->top_pipe)
1908 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1909 		else
1910 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1911 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1912 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1913 			ASSERT(sec_pipe->stream_res.dsc);
1914 			if (sec_pipe->stream_res.dsc == NULL)
1915 				return false;
1916 		}
1917 	} else {
1918 		if (pri_pipe->bottom_pipe) {
1919 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1920 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1921 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1922 		}
1923 		pri_pipe->bottom_pipe = sec_pipe;
1924 		sec_pipe->top_pipe = pri_pipe;
1925 
1926 		ASSERT(pri_pipe->plane_state);
1927 	}
1928 
1929 	return true;
1930 }
1931 
1932 bool dcn32_internal_validate_bw(struct dc *dc,
1933 				struct dc_state *context,
1934 				display_e2e_pipe_params_st *pipes,
1935 				int *pipe_cnt_out,
1936 				int *vlevel_out,
1937 				bool fast_validate)
1938 {
1939 	bool out = false;
1940 	bool repopulate_pipes = false;
1941 	int split[MAX_PIPES] = { 0 };
1942 	bool merge[MAX_PIPES] = { false };
1943 	bool newly_split[MAX_PIPES] = { false };
1944 	int pipe_cnt, i, pipe_idx;
1945 	int vlevel = context->bw_ctx.dml.soc.num_states;
1946 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1947 
1948 	dc_assert_fp_enabled();
1949 
1950 	ASSERT(pipes);
1951 	if (!pipes)
1952 		return false;
1953 
1954 	// For each full update, remove all existing phantom pipes first
1955 	dc_state_remove_phantom_streams_and_planes(dc, context);
1956 	dc_state_release_phantom_streams_and_planes(dc, context);
1957 
1958 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1959 
1960 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1961 
1962 	if (!pipe_cnt) {
1963 		out = true;
1964 		goto validate_out;
1965 	}
1966 
1967 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1968 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1969 
1970 	if (!fast_validate)
1971 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1972 
1973 	if (fast_validate ||
1974 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1975 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1976 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1977 		/*
1978 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1979 		 * tried alternate prefetch modes during full validation.
1980 		 *
1981 		 * If mode is unsupported or there is no p-state support, then
1982 		 * fall back to favouring voltage.
1983 		 *
1984 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1985 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1986 		 */
1987 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1988 			dm_prefetch_support_none;
1989 
1990 		context->bw_ctx.dml.validate_max_state = fast_validate;
1991 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1992 
1993 		context->bw_ctx.dml.validate_max_state = false;
1994 
1995 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1996 			memset(split, 0, sizeof(split));
1997 			memset(merge, 0, sizeof(merge));
1998 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1999 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
2000 			vba->VoltageLevel = vlevel;
2001 		}
2002 	}
2003 
2004 	dml_log_mode_support_params(&context->bw_ctx.dml);
2005 
2006 	if (vlevel == context->bw_ctx.dml.soc.num_states)
2007 		goto validate_fail;
2008 
2009 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2010 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2011 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2012 
2013 		if (!pipe->stream)
2014 			continue;
2015 
2016 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2017 				&& !dc->config.enable_windowed_mpo_odm
2018 				&& pipe->plane_state && mpo_pipe
2019 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
2020 						&pipe->stream->src,
2021 						sizeof(struct rect)) != 0) {
2022 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2023 			goto validate_fail;
2024 		}
2025 		pipe_idx++;
2026 	}
2027 
2028 	if (dc->config.enable_windowed_mpo_odm) {
2029 		repopulate_pipes = update_pipes_with_split_flags(
2030 				dc, context, vba, split, merge);
2031 	} else {
2032 		/* the code below will be removed once windowed mpo odm is fully
2033 		 * enabled.
2034 		 */
2035 		/* merge pipes if necessary */
2036 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2037 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2038 
2039 			/*skip pipes that don't need merging*/
2040 			if (!merge[i])
2041 				continue;
2042 
2043 			/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
2044 			if (pipe->prev_odm_pipe) {
2045 				/*split off odm pipe*/
2046 				pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
2047 				if (pipe->next_odm_pipe)
2048 					pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
2049 
2050 				/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
2051 				if (pipe->bottom_pipe) {
2052 					if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
2053 						/*MPC split rules will handle this case*/
2054 						pipe->bottom_pipe->top_pipe = NULL;
2055 					} else {
2056 						/* when merging an ODM pipes, the bottom MPC pipe must now point to
2057 						 * the previous ODM pipe and its associated stream assets
2058 						 */
2059 						if (pipe->prev_odm_pipe->bottom_pipe) {
2060 							/* 3 plane MPO*/
2061 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
2062 							pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
2063 						} else {
2064 							/* 2 plane MPO*/
2065 							pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
2066 							pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
2067 						}
2068 
2069 						memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
2070 					}
2071 				}
2072 
2073 				if (pipe->top_pipe) {
2074 					pipe->top_pipe->bottom_pipe = NULL;
2075 				}
2076 
2077 				pipe->bottom_pipe = NULL;
2078 				pipe->next_odm_pipe = NULL;
2079 				pipe->plane_state = NULL;
2080 				pipe->stream = NULL;
2081 				pipe->top_pipe = NULL;
2082 				pipe->prev_odm_pipe = NULL;
2083 				if (pipe->stream_res.dsc)
2084 					dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2085 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2086 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2087 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2088 				repopulate_pipes = true;
2089 			} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2090 				struct pipe_ctx *top_pipe = pipe->top_pipe;
2091 				struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2092 
2093 				top_pipe->bottom_pipe = bottom_pipe;
2094 				if (bottom_pipe)
2095 					bottom_pipe->top_pipe = top_pipe;
2096 
2097 				pipe->top_pipe = NULL;
2098 				pipe->bottom_pipe = NULL;
2099 				pipe->plane_state = NULL;
2100 				pipe->stream = NULL;
2101 				memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2102 				memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2103 				memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2104 				repopulate_pipes = true;
2105 			} else
2106 				ASSERT(0); /* Should never try to merge master pipe */
2107 
2108 		}
2109 
2110 		for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2111 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2112 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2113 			struct pipe_ctx *hsplit_pipe = NULL;
2114 			bool odm;
2115 			int old_index = -1;
2116 
2117 			if (!pipe->stream || newly_split[i])
2118 				continue;
2119 
2120 			pipe_idx++;
2121 			odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2122 
2123 			if (!pipe->plane_state && !odm)
2124 				continue;
2125 
2126 			if (split[i]) {
2127 				if (odm) {
2128 					if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2129 						old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2130 					else if (old_pipe->next_odm_pipe)
2131 						old_index = old_pipe->next_odm_pipe->pipe_idx;
2132 				} else {
2133 					if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2134 							old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2135 						old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2136 					else if (old_pipe->bottom_pipe &&
2137 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2138 						old_index = old_pipe->bottom_pipe->pipe_idx;
2139 				}
2140 				hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2141 				ASSERT(hsplit_pipe);
2142 				if (!hsplit_pipe)
2143 					goto validate_fail;
2144 
2145 				if (!dcn32_split_stream_for_mpc_or_odm(
2146 						dc, &context->res_ctx,
2147 						pipe, hsplit_pipe, odm))
2148 					goto validate_fail;
2149 
2150 				newly_split[hsplit_pipe->pipe_idx] = true;
2151 				repopulate_pipes = true;
2152 			}
2153 			if (split[i] == 4) {
2154 				struct pipe_ctx *pipe_4to1;
2155 
2156 				if (odm && old_pipe->next_odm_pipe)
2157 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2158 				else if (!odm && old_pipe->bottom_pipe &&
2159 							old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2160 					old_index = old_pipe->bottom_pipe->pipe_idx;
2161 				else
2162 					old_index = -1;
2163 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2164 				ASSERT(pipe_4to1);
2165 				if (!pipe_4to1)
2166 					goto validate_fail;
2167 				if (!dcn32_split_stream_for_mpc_or_odm(
2168 						dc, &context->res_ctx,
2169 						pipe, pipe_4to1, odm))
2170 					goto validate_fail;
2171 				newly_split[pipe_4to1->pipe_idx] = true;
2172 
2173 				if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2174 						&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2175 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2176 				else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2177 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2178 						old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2179 					old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2180 				else
2181 					old_index = -1;
2182 				pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2183 				ASSERT(pipe_4to1);
2184 				if (!pipe_4to1)
2185 					goto validate_fail;
2186 				if (!dcn32_split_stream_for_mpc_or_odm(
2187 						dc, &context->res_ctx,
2188 						hsplit_pipe, pipe_4to1, odm))
2189 					goto validate_fail;
2190 				newly_split[pipe_4to1->pipe_idx] = true;
2191 			}
2192 			if (odm)
2193 				dcn20_build_mapped_resource(dc, context, pipe->stream);
2194 		}
2195 
2196 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2197 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2198 
2199 			if (pipe->plane_state) {
2200 				if (!resource_build_scaling_params(pipe))
2201 					goto validate_fail;
2202 			}
2203 		}
2204 	}
2205 
2206 	/* Actual dsc count per stream dsc validation*/
2207 	if (!dcn20_validate_dsc(dc, context)) {
2208 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2209 		goto validate_fail;
2210 	}
2211 
2212 	if (repopulate_pipes) {
2213 		int flag_max_mpc_comb = vba->maxMpcComb;
2214 		int flag_vlevel = vlevel;
2215 		int i;
2216 
2217 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2218 		if (!dc->config.enable_windowed_mpo_odm)
2219 			dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2220 
2221 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2222 		 * we have to re-calculate the DET allocation and run through DML once more to
2223 		 * ensure all the params are calculated correctly. We do not need to run the
2224 		 * pipe split check again after this call (pipes are already split / merged).
2225 		 * */
2226 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2227 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2228 
2229 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2230 
2231 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
2232 			/* failed after DET size changes */
2233 			goto validate_fail;
2234 		} else if (flag_max_mpc_comb == 0 &&
2235 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2236 			/* check the context constructed with pipe split flags is still valid*/
2237 			bool flags_valid = false;
2238 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2239 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2240 					vba->maxMpcComb = flag_max_mpc_comb;
2241 					vba->VoltageLevel = i;
2242 					vlevel = i;
2243 					flags_valid = true;
2244 					break;
2245 				}
2246 			}
2247 
2248 			/* this should never happen */
2249 			if (!flags_valid)
2250 				goto validate_fail;
2251 		}
2252 	}
2253 	*vlevel_out = vlevel;
2254 	*pipe_cnt_out = pipe_cnt;
2255 
2256 	out = true;
2257 	goto validate_out;
2258 
2259 validate_fail:
2260 	out = false;
2261 
2262 validate_out:
2263 	return out;
2264 }
2265 
2266 
2267 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2268 				display_e2e_pipe_params_st *pipes,
2269 				int pipe_cnt,
2270 				int vlevel)
2271 {
2272 	int i, pipe_idx, vlevel_temp = 0;
2273 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2274 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2275 	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2276 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2277 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2278 			dm_dram_clock_change_unsupported;
2279 	unsigned int dummy_latency_index = 0;
2280 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2281 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2282 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2283 	unsigned int min_dram_speed_mts_margin;
2284 	bool need_fclk_lat_as_dummy = false;
2285 	bool is_subvp_p_drr = false;
2286 	struct dc_stream_state *fpo_candidate_stream = NULL;
2287 
2288 	dc_assert_fp_enabled();
2289 
2290 	/* need to find dummy latency index for subvp */
2291 	if (subvp_in_use) {
2292 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2293 		if (!pstate_en) {
2294 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2295 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2296 			pstate_en = true;
2297 			is_subvp_p_drr = true;
2298 		}
2299 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2300 						context, pipes, pipe_cnt, vlevel);
2301 
2302 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2303 		 * scheduled correctly to account for dummy pstate.
2304 		 */
2305 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2306 			need_fclk_lat_as_dummy = true;
2307 			context->bw_ctx.dml.soc.fclk_change_latency_us =
2308 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2309 		}
2310 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2311 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2312 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2313 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2314 		if (is_subvp_p_drr) {
2315 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2316 		}
2317 	}
2318 
2319 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2320 	for (i = 0; i < context->stream_count; i++) {
2321 		if (context->streams[i])
2322 			context->streams[i]->fpo_in_use = false;
2323 	}
2324 
2325 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2326 			pstate_en && vlevel != 0)) {
2327 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2328 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2329 		if (fpo_candidate_stream) {
2330 			fpo_candidate_stream->fpo_in_use = true;
2331 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2332 		}
2333 
2334 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2335 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2336 				context, pipes, pipe_cnt, vlevel);
2337 
2338 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2339 			 * we reinstate the original dram_clock_change_latency_us on the context
2340 			 * and all variables that may have changed up to this point, except the
2341 			 * newly found dummy_latency_index
2342 			 */
2343 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2344 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2345 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2346 			 * prefetch is scheduled correctly to account for dummy pstate.
2347 			 */
2348 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2349 				need_fclk_lat_as_dummy = true;
2350 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2351 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2352 			}
2353 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2354 			if (vlevel_temp < vlevel) {
2355 				vlevel = vlevel_temp;
2356 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2357 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2358 				pstate_en = true;
2359 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2360 			} else {
2361 				/* Restore FCLK latency and re-run validation to go back to original validation
2362 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2363 				 * voltage level)
2364 				 */
2365 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2366 				for (i = 0; i < context->stream_count; i++) {
2367 					if (context->streams[i])
2368 						context->streams[i]->fpo_in_use = false;
2369 				}
2370 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2371 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2372 			}
2373 		}
2374 	}
2375 
2376 	/* Set B:
2377 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2378 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2379 	 * calculations to cover bootup clocks.
2380 	 * DCFCLK: soc.clock_limits[2] when available
2381 	 * UCLK: soc.clock_limits[2] when available
2382 	 */
2383 	if (dcn3_2_soc.num_states > 2) {
2384 		vlevel_temp = 2;
2385 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2386 	} else
2387 		dcfclk = 615; //DCFCLK Vmin_lv
2388 
2389 	pipes[0].clks_cfg.voltage = vlevel_temp;
2390 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2391 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2392 
2393 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2394 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2395 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2396 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2397 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2398 	}
2399 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2400 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2401 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2402 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2403 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2404 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2405 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2406 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2407 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2408 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2409 
2410 	/* Set D:
2411 	 * All clocks min.
2412 	 * DCFCLK: Min, as reported by PM FW when available
2413 	 * UCLK  : Min, as reported by PM FW when available
2414 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2415 	 */
2416 
2417 	/*
2418 	if (dcn3_2_soc.num_states > 2) {
2419 		vlevel_temp = 0;
2420 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2421 	} else
2422 		dcfclk = 615; //DCFCLK Vmin_lv
2423 
2424 	pipes[0].clks_cfg.voltage = vlevel_temp;
2425 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2426 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2427 
2428 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2429 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2430 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2431 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2432 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2433 	}
2434 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2435 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2436 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2437 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2438 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2439 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2440 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2441 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2442 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2443 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2444 	*/
2445 
2446 	/* Set C, for Dummy P-State:
2447 	 * All clocks min.
2448 	 * DCFCLK: Min, as reported by PM FW, when available
2449 	 * UCLK  : Min,  as reported by PM FW, when available
2450 	 * pstate latency as per UCLK state dummy pstate latency
2451 	 */
2452 
2453 	// For Set A and Set C use values from validation
2454 	pipes[0].clks_cfg.voltage = vlevel;
2455 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2456 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2457 
2458 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2459 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2460 	}
2461 
2462 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2463 		min_dram_speed_mts = dram_speed_from_validation;
2464 		min_dram_speed_mts_margin = 160;
2465 
2466 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2467 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2468 
2469 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2470 			dm_dram_clock_change_unsupported) {
2471 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2472 
2473 			min_dram_speed_mts =
2474 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2475 		}
2476 
2477 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2478 			/* find largest table entry that is lower than dram speed,
2479 			 * but lower than DPM0 still uses DPM0
2480 			 */
2481 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2482 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2483 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2484 					break;
2485 		}
2486 
2487 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2488 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2489 
2490 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2491 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2492 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2493 	}
2494 
2495 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2496 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2497 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2498 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2499 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2500 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2501 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2502 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2503 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2504 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2505 	 * value.
2506 	 */
2507 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2508 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2509 
2510 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2511 		/* The only difference between A and C is p-state latency, if p-state is not supported
2512 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2513 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2514 		 */
2515 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2516 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2517 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2518 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2519 		 */
2520 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2521 	} else {
2522 		/* Set A:
2523 		 * All clocks min.
2524 		 * DCFCLK: Min, as reported by PM FW, when available
2525 		 * UCLK: Min, as reported by PM FW, when available
2526 		 */
2527 
2528 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2529 		 */
2530 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2531 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2532 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2533 
2534 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2535 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2536 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2537 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2538 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2539 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2540 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2541 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2544 	}
2545 
2546 	/* Make set D = set A since we do not optimized watermarks for MALL */
2547 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2548 
2549 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2550 		if (!context->res_ctx.pipe_ctx[i].stream)
2551 			continue;
2552 
2553 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2554 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2555 
2556 		if (dc->config.forced_clocks) {
2557 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2558 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2559 		}
2560 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2561 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2562 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2563 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2564 
2565 		pipe_idx++;
2566 	}
2567 
2568 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2569 
2570 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2571 	if (need_fclk_lat_as_dummy)
2572 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2573 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2574 
2575 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2576 
2577 	if (!pstate_en)
2578 		/* Restore full p-state latency */
2579 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2580 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2581 
2582 	/* revert fclk lat changes if required */
2583 	if (need_fclk_lat_as_dummy)
2584 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2585 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2586 }
2587 
2588 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2589 		unsigned int *optimal_dcfclk,
2590 		unsigned int *optimal_fclk)
2591 {
2592 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2593 
2594 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2595 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2596 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2597 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2598 
2599 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2600 
2601 	if (optimal_fclk)
2602 		*optimal_fclk = bw_from_dram /
2603 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2604 
2605 	if (optimal_dcfclk)
2606 		*optimal_dcfclk =  bw_from_dram /
2607 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2608 }
2609 
2610 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2611 		unsigned int index)
2612 {
2613 	int i;
2614 
2615 	if (*num_entries == 0)
2616 		return;
2617 
2618 	for (i = index; i < *num_entries - 1; i++) {
2619 		table[i] = table[i + 1];
2620 	}
2621 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2622 }
2623 
2624 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2625 {
2626 	int i;
2627 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2628 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2629 
2630 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2631 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2632 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2633 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2634 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2635 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2636 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2637 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2638 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2639 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2640 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2641 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2642 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2643 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2644 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2645 	}
2646 
2647 	/* Scan through clock values we currently have and if they are 0,
2648 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2649 	 *
2650 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2651 	 *  0, will cause it to skip building the clock table.
2652 	 */
2653 	if (max_dcfclk_mhz == 0)
2654 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2655 	if (max_dispclk_mhz == 0)
2656 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2657 	if (max_dtbclk_mhz == 0)
2658 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2659 	if (max_uclk_mhz == 0)
2660 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2661 }
2662 
2663 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2664 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2665 {
2666 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2667 	*first_entry = *second_entry;
2668 	*second_entry = temp_entry;
2669 }
2670 
2671 /*
2672  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2673  */
2674 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2675 {
2676 	unsigned int start_index = 0;
2677 	unsigned int end_index = 0;
2678 	unsigned int current_bw = 0;
2679 
2680 	for (int i = 0; i < (*num_entries - 1); i++) {
2681 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2682 			current_bw = table[i].net_bw_in_kbytes_sec;
2683 			start_index = i;
2684 			end_index = ++i;
2685 
2686 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2687 				end_index = ++i;
2688 		}
2689 
2690 		if (start_index != end_index) {
2691 			for (int j = start_index; j < end_index; j++) {
2692 				for (int k = start_index; k < end_index; k++) {
2693 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2694 						swap_table_entries(&table[k], &table[k+1]);
2695 				}
2696 			}
2697 		}
2698 
2699 		start_index = 0;
2700 		end_index = 0;
2701 
2702 	}
2703 }
2704 
2705 /*
2706  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2707  *                               and remove entries that do not
2708  */
2709 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2710 {
2711 	for (int i = 0; i < (*num_entries - 1); i++) {
2712 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2713 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2714 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2715 				remove_entry_from_table_at_index(table, num_entries, i);
2716 		}
2717 	}
2718 }
2719 
2720 /*
2721  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2722  * Input:
2723  *	max_clk_limit - struct containing the desired clock timings
2724  * Output:
2725  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2726  * Return: 0 upon success, non-zero for failure
2727  */
2728 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2729 		struct clk_limit_table_entry *curr_clk_limit)
2730 {
2731 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2732 		return -1; //invalid parameters
2733 
2734 	//only overwrite if desired max clock frequency is initialized
2735 	if (max_clk_limit->dcfclk_mhz != 0)
2736 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2737 
2738 	if (max_clk_limit->fclk_mhz != 0)
2739 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2740 
2741 	if (max_clk_limit->memclk_mhz != 0)
2742 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2743 
2744 	if (max_clk_limit->socclk_mhz != 0)
2745 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2746 
2747 	if (max_clk_limit->dtbclk_mhz != 0)
2748 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2749 
2750 	if (max_clk_limit->dispclk_mhz != 0)
2751 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2752 
2753 	return 0;
2754 }
2755 
2756 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2757 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2758 {
2759 	int i, j;
2760 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2761 	struct clk_limit_table_entry max_clk_data = {0};
2762 
2763 	unsigned int min_dcfclk_mhz = 399, min_fclk_mhz = 599;
2764 
2765 	static const unsigned int num_dcfclk_stas = 5;
2766 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2767 
2768 	unsigned int num_uclk_dpms = 0;
2769 	unsigned int num_fclk_dpms = 0;
2770 	unsigned int num_dcfclk_dpms = 0;
2771 
2772 	unsigned int num_dc_uclk_dpms = 0;
2773 	unsigned int num_dc_fclk_dpms = 0;
2774 	unsigned int num_dc_dcfclk_dpms = 0;
2775 
2776 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2777 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2778 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2779 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2780 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2781 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2782 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2783 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2784 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2785 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2786 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2787 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2788 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2789 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2790 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2791 
2792 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2793 			num_uclk_dpms++;
2794 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2795 				num_dc_uclk_dpms++;
2796 		}
2797 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2798 			num_fclk_dpms++;
2799 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2800 				num_dc_fclk_dpms++;
2801 		}
2802 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2803 			num_dcfclk_dpms++;
2804 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2805 				num_dc_dcfclk_dpms++;
2806 		}
2807 	}
2808 
2809 	if (!disable_dc_mode_overwrite) {
2810 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2811 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2812 		num_uclk_dpms = num_dc_uclk_dpms;
2813 		num_fclk_dpms = num_dc_fclk_dpms;
2814 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2815 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2816 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2817 	}
2818 
2819 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2820 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2821 
2822 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2823 		return -1;
2824 
2825 	if (max_clk_data.dppclk_mhz == 0)
2826 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2827 
2828 	if (max_clk_data.fclk_mhz == 0)
2829 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2830 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2831 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2832 
2833 	if (max_clk_data.phyclk_mhz == 0)
2834 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2835 
2836 	*num_entries = 0;
2837 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2838 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2839 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2840 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2841 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2842 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2843 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2844 
2845 	// Insert all the DCFCLK STAs
2846 	for (i = 0; i < num_dcfclk_stas; i++) {
2847 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2848 		entry.fabricclk_mhz = 0;
2849 		entry.dram_speed_mts = 0;
2850 
2851 		get_optimal_ntuple(&entry);
2852 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2853 		insert_entry_into_table_sorted(table, num_entries, &entry);
2854 	}
2855 
2856 	// Insert the max DCFCLK
2857 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2858 	entry.fabricclk_mhz = 0;
2859 	entry.dram_speed_mts = 0;
2860 
2861 	get_optimal_ntuple(&entry);
2862 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2863 	insert_entry_into_table_sorted(table, num_entries, &entry);
2864 
2865 	// Insert the UCLK DPMS
2866 	for (i = 0; i < num_uclk_dpms; i++) {
2867 		entry.dcfclk_mhz = 0;
2868 		entry.fabricclk_mhz = 0;
2869 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2870 
2871 		get_optimal_ntuple(&entry);
2872 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2873 		insert_entry_into_table_sorted(table, num_entries, &entry);
2874 	}
2875 
2876 	// If FCLK is coarse grained, insert individual DPMs.
2877 	if (num_fclk_dpms > 2) {
2878 		for (i = 0; i < num_fclk_dpms; i++) {
2879 			entry.dcfclk_mhz = 0;
2880 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2881 			entry.dram_speed_mts = 0;
2882 
2883 			get_optimal_ntuple(&entry);
2884 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2885 			insert_entry_into_table_sorted(table, num_entries, &entry);
2886 		}
2887 	}
2888 	// If FCLK fine grained, only insert max
2889 	else {
2890 		entry.dcfclk_mhz = 0;
2891 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2892 		entry.dram_speed_mts = 0;
2893 
2894 		get_optimal_ntuple(&entry);
2895 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2896 		insert_entry_into_table_sorted(table, num_entries, &entry);
2897 	}
2898 
2899 	// At this point, the table contains all "points of interest" based on
2900 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2901 	// ratios (by derate, are exact).
2902 
2903 	// Remove states that require higher clocks than are supported
2904 	for (i = *num_entries - 1; i >= 0 ; i--) {
2905 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2906 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2907 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2908 			remove_entry_from_table_at_index(table, num_entries, i);
2909 	}
2910 
2911 	// Insert entry with all max dc limits without bandwidth matching
2912 	if (!disable_dc_mode_overwrite) {
2913 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2914 
2915 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2916 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2917 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2918 
2919 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2920 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2921 
2922 		sort_entries_with_same_bw(table, num_entries);
2923 		remove_inconsistent_entries(table, num_entries);
2924 	}
2925 
2926 	// At this point, the table only contains supported points of interest
2927 	// it could be used as is, but some states may be redundant due to
2928 	// coarse grained nature of some clocks, so we want to round up to
2929 	// coarse grained DPMs and remove duplicates.
2930 
2931 	// Round up UCLKs
2932 	for (i = *num_entries - 1; i >= 0 ; i--) {
2933 		for (j = 0; j < num_uclk_dpms; j++) {
2934 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2935 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2936 				break;
2937 			}
2938 		}
2939 	}
2940 
2941 	// If FCLK is coarse grained, round up to next DPMs
2942 	if (num_fclk_dpms > 2) {
2943 		for (i = *num_entries - 1; i >= 0 ; i--) {
2944 			for (j = 0; j < num_fclk_dpms; j++) {
2945 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2946 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2947 					break;
2948 				}
2949 			}
2950 		}
2951 	}
2952 	// Otherwise, round up to minimum.
2953 	else {
2954 		for (i = *num_entries - 1; i >= 0 ; i--) {
2955 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2956 				table[i].fabricclk_mhz = min_fclk_mhz;
2957 			}
2958 		}
2959 	}
2960 
2961 	// Round DCFCLKs up to minimum
2962 	for (i = *num_entries - 1; i >= 0 ; i--) {
2963 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2964 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2965 		}
2966 	}
2967 
2968 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2969 	i = 0;
2970 	while (i < *num_entries - 1) {
2971 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2972 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2973 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2974 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2975 		else
2976 			i++;
2977 	}
2978 
2979 	// Fix up the state indicies
2980 	for (i = *num_entries - 1; i >= 0 ; i--) {
2981 		table[i].state = i;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 /*
2988  * dcn32_update_bw_bounding_box
2989  *
2990  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2991  * spreadsheet with actual values as per dGPU SKU:
2992  * - with passed few options from dc->config
2993  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2994  *   need to get it from PM FW)
2995  * - with passed latency values (passed in ns units) in dc-> bb override for
2996  *   debugging purposes
2997  * - with passed latencies from VBIOS (in 100_ns units) if available for
2998  *   certain dGPU SKU
2999  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3000  *   of the same ASIC)
3001  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3002  *   FW for different clocks (which might differ for certain dGPU SKU of the
3003  *   same ASIC)
3004  */
3005 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3006 {
3007 	dc_assert_fp_enabled();
3008 
3009 	/* Overrides from dc->config options */
3010 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3011 
3012 	/* Override from passed dc->bb_overrides if available*/
3013 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3014 			&& dc->bb_overrides.sr_exit_time_ns) {
3015 		dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3016 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3017 	}
3018 
3019 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3020 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
3021 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3022 		dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3023 		dcn3_2_soc.sr_enter_plus_exit_time_us =
3024 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3025 	}
3026 
3027 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3028 		&& dc->bb_overrides.urgent_latency_ns) {
3029 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3030 		dc->dml2_options.bbox_overrides.urgent_latency_us =
3031 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3032 	}
3033 
3034 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3035 			!= dc->bb_overrides.dram_clock_change_latency_ns
3036 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
3037 		dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3038 		dcn3_2_soc.dram_clock_change_latency_us =
3039 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3040 	}
3041 
3042 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3043 			!= dc->bb_overrides.fclk_clock_change_latency_ns
3044 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
3045 		dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3046 		dcn3_2_soc.fclk_change_latency_us =
3047 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3048 	}
3049 
3050 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3051 			!= dc->bb_overrides.dummy_clock_change_latency_ns
3052 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
3053 		dcn3_2_soc.dummy_pstate_latency_us =
3054 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3055 	}
3056 
3057 	/* Override from VBIOS if VBIOS bb_info available */
3058 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3059 		struct bp_soc_bb_info bb_info = {0};
3060 
3061 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3062 			if (bb_info.dram_clock_change_latency_100ns > 0)
3063 				dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3064 				dcn3_2_soc.dram_clock_change_latency_us =
3065 					bb_info.dram_clock_change_latency_100ns * 10;
3066 
3067 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3068 				dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3069 				dcn3_2_soc.sr_enter_plus_exit_time_us =
3070 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
3071 
3072 			if (bb_info.dram_sr_exit_latency_100ns > 0)
3073 				dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3074 				dcn3_2_soc.sr_exit_time_us =
3075 					bb_info.dram_sr_exit_latency_100ns * 10;
3076 		}
3077 	}
3078 
3079 	/* Override from VBIOS for num_chan */
3080 	if (dc->ctx->dc_bios->vram_info.num_chans) {
3081 		dc->dml2_options.bbox_overrides.dram_num_chan =
3082 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3083 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3084 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3085 	}
3086 
3087 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3088 		dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3089 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3090 
3091 	/* DML DSC delay factor workaround */
3092 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3093 
3094 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3095 
3096 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3097 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3098 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3099 	dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3100 	dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3101 	dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3102 	dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3103 
3104 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3105 	if (bw_params->clk_table.entries[0].memclk_mhz) {
3106 		if (dc->debug.use_legacy_soc_bb_mechanism) {
3107 			unsigned int i = 0, j = 0, num_states = 0;
3108 
3109 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3110 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3111 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3112 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3113 			unsigned int min_dcfclk = UINT_MAX;
3114 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3115 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3116 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3117 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3118 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3119 
3120 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3121 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3122 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3123 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3124 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3125 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3126 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3127 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3128 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3129 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3130 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3131 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3132 			}
3133 			if (min_dcfclk > dcfclk_sta_targets[0])
3134 				dcfclk_sta_targets[0] = min_dcfclk;
3135 			if (!max_dcfclk_mhz)
3136 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3137 			if (!max_dispclk_mhz)
3138 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3139 			if (!max_dppclk_mhz)
3140 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3141 			if (!max_phyclk_mhz)
3142 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3143 
3144 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3145 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3146 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3147 				num_dcfclk_sta_targets++;
3148 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3149 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3150 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
3151 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3152 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
3153 						break;
3154 					}
3155 				}
3156 				// Update size of array since we "removed" duplicates
3157 				num_dcfclk_sta_targets = i + 1;
3158 			}
3159 
3160 			num_uclk_states = bw_params->clk_table.num_entries;
3161 
3162 			// Calculate optimal dcfclk for each uclk
3163 			for (i = 0; i < num_uclk_states; i++) {
3164 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3165 						&optimal_dcfclk_for_uclk[i], NULL);
3166 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3167 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3168 				}
3169 			}
3170 
3171 			// Calculate optimal uclk for each dcfclk sta target
3172 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
3173 				for (j = 0; j < num_uclk_states; j++) {
3174 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3175 						optimal_uclk_for_dcfclk_sta_targets[i] =
3176 								bw_params->clk_table.entries[j].memclk_mhz * 16;
3177 						break;
3178 					}
3179 				}
3180 			}
3181 
3182 			i = 0;
3183 			j = 0;
3184 			// create the final dcfclk and uclk table
3185 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3186 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3187 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3188 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3189 				} else {
3190 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3191 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3192 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3193 					} else {
3194 						j = num_uclk_states;
3195 					}
3196 				}
3197 			}
3198 
3199 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3200 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3201 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3202 			}
3203 
3204 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3205 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3206 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3207 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3208 			}
3209 
3210 			dcn3_2_soc.num_states = num_states;
3211 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
3212 				dcn3_2_soc.clock_limits[i].state = i;
3213 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3214 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3215 
3216 				/* Fill all states with max values of all these clocks */
3217 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3218 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3219 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3220 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3221 
3222 				/* Populate from bw_params for DTBCLK, SOCCLK */
3223 				if (i > 0) {
3224 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3225 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3226 					} else {
3227 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3228 					}
3229 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3230 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3231 				}
3232 
3233 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3234 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3235 				else
3236 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3237 
3238 				if (!dram_speed_mts[i] && i > 0)
3239 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3240 				else
3241 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3242 
3243 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3244 				/* PHYCLK_D18, PHYCLK_D32 */
3245 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3246 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3247 			}
3248 		} else {
3249 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3250 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3251 		}
3252 
3253 		/* Re-init DML with updated bb */
3254 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3255 		if (dc->current_state)
3256 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3257 	}
3258 
3259 	if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3260 		unsigned int i = 0;
3261 
3262 		dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3263 
3264 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3265 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3266 
3267 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3268 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3269 
3270 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3271 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3272 
3273 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3274 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3275 
3276 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3277 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3278 
3279 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3280 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3281 
3282 		dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3283 			dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3284 
3285 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3286 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3287 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3288 					dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3289 		}
3290 
3291 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3292 			if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3293 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3294 					dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3295 		}
3296 
3297 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3298 			if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3299 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3300 					dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3301 		}
3302 
3303 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3304 			if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3305 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3306 					dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3307 		}
3308 
3309 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3310 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3311 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3312 					dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3313 		}
3314 
3315 		for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3316 			if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3317 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3318 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3319 				dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3320 					dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3321 			}
3322 		}
3323 	}
3324 }
3325 
3326 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3327 				  int pipe_cnt)
3328 {
3329 	dc_assert_fp_enabled();
3330 
3331 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3332 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3333 }
3334 
3335 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3336 {
3337 	bool allow = false;
3338 	uint32_t refresh_rate = 0;
3339 	uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3340 	uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3341 	uint32_t i;
3342 
3343 	for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3344 		uint32_t width = subvp_active_margin_list.res[i].width;
3345 		uint32_t height = subvp_active_margin_list.res[i].height;
3346 
3347 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3348 			pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3349 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3350 		refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3351 
3352 		if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3353 				dcn32_check_native_scaling_for_res(pipe, width, height)) {
3354 			allow = true;
3355 			break;
3356 		}
3357 	}
3358 	return allow;
3359 }
3360 
3361 /**
3362  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3363  *
3364  * @dc: Current DC state
3365  * @context: New DC state to be programmed
3366  * @pipe: Pipe to be considered for use in subvp
3367  *
3368  * On high refresh rate display configs, we will allow subvp under the following conditions:
3369  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3370  * 2. Refresh rate is between 120hz - 165hz
3371  * 3. No scaling
3372  * 4. Freesync is inactive
3373  * 5. For single display cases, freesync must be disabled
3374  *
3375  * Return: True if pipe can be used for subvp, false otherwise
3376  */
3377 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3378 {
3379 	bool allow = false;
3380 	uint32_t refresh_rate = 0;
3381 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3382 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3383 	uint32_t min_refresh = subvp_max_refresh;
3384 	uint32_t i;
3385 
3386 	/* Only allow SubVP on high refresh displays if all connected displays
3387 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3388 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3389 	 */
3390 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3391 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3392 
3393 		if (!pipe_ctx->stream)
3394 			continue;
3395 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3396 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3397 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3398 
3399 		if (refresh_rate < min_refresh)
3400 			min_refresh = refresh_rate;
3401 	}
3402 
3403 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3404 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3405 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3406 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3407 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3408 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3409 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3410 				uint32_t width = subvp_high_refresh_list.res[i].width;
3411 				uint32_t height = subvp_high_refresh_list.res[i].height;
3412 
3413 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3414 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3415 						allow = true;
3416 						break;
3417 					}
3418 				}
3419 			}
3420 		}
3421 	}
3422 	return allow;
3423 }
3424 
3425 /**
3426  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3427  *
3428  * @dc: Current DC state
3429  * @context: New DC state to be programmed
3430  *
3431  * Return: Max vratio for prefetch
3432  */
3433 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3434 {
3435 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3436 	int i;
3437 
3438 	/* For single display MPO configs, allow the max vratio to be 8
3439 	 * if any plane is YUV420 format
3440 	 */
3441 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3442 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3443 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3444 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3445 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3446 			}
3447 		}
3448 	}
3449 	return max_vratio_pre;
3450 }
3451 
3452 /**
3453  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3454  *
3455  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3456  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3457  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3458  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3459  *
3460  *
3461  * @dc: current dc state
3462  * @context: new dc state
3463  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3464  *
3465  * Return: void
3466  */
3467 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3468 {
3469 	unsigned int i, pipe_idx;
3470 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3471 
3472 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3473 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3474 
3475 		/* In DCN32/321, FPO uses per-pipe P-State force.
3476 		 * If there's no planes, HUBP is power gated and
3477 		 * therefore programming UCLK_PSTATE_FORCE does
3478 		 * nothing (P-State will always be asserted naturally
3479 		 * on a pipe that has HUBP power gated. Therefore we
3480 		 * only want to enable FPO if the FPO pipe has both
3481 		 * a stream and a plane.
3482 		 */
3483 		if (!pipe->stream || !pipe->plane_state)
3484 			continue;
3485 
3486 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3487 			*fpo_candidate_stream = pipe->stream;
3488 			break;
3489 		}
3490 		pipe_idx++;
3491 	}
3492 }
3493 
3494 /**
3495  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3496  *
3497  * @dc: current dc state
3498  * @context: new dc state
3499  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3500  *
3501  * Return: True if VACTIVE display is found, false otherwise
3502  */
3503 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3504 {
3505 	unsigned int i, pipe_idx;
3506 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3507 	bool vactive_found = false;
3508 	unsigned int blank_us = 0;
3509 
3510 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3511 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3512 
3513 		if (!pipe->stream)
3514 			continue;
3515 
3516 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3517 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3518 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3519 				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3520 			vactive_found = true;
3521 			break;
3522 		}
3523 		pipe_idx++;
3524 	}
3525 	return vactive_found;
3526 }
3527 
3528 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3529 {
3530 	dc_assert_fp_enabled();
3531 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3532 }
3533 
3534 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3535 {
3536 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3537 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3538 			dc->dml.soc.num_chans <= 8) {
3539 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3540 
3541 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3542 				num_mclk_levels > 1) {
3543 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3544 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3545 		}
3546 	}
3547 }
3548