xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c (revision bf5802238dc181b1f7375d358af1d01cd72d1c11)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61 
62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
68 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
80 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
81 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
89 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
92 };
93 
94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
95 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 };
116 
117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
118 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
119 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
123 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
131 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
132 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
133 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 };
135 
136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
137 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
138 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
139 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
140 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
151 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
152 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
153 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
154 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
165 };
166 
167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
168 {
169 	u32 base;
170 
171 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
172 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
173 		base = adev->reg_offset[GC_HWIP][0][1];
174 		if (instance == 1)
175 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
176 	} else {
177 		base = adev->reg_offset[GC_HWIP][0][0];
178 		if (instance == 1)
179 			internal_offset += SDMA1_REG_OFFSET;
180 	}
181 
182 	return base + internal_offset;
183 }
184 
185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
186 {
187 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
188 	case IP_VERSION(5, 0, 0):
189 		soc15_program_register_sequence(adev,
190 						golden_settings_sdma_5,
191 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
192 		soc15_program_register_sequence(adev,
193 						golden_settings_sdma_nv10,
194 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
195 		break;
196 	case IP_VERSION(5, 0, 2):
197 		soc15_program_register_sequence(adev,
198 						golden_settings_sdma_5,
199 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
200 		soc15_program_register_sequence(adev,
201 						golden_settings_sdma_nv14,
202 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
203 		break;
204 	case IP_VERSION(5, 0, 5):
205 		if (amdgpu_sriov_vf(adev))
206 			soc15_program_register_sequence(adev,
207 							golden_settings_sdma_5_sriov,
208 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
209 		else
210 			soc15_program_register_sequence(adev,
211 							golden_settings_sdma_5,
212 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
213 		soc15_program_register_sequence(adev,
214 						golden_settings_sdma_nv12,
215 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
216 		break;
217 	case IP_VERSION(5, 0, 1):
218 		soc15_program_register_sequence(adev,
219 						golden_settings_sdma_cyan_skillfish,
220 						(const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
221 		break;
222 	default:
223 		break;
224 	}
225 }
226 
227 /**
228  * sdma_v5_0_init_microcode - load ucode images from disk
229  *
230  * @adev: amdgpu_device pointer
231  *
232  * Use the firmware interface to load the ucode images into
233  * the driver (not loaded into hw).
234  * Returns 0 on success, error on failure.
235  */
236 
237 // emulation only, won't work on real chip
238 // navi10 real chip need to use PSP to load firmware
239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
240 {
241 	int ret, i;
242 
243 	for (i = 0; i < adev->sdma.num_instances; i++) {
244 		ret = amdgpu_sdma_init_microcode(adev, i, false);
245 		if (ret)
246 			return ret;
247 	}
248 
249 	return ret;
250 }
251 
252 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
253 {
254 	unsigned ret;
255 
256 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
257 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
258 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
259 	amdgpu_ring_write(ring, 1);
260 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
261 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
262 
263 	return ret;
264 }
265 
266 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
267 					   unsigned offset)
268 {
269 	unsigned cur;
270 
271 	BUG_ON(offset > ring->buf_mask);
272 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
273 
274 	cur = (ring->wptr - 1) & ring->buf_mask;
275 	if (cur > offset)
276 		ring->ring[offset] = cur - offset;
277 	else
278 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
279 }
280 
281 /**
282  * sdma_v5_0_ring_get_rptr - get the current read pointer
283  *
284  * @ring: amdgpu ring pointer
285  *
286  * Get the current rptr from the hardware (NAVI10+).
287  */
288 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
289 {
290 	u64 *rptr;
291 
292 	/* XXX check if swapping is necessary on BE */
293 	rptr = (u64 *)ring->rptr_cpu_addr;
294 
295 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
296 	return ((*rptr) >> 2);
297 }
298 
299 /**
300  * sdma_v5_0_ring_get_wptr - get the current write pointer
301  *
302  * @ring: amdgpu ring pointer
303  *
304  * Get the current wptr from the hardware (NAVI10+).
305  */
306 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
307 {
308 	struct amdgpu_device *adev = ring->adev;
309 	u64 wptr;
310 
311 	if (ring->use_doorbell) {
312 		/* XXX check if swapping is necessary on BE */
313 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
314 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
315 	} else {
316 		wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
317 		wptr = wptr << 32;
318 		wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
319 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
320 	}
321 
322 	return wptr >> 2;
323 }
324 
325 /**
326  * sdma_v5_0_ring_set_wptr - commit the write pointer
327  *
328  * @ring: amdgpu ring pointer
329  *
330  * Write the wptr back to the hardware (NAVI10+).
331  */
332 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
333 {
334 	struct amdgpu_device *adev = ring->adev;
335 	uint32_t *wptr_saved;
336 	uint32_t *is_queue_unmap;
337 	uint64_t aggregated_db_index;
338 	uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
339 
340 	DRM_DEBUG("Setting write pointer\n");
341 	if (ring->is_mes_queue) {
342 		wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
343 		is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
344 					      sizeof(uint32_t));
345 		aggregated_db_index =
346 			amdgpu_mes_get_aggregated_doorbell_index(adev,
347 			AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
348 
349 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
350 			     ring->wptr << 2);
351 		*wptr_saved = ring->wptr << 2;
352 		if (*is_queue_unmap) {
353 			WDOORBELL64(aggregated_db_index, ring->wptr << 2);
354 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
355 					ring->doorbell_index, ring->wptr << 2);
356 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
357 		} else {
358 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
359 					ring->doorbell_index, ring->wptr << 2);
360 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
361 
362 			if (*is_queue_unmap)
363 				WDOORBELL64(aggregated_db_index,
364 					    ring->wptr << 2);
365 		}
366 	} else {
367 		if (ring->use_doorbell) {
368 			DRM_DEBUG("Using doorbell -- "
369 				  "wptr_offs == 0x%08x "
370 				  "lower_32_bits(ring->wptr) << 2 == 0x%08x "
371 				  "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
372 				  ring->wptr_offs,
373 				  lower_32_bits(ring->wptr << 2),
374 				  upper_32_bits(ring->wptr << 2));
375 			/* XXX check if swapping is necessary on BE */
376 			atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
377 				     ring->wptr << 2);
378 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
379 				  ring->doorbell_index, ring->wptr << 2);
380 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
381 		} else {
382 			DRM_DEBUG("Not using doorbell -- "
383 				  "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
384 				  "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
385 				  ring->me,
386 				  lower_32_bits(ring->wptr << 2),
387 				  ring->me,
388 				  upper_32_bits(ring->wptr << 2));
389 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
390 					     ring->me, mmSDMA0_GFX_RB_WPTR),
391 					lower_32_bits(ring->wptr << 2));
392 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
393 					     ring->me, mmSDMA0_GFX_RB_WPTR_HI),
394 					upper_32_bits(ring->wptr << 2));
395 		}
396 	}
397 }
398 
399 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
400 {
401 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
402 	int i;
403 
404 	for (i = 0; i < count; i++)
405 		if (sdma && sdma->burst_nop && (i == 0))
406 			amdgpu_ring_write(ring, ring->funcs->nop |
407 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
408 		else
409 			amdgpu_ring_write(ring, ring->funcs->nop);
410 }
411 
412 /**
413  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
414  *
415  * @ring: amdgpu ring pointer
416  * @job: job to retrieve vmid from
417  * @ib: IB object to schedule
418  * @flags: unused
419  *
420  * Schedule an IB in the DMA ring (NAVI10).
421  */
422 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
423 				   struct amdgpu_job *job,
424 				   struct amdgpu_ib *ib,
425 				   uint32_t flags)
426 {
427 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
428 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
429 
430 	/* An IB packet must end on a 8 DW boundary--the next dword
431 	 * must be on a 8-dword boundary. Our IB packet below is 6
432 	 * dwords long, thus add x number of NOPs, such that, in
433 	 * modular arithmetic,
434 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
435 	 * (wptr + 6 + x) % 8 = 0.
436 	 * The expression below, is a solution of x.
437 	 */
438 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
439 
440 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
441 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
442 	/* base must be 32 byte aligned */
443 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
444 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
445 	amdgpu_ring_write(ring, ib->length_dw);
446 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
447 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
448 }
449 
450 /**
451  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
452  *
453  * @ring: amdgpu ring pointer
454  *
455  * flush the IB by graphics cache rinse.
456  */
457 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
458 {
459 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
460 			    SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
461 			    SDMA_GCR_GLI_INV(1);
462 
463 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
464 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
465 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
466 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
467 			  SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
468 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
469 			  SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
470 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
471 			  SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
472 }
473 
474 /**
475  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
476  *
477  * @ring: amdgpu ring pointer
478  *
479  * Emit an hdp flush packet on the requested DMA ring.
480  */
481 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
482 {
483 	struct amdgpu_device *adev = ring->adev;
484 	u32 ref_and_mask = 0;
485 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
486 
487 	if (ring->me == 0)
488 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
489 	else
490 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
491 
492 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
493 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
494 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
495 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
496 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
497 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
498 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
499 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
500 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
501 }
502 
503 /**
504  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
505  *
506  * @ring: amdgpu ring pointer
507  * @addr: address
508  * @seq: sequence number
509  * @flags: fence related flags
510  *
511  * Add a DMA fence packet to the ring to write
512  * the fence seq number and DMA trap packet to generate
513  * an interrupt if needed (NAVI10).
514  */
515 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
516 				      unsigned flags)
517 {
518 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
519 	/* write the fence */
520 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
521 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
522 	/* zero in first two bits */
523 	BUG_ON(addr & 0x3);
524 	amdgpu_ring_write(ring, lower_32_bits(addr));
525 	amdgpu_ring_write(ring, upper_32_bits(addr));
526 	amdgpu_ring_write(ring, lower_32_bits(seq));
527 
528 	/* optionally write high bits as well */
529 	if (write64bit) {
530 		addr += 4;
531 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
532 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
533 		/* zero in first two bits */
534 		BUG_ON(addr & 0x3);
535 		amdgpu_ring_write(ring, lower_32_bits(addr));
536 		amdgpu_ring_write(ring, upper_32_bits(addr));
537 		amdgpu_ring_write(ring, upper_32_bits(seq));
538 	}
539 
540 	if (flags & AMDGPU_FENCE_FLAG_INT) {
541 		uint32_t ctx = ring->is_mes_queue ?
542 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
543 		/* generate an interrupt */
544 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
545 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
546 	}
547 }
548 
549 
550 /**
551  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
552  *
553  * @adev: amdgpu_device pointer
554  *
555  * Stop the gfx async dma ring buffers (NAVI10).
556  */
557 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
558 {
559 	u32 rb_cntl, ib_cntl;
560 	int i;
561 
562 	for (i = 0; i < adev->sdma.num_instances; i++) {
563 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
564 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
565 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
566 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
567 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
568 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
569 	}
570 }
571 
572 /**
573  * sdma_v5_0_rlc_stop - stop the compute async dma engines
574  *
575  * @adev: amdgpu_device pointer
576  *
577  * Stop the compute async dma queues (NAVI10).
578  */
579 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
580 {
581 	/* XXX todo */
582 }
583 
584 /**
585  * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
586  *
587  * @adev: amdgpu_device pointer
588  * @enable: enable/disable the DMA MEs context switch.
589  *
590  * Halt or unhalt the async dma engines context switch (NAVI10).
591  */
592 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
593 {
594 	u32 f32_cntl = 0, phase_quantum = 0;
595 	int i;
596 
597 	if (amdgpu_sdma_phase_quantum) {
598 		unsigned value = amdgpu_sdma_phase_quantum;
599 		unsigned unit = 0;
600 
601 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
602 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
603 			value = (value + 1) >> 1;
604 			unit++;
605 		}
606 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
607 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
608 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
609 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
610 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
611 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
612 			WARN_ONCE(1,
613 			"clamping sdma_phase_quantum to %uK clock cycles\n",
614 				  value << unit);
615 		}
616 		phase_quantum =
617 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
618 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
619 	}
620 
621 	for (i = 0; i < adev->sdma.num_instances; i++) {
622 		if (!amdgpu_sriov_vf(adev)) {
623 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
624 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
625 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
626 		}
627 
628 		if (enable && amdgpu_sdma_phase_quantum) {
629 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
630 			       phase_quantum);
631 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
632 			       phase_quantum);
633 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
634 			       phase_quantum);
635 		}
636 		if (!amdgpu_sriov_vf(adev))
637 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
638 	}
639 
640 }
641 
642 /**
643  * sdma_v5_0_enable - stop the async dma engines
644  *
645  * @adev: amdgpu_device pointer
646  * @enable: enable/disable the DMA MEs.
647  *
648  * Halt or unhalt the async dma engines (NAVI10).
649  */
650 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
651 {
652 	u32 f32_cntl;
653 	int i;
654 
655 	if (!enable) {
656 		sdma_v5_0_gfx_stop(adev);
657 		sdma_v5_0_rlc_stop(adev);
658 	}
659 
660 	if (amdgpu_sriov_vf(adev))
661 		return;
662 
663 	for (i = 0; i < adev->sdma.num_instances; i++) {
664 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
665 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
666 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
667 	}
668 }
669 
670 /**
671  * sdma_v5_0_gfx_resume - setup and start the async dma engines
672  *
673  * @adev: amdgpu_device pointer
674  *
675  * Set up the gfx DMA ring buffers and enable them (NAVI10).
676  * Returns 0 for success, error for failure.
677  */
678 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
679 {
680 	struct amdgpu_ring *ring;
681 	u32 rb_cntl, ib_cntl;
682 	u32 rb_bufsz;
683 	u32 doorbell;
684 	u32 doorbell_offset;
685 	u32 temp;
686 	u32 wptr_poll_cntl;
687 	u64 wptr_gpu_addr;
688 	int i, r;
689 
690 	for (i = 0; i < adev->sdma.num_instances; i++) {
691 		ring = &adev->sdma.instance[i].ring;
692 
693 		if (!amdgpu_sriov_vf(adev))
694 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
695 
696 		/* Set ring buffer size in dwords */
697 		rb_bufsz = order_base_2(ring->ring_size / 4);
698 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
699 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
700 #ifdef __BIG_ENDIAN
701 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
702 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
703 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
704 #endif
705 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
706 
707 		/* Initialize the ring buffer's read and write pointers */
708 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
709 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
710 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
711 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
712 
713 		/* setup the wptr shadow polling */
714 		wptr_gpu_addr = ring->wptr_gpu_addr;
715 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
716 		       lower_32_bits(wptr_gpu_addr));
717 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
718 		       upper_32_bits(wptr_gpu_addr));
719 		wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
720 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
721 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
722 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
723 					       F32_POLL_ENABLE, 1);
724 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
725 		       wptr_poll_cntl);
726 
727 		/* set the wb address whether it's enabled or not */
728 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
729 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
730 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
731 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
732 
733 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
734 
735 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
736 		       ring->gpu_addr >> 8);
737 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
738 		       ring->gpu_addr >> 40);
739 
740 		ring->wptr = 0;
741 
742 		/* before programing wptr to a less value, need set minor_ptr_update first */
743 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
744 
745 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
746 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
747 			       lower_32_bits(ring->wptr << 2));
748 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
749 			       upper_32_bits(ring->wptr << 2));
750 		}
751 
752 		doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
753 		doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
754 						mmSDMA0_GFX_DOORBELL_OFFSET));
755 
756 		if (ring->use_doorbell) {
757 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
758 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
759 					OFFSET, ring->doorbell_index);
760 		} else {
761 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
762 		}
763 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
764 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
765 		       doorbell_offset);
766 
767 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
768 						      ring->doorbell_index, 20);
769 
770 		if (amdgpu_sriov_vf(adev))
771 			sdma_v5_0_ring_set_wptr(ring);
772 
773 		/* set minor_ptr_update to 0 after wptr programed */
774 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
775 
776 		if (!amdgpu_sriov_vf(adev)) {
777 			/* set utc l1 enable flag always to 1 */
778 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
779 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
780 
781 			/* enable MCBP */
782 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
783 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
784 
785 			/* Set up RESP_MODE to non-copy addresses */
786 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
787 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
788 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
789 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
790 
791 			/* program default cache read and write policy */
792 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
793 			/* clean read policy and write policy bits */
794 			temp &= 0xFF0FFF;
795 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
796 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
797 		}
798 
799 		if (!amdgpu_sriov_vf(adev)) {
800 			/* unhalt engine */
801 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
802 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
803 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
804 		}
805 
806 		/* enable DMA RB */
807 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
808 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
809 
810 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
811 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
812 #ifdef __BIG_ENDIAN
813 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
814 #endif
815 		/* enable DMA IBs */
816 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
817 
818 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
819 			sdma_v5_0_ctx_switch_enable(adev, true);
820 			sdma_v5_0_enable(adev, true);
821 		}
822 
823 		r = amdgpu_ring_test_helper(ring);
824 		if (r)
825 			return r;
826 	}
827 
828 	return 0;
829 }
830 
831 /**
832  * sdma_v5_0_rlc_resume - setup and start the async dma engines
833  *
834  * @adev: amdgpu_device pointer
835  *
836  * Set up the compute DMA queues and enable them (NAVI10).
837  * Returns 0 for success, error for failure.
838  */
839 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
840 {
841 	return 0;
842 }
843 
844 /**
845  * sdma_v5_0_load_microcode - load the sDMA ME ucode
846  *
847  * @adev: amdgpu_device pointer
848  *
849  * Loads the sDMA0/1 ucode.
850  * Returns 0 for success, -EINVAL if the ucode is not available.
851  */
852 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
853 {
854 	const struct sdma_firmware_header_v1_0 *hdr;
855 	const __le32 *fw_data;
856 	u32 fw_size;
857 	int i, j;
858 
859 	/* halt the MEs */
860 	sdma_v5_0_enable(adev, false);
861 
862 	for (i = 0; i < adev->sdma.num_instances; i++) {
863 		if (!adev->sdma.instance[i].fw)
864 			return -EINVAL;
865 
866 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
867 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
868 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
869 
870 		fw_data = (const __le32 *)
871 			(adev->sdma.instance[i].fw->data +
872 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
873 
874 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
875 
876 		for (j = 0; j < fw_size; j++) {
877 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
878 				msleep(1);
879 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
880 		}
881 
882 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
883 	}
884 
885 	return 0;
886 }
887 
888 /**
889  * sdma_v5_0_start - setup and start the async dma engines
890  *
891  * @adev: amdgpu_device pointer
892  *
893  * Set up the DMA engines and enable them (NAVI10).
894  * Returns 0 for success, error for failure.
895  */
896 static int sdma_v5_0_start(struct amdgpu_device *adev)
897 {
898 	int r = 0;
899 
900 	if (amdgpu_sriov_vf(adev)) {
901 		sdma_v5_0_ctx_switch_enable(adev, false);
902 		sdma_v5_0_enable(adev, false);
903 
904 		/* set RB registers */
905 		r = sdma_v5_0_gfx_resume(adev);
906 		return r;
907 	}
908 
909 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
910 		r = sdma_v5_0_load_microcode(adev);
911 		if (r)
912 			return r;
913 	}
914 
915 	/* unhalt the MEs */
916 	sdma_v5_0_enable(adev, true);
917 	/* enable sdma ring preemption */
918 	sdma_v5_0_ctx_switch_enable(adev, true);
919 
920 	/* start the gfx rings and rlc compute queues */
921 	r = sdma_v5_0_gfx_resume(adev);
922 	if (r)
923 		return r;
924 	r = sdma_v5_0_rlc_resume(adev);
925 
926 	return r;
927 }
928 
929 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
930 			      struct amdgpu_mqd_prop *prop)
931 {
932 	struct v10_sdma_mqd *m = mqd;
933 	uint64_t wb_gpu_addr;
934 
935 	m->sdmax_rlcx_rb_cntl =
936 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
937 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
938 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
939 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
940 
941 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
942 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
943 
944 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
945 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
946 
947 	wb_gpu_addr = prop->wptr_gpu_addr;
948 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
949 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
950 
951 	wb_gpu_addr = prop->rptr_gpu_addr;
952 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
953 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
954 
955 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
956 							mmSDMA0_GFX_IB_CNTL));
957 
958 	m->sdmax_rlcx_doorbell_offset =
959 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
960 
961 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
962 
963 	return 0;
964 }
965 
966 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
967 {
968 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
969 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
970 }
971 
972 /**
973  * sdma_v5_0_ring_test_ring - simple async dma engine test
974  *
975  * @ring: amdgpu_ring structure holding ring information
976  *
977  * Test the DMA engine by writing using it to write an
978  * value to memory. (NAVI10).
979  * Returns 0 for success, error for failure.
980  */
981 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
982 {
983 	struct amdgpu_device *adev = ring->adev;
984 	unsigned i;
985 	unsigned index;
986 	int r;
987 	u32 tmp;
988 	u64 gpu_addr;
989 	volatile uint32_t *cpu_ptr = NULL;
990 
991 	tmp = 0xCAFEDEAD;
992 
993 	if (ring->is_mes_queue) {
994 		uint32_t offset = 0;
995 		offset = amdgpu_mes_ctx_get_offs(ring,
996 					 AMDGPU_MES_CTX_PADDING_OFFS);
997 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
998 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
999 		*cpu_ptr = tmp;
1000 	} else {
1001 		r = amdgpu_device_wb_get(adev, &index);
1002 		if (r) {
1003 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1004 			return r;
1005 		}
1006 
1007 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1008 		adev->wb.wb[index] = cpu_to_le32(tmp);
1009 	}
1010 
1011 	r = amdgpu_ring_alloc(ring, 20);
1012 	if (r) {
1013 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1014 		amdgpu_device_wb_free(adev, index);
1015 		return r;
1016 	}
1017 
1018 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1019 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1020 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1021 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1022 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1023 	amdgpu_ring_write(ring, 0xDEADBEEF);
1024 	amdgpu_ring_commit(ring);
1025 
1026 	for (i = 0; i < adev->usec_timeout; i++) {
1027 		if (ring->is_mes_queue)
1028 			tmp = le32_to_cpu(*cpu_ptr);
1029 		else
1030 			tmp = le32_to_cpu(adev->wb.wb[index]);
1031 		if (tmp == 0xDEADBEEF)
1032 			break;
1033 		if (amdgpu_emu_mode == 1)
1034 			msleep(1);
1035 		else
1036 			udelay(1);
1037 	}
1038 
1039 	if (i >= adev->usec_timeout)
1040 		r = -ETIMEDOUT;
1041 
1042 	if (!ring->is_mes_queue)
1043 		amdgpu_device_wb_free(adev, index);
1044 
1045 	return r;
1046 }
1047 
1048 /**
1049  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1050  *
1051  * @ring: amdgpu_ring structure holding ring information
1052  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1053  *
1054  * Test a simple IB in the DMA ring (NAVI10).
1055  * Returns 0 on success, error on failure.
1056  */
1057 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1058 {
1059 	struct amdgpu_device *adev = ring->adev;
1060 	struct amdgpu_ib ib;
1061 	struct dma_fence *f = NULL;
1062 	unsigned index;
1063 	long r;
1064 	u32 tmp = 0;
1065 	u64 gpu_addr;
1066 	volatile uint32_t *cpu_ptr = NULL;
1067 
1068 	tmp = 0xCAFEDEAD;
1069 	memset(&ib, 0, sizeof(ib));
1070 
1071 	if (ring->is_mes_queue) {
1072 		uint32_t offset = 0;
1073 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1074 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1075 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1076 
1077 		offset = amdgpu_mes_ctx_get_offs(ring,
1078 					 AMDGPU_MES_CTX_PADDING_OFFS);
1079 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1080 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1081 		*cpu_ptr = tmp;
1082 	} else {
1083 		r = amdgpu_device_wb_get(adev, &index);
1084 		if (r) {
1085 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1086 			return r;
1087 		}
1088 
1089 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1090 		adev->wb.wb[index] = cpu_to_le32(tmp);
1091 
1092 		r = amdgpu_ib_get(adev, NULL, 256,
1093 					AMDGPU_IB_POOL_DIRECT, &ib);
1094 		if (r) {
1095 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1096 			goto err0;
1097 		}
1098 	}
1099 
1100 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1101 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1102 	ib.ptr[1] = lower_32_bits(gpu_addr);
1103 	ib.ptr[2] = upper_32_bits(gpu_addr);
1104 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1105 	ib.ptr[4] = 0xDEADBEEF;
1106 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1107 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1108 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1109 	ib.length_dw = 8;
1110 
1111 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1112 	if (r)
1113 		goto err1;
1114 
1115 	r = dma_fence_wait_timeout(f, false, timeout);
1116 	if (r == 0) {
1117 		DRM_ERROR("amdgpu: IB test timed out\n");
1118 		r = -ETIMEDOUT;
1119 		goto err1;
1120 	} else if (r < 0) {
1121 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1122 		goto err1;
1123 	}
1124 
1125 	if (ring->is_mes_queue)
1126 		tmp = le32_to_cpu(*cpu_ptr);
1127 	else
1128 		tmp = le32_to_cpu(adev->wb.wb[index]);
1129 
1130 	if (tmp == 0xDEADBEEF)
1131 		r = 0;
1132 	else
1133 		r = -EINVAL;
1134 
1135 err1:
1136 	amdgpu_ib_free(adev, &ib, NULL);
1137 	dma_fence_put(f);
1138 err0:
1139 	if (!ring->is_mes_queue)
1140 		amdgpu_device_wb_free(adev, index);
1141 	return r;
1142 }
1143 
1144 
1145 /**
1146  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1147  *
1148  * @ib: indirect buffer to fill with commands
1149  * @pe: addr of the page entry
1150  * @src: src addr to copy from
1151  * @count: number of page entries to update
1152  *
1153  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1154  */
1155 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1156 				  uint64_t pe, uint64_t src,
1157 				  unsigned count)
1158 {
1159 	unsigned bytes = count * 8;
1160 
1161 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1162 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1163 	ib->ptr[ib->length_dw++] = bytes - 1;
1164 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1165 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1166 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1167 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1168 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1169 
1170 }
1171 
1172 /**
1173  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1174  *
1175  * @ib: indirect buffer to fill with commands
1176  * @pe: addr of the page entry
1177  * @value: dst addr to write into pe
1178  * @count: number of page entries to update
1179  * @incr: increase next addr by incr bytes
1180  *
1181  * Update PTEs by writing them manually using sDMA (NAVI10).
1182  */
1183 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1184 				   uint64_t value, unsigned count,
1185 				   uint32_t incr)
1186 {
1187 	unsigned ndw = count * 2;
1188 
1189 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1190 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1191 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1192 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1193 	ib->ptr[ib->length_dw++] = ndw - 1;
1194 	for (; ndw > 0; ndw -= 2) {
1195 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1196 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1197 		value += incr;
1198 	}
1199 }
1200 
1201 /**
1202  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1203  *
1204  * @ib: indirect buffer to fill with commands
1205  * @pe: addr of the page entry
1206  * @addr: dst addr to write into pe
1207  * @count: number of page entries to update
1208  * @incr: increase next addr by incr bytes
1209  * @flags: access flags
1210  *
1211  * Update the page tables using sDMA (NAVI10).
1212  */
1213 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1214 				     uint64_t pe,
1215 				     uint64_t addr, unsigned count,
1216 				     uint32_t incr, uint64_t flags)
1217 {
1218 	/* for physically contiguous pages (vram) */
1219 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1220 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1221 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1222 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1223 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1224 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1225 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1226 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1227 	ib->ptr[ib->length_dw++] = 0;
1228 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1229 }
1230 
1231 /**
1232  * sdma_v5_0_ring_pad_ib - pad the IB
1233  * @ring: amdgpu_ring structure holding ring information
1234  * @ib: indirect buffer to fill with padding
1235  *
1236  * Pad the IB with NOPs to a boundary multiple of 8.
1237  */
1238 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1239 {
1240 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1241 	u32 pad_count;
1242 	int i;
1243 
1244 	pad_count = (-ib->length_dw) & 0x7;
1245 	for (i = 0; i < pad_count; i++)
1246 		if (sdma && sdma->burst_nop && (i == 0))
1247 			ib->ptr[ib->length_dw++] =
1248 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1249 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1250 		else
1251 			ib->ptr[ib->length_dw++] =
1252 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1253 }
1254 
1255 
1256 /**
1257  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1258  *
1259  * @ring: amdgpu_ring pointer
1260  *
1261  * Make sure all previous operations are completed (CIK).
1262  */
1263 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1264 {
1265 	uint32_t seq = ring->fence_drv.sync_seq;
1266 	uint64_t addr = ring->fence_drv.gpu_addr;
1267 
1268 	/* wait for idle */
1269 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1270 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1271 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1272 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1273 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1274 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1275 	amdgpu_ring_write(ring, seq); /* reference */
1276 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1277 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1278 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1279 }
1280 
1281 
1282 /**
1283  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1284  *
1285  * @ring: amdgpu_ring pointer
1286  * @vmid: vmid number to use
1287  * @pd_addr: address
1288  *
1289  * Update the page table base and flush the VM TLB
1290  * using sDMA (NAVI10).
1291  */
1292 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1293 					 unsigned vmid, uint64_t pd_addr)
1294 {
1295 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1296 }
1297 
1298 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1299 				     uint32_t reg, uint32_t val)
1300 {
1301 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1302 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1303 	amdgpu_ring_write(ring, reg);
1304 	amdgpu_ring_write(ring, val);
1305 }
1306 
1307 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1308 					 uint32_t val, uint32_t mask)
1309 {
1310 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1311 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1312 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1313 	amdgpu_ring_write(ring, reg << 2);
1314 	amdgpu_ring_write(ring, 0);
1315 	amdgpu_ring_write(ring, val); /* reference */
1316 	amdgpu_ring_write(ring, mask); /* mask */
1317 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1318 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1319 }
1320 
1321 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1322 						   uint32_t reg0, uint32_t reg1,
1323 						   uint32_t ref, uint32_t mask)
1324 {
1325 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1326 	/* wait for a cycle to reset vm_inv_eng*_ack */
1327 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1328 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1329 }
1330 
1331 static int sdma_v5_0_early_init(void *handle)
1332 {
1333 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1334 	int r;
1335 
1336 	r = sdma_v5_0_init_microcode(adev);
1337 	if (r)
1338 		return r;
1339 
1340 	sdma_v5_0_set_ring_funcs(adev);
1341 	sdma_v5_0_set_buffer_funcs(adev);
1342 	sdma_v5_0_set_vm_pte_funcs(adev);
1343 	sdma_v5_0_set_irq_funcs(adev);
1344 	sdma_v5_0_set_mqd_funcs(adev);
1345 
1346 	return 0;
1347 }
1348 
1349 
1350 static int sdma_v5_0_sw_init(void *handle)
1351 {
1352 	struct amdgpu_ring *ring;
1353 	int r, i;
1354 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1355 
1356 	/* SDMA trap event */
1357 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1358 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1359 			      &adev->sdma.trap_irq);
1360 	if (r)
1361 		return r;
1362 
1363 	/* SDMA trap event */
1364 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1365 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1366 			      &adev->sdma.trap_irq);
1367 	if (r)
1368 		return r;
1369 
1370 	for (i = 0; i < adev->sdma.num_instances; i++) {
1371 		ring = &adev->sdma.instance[i].ring;
1372 		ring->ring_obj = NULL;
1373 		ring->use_doorbell = true;
1374 
1375 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1376 				ring->use_doorbell?"true":"false");
1377 
1378 		ring->doorbell_index = (i == 0) ?
1379 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1380 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1381 
1382 		ring->vm_hub = AMDGPU_GFXHUB(0);
1383 		sprintf(ring->name, "sdma%d", i);
1384 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1385 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1386 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1387 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1388 		if (r)
1389 			return r;
1390 	}
1391 
1392 	return r;
1393 }
1394 
1395 static int sdma_v5_0_sw_fini(void *handle)
1396 {
1397 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1398 	int i;
1399 
1400 	for (i = 0; i < adev->sdma.num_instances; i++)
1401 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1402 
1403 	amdgpu_sdma_destroy_inst_ctx(adev, false);
1404 
1405 	return 0;
1406 }
1407 
1408 static int sdma_v5_0_hw_init(void *handle)
1409 {
1410 	int r;
1411 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1412 
1413 	sdma_v5_0_init_golden_registers(adev);
1414 
1415 	r = sdma_v5_0_start(adev);
1416 
1417 	return r;
1418 }
1419 
1420 static int sdma_v5_0_hw_fini(void *handle)
1421 {
1422 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1423 
1424 	if (amdgpu_sriov_vf(adev))
1425 		return 0;
1426 
1427 	sdma_v5_0_ctx_switch_enable(adev, false);
1428 	sdma_v5_0_enable(adev, false);
1429 
1430 	return 0;
1431 }
1432 
1433 static int sdma_v5_0_suspend(void *handle)
1434 {
1435 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1436 
1437 	return sdma_v5_0_hw_fini(adev);
1438 }
1439 
1440 static int sdma_v5_0_resume(void *handle)
1441 {
1442 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1443 
1444 	return sdma_v5_0_hw_init(adev);
1445 }
1446 
1447 static bool sdma_v5_0_is_idle(void *handle)
1448 {
1449 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1450 	u32 i;
1451 
1452 	for (i = 0; i < adev->sdma.num_instances; i++) {
1453 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1454 
1455 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1456 			return false;
1457 	}
1458 
1459 	return true;
1460 }
1461 
1462 static int sdma_v5_0_wait_for_idle(void *handle)
1463 {
1464 	unsigned i;
1465 	u32 sdma0, sdma1;
1466 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1467 
1468 	for (i = 0; i < adev->usec_timeout; i++) {
1469 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1470 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1471 
1472 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1473 			return 0;
1474 		udelay(1);
1475 	}
1476 	return -ETIMEDOUT;
1477 }
1478 
1479 static int sdma_v5_0_soft_reset(void *handle)
1480 {
1481 	/* todo */
1482 
1483 	return 0;
1484 }
1485 
1486 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1487 {
1488 	int i, r = 0;
1489 	struct amdgpu_device *adev = ring->adev;
1490 	u32 index = 0;
1491 	u64 sdma_gfx_preempt;
1492 
1493 	amdgpu_sdma_get_index_from_ring(ring, &index);
1494 	if (index == 0)
1495 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1496 	else
1497 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1498 
1499 	/* assert preemption condition */
1500 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1501 
1502 	/* emit the trailing fence */
1503 	ring->trail_seq += 1;
1504 	amdgpu_ring_alloc(ring, 10);
1505 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1506 				  ring->trail_seq, 0);
1507 	amdgpu_ring_commit(ring);
1508 
1509 	/* assert IB preemption */
1510 	WREG32(sdma_gfx_preempt, 1);
1511 
1512 	/* poll the trailing fence */
1513 	for (i = 0; i < adev->usec_timeout; i++) {
1514 		if (ring->trail_seq ==
1515 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1516 			break;
1517 		udelay(1);
1518 	}
1519 
1520 	if (i >= adev->usec_timeout) {
1521 		r = -EINVAL;
1522 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1523 	}
1524 
1525 	/* deassert IB preemption */
1526 	WREG32(sdma_gfx_preempt, 0);
1527 
1528 	/* deassert the preemption condition */
1529 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1530 	return r;
1531 }
1532 
1533 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1534 					struct amdgpu_irq_src *source,
1535 					unsigned type,
1536 					enum amdgpu_interrupt_state state)
1537 {
1538 	u32 sdma_cntl;
1539 
1540 	if (!amdgpu_sriov_vf(adev)) {
1541 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1542 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1543 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1544 
1545 		sdma_cntl = RREG32(reg_offset);
1546 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1547 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1548 		WREG32(reg_offset, sdma_cntl);
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1555 				      struct amdgpu_irq_src *source,
1556 				      struct amdgpu_iv_entry *entry)
1557 {
1558 	uint32_t mes_queue_id = entry->src_data[0];
1559 
1560 	DRM_DEBUG("IH: SDMA trap\n");
1561 
1562 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1563 		struct amdgpu_mes_queue *queue;
1564 
1565 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1566 
1567 		spin_lock(&adev->mes.queue_id_lock);
1568 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1569 		if (queue) {
1570 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1571 			amdgpu_fence_process(queue->ring);
1572 		}
1573 		spin_unlock(&adev->mes.queue_id_lock);
1574 		return 0;
1575 	}
1576 
1577 	switch (entry->client_id) {
1578 	case SOC15_IH_CLIENTID_SDMA0:
1579 		switch (entry->ring_id) {
1580 		case 0:
1581 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1582 			break;
1583 		case 1:
1584 			/* XXX compute */
1585 			break;
1586 		case 2:
1587 			/* XXX compute */
1588 			break;
1589 		case 3:
1590 			/* XXX page queue*/
1591 			break;
1592 		}
1593 		break;
1594 	case SOC15_IH_CLIENTID_SDMA1:
1595 		switch (entry->ring_id) {
1596 		case 0:
1597 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1598 			break;
1599 		case 1:
1600 			/* XXX compute */
1601 			break;
1602 		case 2:
1603 			/* XXX compute */
1604 			break;
1605 		case 3:
1606 			/* XXX page queue*/
1607 			break;
1608 		}
1609 		break;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1615 					      struct amdgpu_irq_src *source,
1616 					      struct amdgpu_iv_entry *entry)
1617 {
1618 	return 0;
1619 }
1620 
1621 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1622 						       bool enable)
1623 {
1624 	uint32_t data, def;
1625 	int i;
1626 
1627 	for (i = 0; i < adev->sdma.num_instances; i++) {
1628 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1629 			/* Enable sdma clock gating */
1630 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1631 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1632 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1633 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1634 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1635 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1636 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1637 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1638 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1639 			if (def != data)
1640 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1641 		} else {
1642 			/* Disable sdma clock gating */
1643 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1644 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1645 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1646 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1647 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1648 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1649 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1650 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1651 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1652 			if (def != data)
1653 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1654 		}
1655 	}
1656 }
1657 
1658 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1659 						      bool enable)
1660 {
1661 	uint32_t data, def;
1662 	int i;
1663 
1664 	for (i = 0; i < adev->sdma.num_instances; i++) {
1665 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1666 			/* Enable sdma mem light sleep */
1667 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1668 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1669 			if (def != data)
1670 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1671 
1672 		} else {
1673 			/* Disable sdma mem light sleep */
1674 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1675 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1676 			if (def != data)
1677 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1678 
1679 		}
1680 	}
1681 }
1682 
1683 static int sdma_v5_0_set_clockgating_state(void *handle,
1684 					   enum amd_clockgating_state state)
1685 {
1686 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1687 
1688 	if (amdgpu_sriov_vf(adev))
1689 		return 0;
1690 
1691 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1692 	case IP_VERSION(5, 0, 0):
1693 	case IP_VERSION(5, 0, 2):
1694 	case IP_VERSION(5, 0, 5):
1695 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1696 				state == AMD_CG_STATE_GATE);
1697 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1698 				state == AMD_CG_STATE_GATE);
1699 		break;
1700 	default:
1701 		break;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int sdma_v5_0_set_powergating_state(void *handle,
1708 					  enum amd_powergating_state state)
1709 {
1710 	return 0;
1711 }
1712 
1713 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1714 {
1715 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1716 	int data;
1717 
1718 	if (amdgpu_sriov_vf(adev))
1719 		*flags = 0;
1720 
1721 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1722 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1723 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1724 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1725 
1726 	/* AMD_CG_SUPPORT_SDMA_LS */
1727 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1728 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1729 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1730 }
1731 
1732 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1733 	.name = "sdma_v5_0",
1734 	.early_init = sdma_v5_0_early_init,
1735 	.late_init = NULL,
1736 	.sw_init = sdma_v5_0_sw_init,
1737 	.sw_fini = sdma_v5_0_sw_fini,
1738 	.hw_init = sdma_v5_0_hw_init,
1739 	.hw_fini = sdma_v5_0_hw_fini,
1740 	.suspend = sdma_v5_0_suspend,
1741 	.resume = sdma_v5_0_resume,
1742 	.is_idle = sdma_v5_0_is_idle,
1743 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1744 	.soft_reset = sdma_v5_0_soft_reset,
1745 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1746 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1747 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1748 };
1749 
1750 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1751 	.type = AMDGPU_RING_TYPE_SDMA,
1752 	.align_mask = 0xf,
1753 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1754 	.support_64bit_ptrs = true,
1755 	.secure_submission_supported = true,
1756 	.get_rptr = sdma_v5_0_ring_get_rptr,
1757 	.get_wptr = sdma_v5_0_ring_get_wptr,
1758 	.set_wptr = sdma_v5_0_ring_set_wptr,
1759 	.emit_frame_size =
1760 		5 + /* sdma_v5_0_ring_init_cond_exec */
1761 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1762 		3 + /* hdp_invalidate */
1763 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1764 		/* sdma_v5_0_ring_emit_vm_flush */
1765 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1766 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1767 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1768 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1769 	.emit_ib = sdma_v5_0_ring_emit_ib,
1770 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1771 	.emit_fence = sdma_v5_0_ring_emit_fence,
1772 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1773 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1774 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1775 	.test_ring = sdma_v5_0_ring_test_ring,
1776 	.test_ib = sdma_v5_0_ring_test_ib,
1777 	.insert_nop = sdma_v5_0_ring_insert_nop,
1778 	.pad_ib = sdma_v5_0_ring_pad_ib,
1779 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1780 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1781 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1782 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1783 	.patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1784 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1785 };
1786 
1787 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1788 {
1789 	int i;
1790 
1791 	for (i = 0; i < adev->sdma.num_instances; i++) {
1792 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1793 		adev->sdma.instance[i].ring.me = i;
1794 	}
1795 }
1796 
1797 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1798 	.set = sdma_v5_0_set_trap_irq_state,
1799 	.process = sdma_v5_0_process_trap_irq,
1800 };
1801 
1802 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1803 	.process = sdma_v5_0_process_illegal_inst_irq,
1804 };
1805 
1806 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1807 {
1808 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1809 					adev->sdma.num_instances;
1810 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1811 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1812 }
1813 
1814 /**
1815  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1816  *
1817  * @ib: indirect buffer to copy to
1818  * @src_offset: src GPU address
1819  * @dst_offset: dst GPU address
1820  * @byte_count: number of bytes to xfer
1821  * @tmz: if a secure copy should be used
1822  *
1823  * Copy GPU buffers using the DMA engine (NAVI10).
1824  * Used by the amdgpu ttm implementation to move pages if
1825  * registered as the asic copy callback.
1826  */
1827 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1828 				       uint64_t src_offset,
1829 				       uint64_t dst_offset,
1830 				       uint32_t byte_count,
1831 				       bool tmz)
1832 {
1833 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1834 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1835 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1836 	ib->ptr[ib->length_dw++] = byte_count - 1;
1837 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1838 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1839 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1840 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1841 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1842 }
1843 
1844 /**
1845  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1846  *
1847  * @ib: indirect buffer to fill
1848  * @src_data: value to write to buffer
1849  * @dst_offset: dst GPU address
1850  * @byte_count: number of bytes to xfer
1851  *
1852  * Fill GPU buffers using the DMA engine (NAVI10).
1853  */
1854 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1855 				       uint32_t src_data,
1856 				       uint64_t dst_offset,
1857 				       uint32_t byte_count)
1858 {
1859 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1860 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1861 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1862 	ib->ptr[ib->length_dw++] = src_data;
1863 	ib->ptr[ib->length_dw++] = byte_count - 1;
1864 }
1865 
1866 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1867 	.copy_max_bytes = 0x400000,
1868 	.copy_num_dw = 7,
1869 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1870 
1871 	.fill_max_bytes = 0x400000,
1872 	.fill_num_dw = 5,
1873 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1874 };
1875 
1876 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1877 {
1878 	if (adev->mman.buffer_funcs == NULL) {
1879 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1880 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1881 	}
1882 }
1883 
1884 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1885 	.copy_pte_num_dw = 7,
1886 	.copy_pte = sdma_v5_0_vm_copy_pte,
1887 	.write_pte = sdma_v5_0_vm_write_pte,
1888 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1889 };
1890 
1891 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1892 {
1893 	unsigned i;
1894 
1895 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1896 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1897 		for (i = 0; i < adev->sdma.num_instances; i++) {
1898 			adev->vm_manager.vm_pte_scheds[i] =
1899 				&adev->sdma.instance[i].ring.sched;
1900 		}
1901 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1902 	}
1903 }
1904 
1905 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1906 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1907 	.major = 5,
1908 	.minor = 0,
1909 	.rev = 0,
1910 	.funcs = &sdma_v5_0_ip_funcs,
1911 };
1912