xref: /linux/drivers/firewire/core-device.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44 
45 #include "core.h"
46 
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 	ci->p = p + 1;
50 	ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53 
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 	*key = *ci->p >> 24;
57 	*value = *ci->p & 0xffffff;
58 
59 	return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62 
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 	struct fw_csr_iterator ci;
66 	int last_key = 0, key, value;
67 
68 	fw_csr_iterator_init(&ci, directory);
69 	while (fw_csr_iterator_next(&ci, &key, &value)) {
70 		if (last_key == search_key &&
71 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
72 			return ci.p - 1 + value;
73 
74 		last_key = key;
75 	}
76 
77 	return NULL;
78 }
79 
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 	unsigned int quadlets, i;
83 	char c;
84 
85 	if (!size || !buf)
86 		return -EINVAL;
87 
88 	quadlets = min(block[0] >> 16, 256U);
89 	if (quadlets < 2)
90 		return -ENODATA;
91 
92 	if (block[1] != 0 || block[2] != 0)
93 		/* unknown language/character set */
94 		return -ENODATA;
95 
96 	block += 3;
97 	quadlets -= 2;
98 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 		c = block[i / 4] >> (24 - 8 * (i % 4));
100 		if (c == '\0')
101 			break;
102 		buf[i] = c;
103 	}
104 	buf[i] = '\0';
105 
106 	return i;
107 }
108 
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:	e.g. root directory or unit directory
112  * @key:	the key of the preceding directory entry
113  * @buf:	where to put the string
114  * @size:	size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * Returns strlen(buf) or a negative error code.
119  */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 	const u32 *leaf = search_leaf(directory, key);
123 	if (!leaf)
124 		return -ENOENT;
125 
126 	return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129 
130 static void get_ids(const u32 *directory, int *id)
131 {
132 	struct fw_csr_iterator ci;
133 	int key, value;
134 
135 	fw_csr_iterator_init(&ci, directory);
136 	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 		switch (key) {
138 		case CSR_VENDOR:	id[0] = value; break;
139 		case CSR_MODEL:		id[1] = value; break;
140 		case CSR_SPECIFIER_ID:	id[2] = value; break;
141 		case CSR_VERSION:	id[3] = value; break;
142 		}
143 	}
144 }
145 
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 	get_ids(unit->directory, id);
150 }
151 
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 	int match = 0;
155 
156 	if (id[0] == id_table->vendor_id)
157 		match |= IEEE1394_MATCH_VENDOR_ID;
158 	if (id[1] == id_table->model_id)
159 		match |= IEEE1394_MATCH_MODEL_ID;
160 	if (id[2] == id_table->specifier_id)
161 		match |= IEEE1394_MATCH_SPECIFIER_ID;
162 	if (id[3] == id_table->version)
163 		match |= IEEE1394_MATCH_VERSION;
164 
165 	return (match & id_table->match_flags) == id_table->match_flags;
166 }
167 
168 static bool is_fw_unit(struct device *dev);
169 
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 	const struct ieee1394_device_id *id_table =
173 			container_of(drv, struct fw_driver, driver)->id_table;
174 	int id[] = {0, 0, 0, 0};
175 
176 	/* We only allow binding to fw_units. */
177 	if (!is_fw_unit(dev))
178 		return 0;
179 
180 	get_modalias_ids(fw_unit(dev), id);
181 
182 	for (; id_table->match_flags != 0; id_table++)
183 		if (match_ids(id_table, id))
184 			return 1;
185 
186 	return 0;
187 }
188 
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 	int id[] = {0, 0, 0, 0};
192 
193 	get_modalias_ids(unit, id);
194 
195 	return snprintf(buffer, buffer_size,
196 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 			id[0], id[1], id[2], id[3]);
198 }
199 
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 	struct fw_unit *unit = fw_unit(dev);
203 	char modalias[64];
204 
205 	get_modalias(unit, modalias, sizeof(modalias));
206 
207 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 		return -ENOMEM;
209 
210 	return 0;
211 }
212 
213 struct bus_type fw_bus_type = {
214 	.name = "firewire",
215 	.match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218 
219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 	int generation = device->generation;
222 
223 	/* device->node_id, accessed below, must not be older than generation */
224 	smp_rmb();
225 
226 	return device->card->driver->enable_phys_dma(device->card,
227 						     device->node_id,
228 						     generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231 
232 struct config_rom_attribute {
233 	struct device_attribute attr;
234 	u32 key;
235 };
236 
237 static ssize_t show_immediate(struct device *dev,
238 			      struct device_attribute *dattr, char *buf)
239 {
240 	struct config_rom_attribute *attr =
241 		container_of(dattr, struct config_rom_attribute, attr);
242 	struct fw_csr_iterator ci;
243 	const u32 *dir;
244 	int key, value, ret = -ENOENT;
245 
246 	down_read(&fw_device_rwsem);
247 
248 	if (is_fw_unit(dev))
249 		dir = fw_unit(dev)->directory;
250 	else
251 		dir = fw_device(dev)->config_rom + 5;
252 
253 	fw_csr_iterator_init(&ci, dir);
254 	while (fw_csr_iterator_next(&ci, &key, &value))
255 		if (attr->key == key) {
256 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 				       "0x%06x\n", value);
258 			break;
259 		}
260 
261 	up_read(&fw_device_rwsem);
262 
263 	return ret;
264 }
265 
266 #define IMMEDIATE_ATTR(name, key)				\
267 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268 
269 static ssize_t show_text_leaf(struct device *dev,
270 			      struct device_attribute *dattr, char *buf)
271 {
272 	struct config_rom_attribute *attr =
273 		container_of(dattr, struct config_rom_attribute, attr);
274 	const u32 *dir;
275 	size_t bufsize;
276 	char dummy_buf[2];
277 	int ret;
278 
279 	down_read(&fw_device_rwsem);
280 
281 	if (is_fw_unit(dev))
282 		dir = fw_unit(dev)->directory;
283 	else
284 		dir = fw_device(dev)->config_rom + 5;
285 
286 	if (buf) {
287 		bufsize = PAGE_SIZE - 1;
288 	} else {
289 		buf = dummy_buf;
290 		bufsize = 1;
291 	}
292 
293 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294 
295 	if (ret >= 0) {
296 		/* Strip trailing whitespace and add newline. */
297 		while (ret > 0 && isspace(buf[ret - 1]))
298 			ret--;
299 		strcpy(buf + ret, "\n");
300 		ret++;
301 	}
302 
303 	up_read(&fw_device_rwsem);
304 
305 	return ret;
306 }
307 
308 #define TEXT_LEAF_ATTR(name, key)				\
309 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310 
311 static struct config_rom_attribute config_rom_attributes[] = {
312 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 	IMMEDIATE_ATTR(version, CSR_VERSION),
316 	IMMEDIATE_ATTR(model, CSR_MODEL),
317 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321 
322 static void init_fw_attribute_group(struct device *dev,
323 				    struct device_attribute *attrs,
324 				    struct fw_attribute_group *group)
325 {
326 	struct device_attribute *attr;
327 	int i, j;
328 
329 	for (j = 0; attrs[j].attr.name != NULL; j++)
330 		group->attrs[j] = &attrs[j].attr;
331 
332 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 		attr = &config_rom_attributes[i].attr;
334 		if (attr->show(dev, attr, NULL) < 0)
335 			continue;
336 		group->attrs[j++] = &attr->attr;
337 	}
338 
339 	group->attrs[j] = NULL;
340 	group->groups[0] = &group->group;
341 	group->groups[1] = NULL;
342 	group->group.attrs = group->attrs;
343 	dev->groups = (const struct attribute_group **) group->groups;
344 }
345 
346 static ssize_t modalias_show(struct device *dev,
347 			     struct device_attribute *attr, char *buf)
348 {
349 	struct fw_unit *unit = fw_unit(dev);
350 	int length;
351 
352 	length = get_modalias(unit, buf, PAGE_SIZE);
353 	strcpy(buf + length, "\n");
354 
355 	return length + 1;
356 }
357 
358 static ssize_t rom_index_show(struct device *dev,
359 			      struct device_attribute *attr, char *buf)
360 {
361 	struct fw_device *device = fw_device(dev->parent);
362 	struct fw_unit *unit = fw_unit(dev);
363 
364 	return snprintf(buf, PAGE_SIZE, "%d\n",
365 			(int)(unit->directory - device->config_rom));
366 }
367 
368 static struct device_attribute fw_unit_attributes[] = {
369 	__ATTR_RO(modalias),
370 	__ATTR_RO(rom_index),
371 	__ATTR_NULL,
372 };
373 
374 static ssize_t config_rom_show(struct device *dev,
375 			       struct device_attribute *attr, char *buf)
376 {
377 	struct fw_device *device = fw_device(dev);
378 	size_t length;
379 
380 	down_read(&fw_device_rwsem);
381 	length = device->config_rom_length * 4;
382 	memcpy(buf, device->config_rom, length);
383 	up_read(&fw_device_rwsem);
384 
385 	return length;
386 }
387 
388 static ssize_t guid_show(struct device *dev,
389 			 struct device_attribute *attr, char *buf)
390 {
391 	struct fw_device *device = fw_device(dev);
392 	int ret;
393 
394 	down_read(&fw_device_rwsem);
395 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 		       device->config_rom[3], device->config_rom[4]);
397 	up_read(&fw_device_rwsem);
398 
399 	return ret;
400 }
401 
402 static ssize_t is_local_show(struct device *dev,
403 			     struct device_attribute *attr, char *buf)
404 {
405 	struct fw_device *device = fw_device(dev);
406 
407 	return sprintf(buf, "%u\n", device->is_local);
408 }
409 
410 static int units_sprintf(char *buf, const u32 *directory)
411 {
412 	struct fw_csr_iterator ci;
413 	int key, value;
414 	int specifier_id = 0;
415 	int version = 0;
416 
417 	fw_csr_iterator_init(&ci, directory);
418 	while (fw_csr_iterator_next(&ci, &key, &value)) {
419 		switch (key) {
420 		case CSR_SPECIFIER_ID:
421 			specifier_id = value;
422 			break;
423 		case CSR_VERSION:
424 			version = value;
425 			break;
426 		}
427 	}
428 
429 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
430 }
431 
432 static ssize_t units_show(struct device *dev,
433 			  struct device_attribute *attr, char *buf)
434 {
435 	struct fw_device *device = fw_device(dev);
436 	struct fw_csr_iterator ci;
437 	int key, value, i = 0;
438 
439 	down_read(&fw_device_rwsem);
440 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
441 	while (fw_csr_iterator_next(&ci, &key, &value)) {
442 		if (key != (CSR_UNIT | CSR_DIRECTORY))
443 			continue;
444 		i += units_sprintf(&buf[i], ci.p + value - 1);
445 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
446 			break;
447 	}
448 	up_read(&fw_device_rwsem);
449 
450 	if (i)
451 		buf[i - 1] = '\n';
452 
453 	return i;
454 }
455 
456 static struct device_attribute fw_device_attributes[] = {
457 	__ATTR_RO(config_rom),
458 	__ATTR_RO(guid),
459 	__ATTR_RO(is_local),
460 	__ATTR_RO(units),
461 	__ATTR_NULL,
462 };
463 
464 static int read_rom(struct fw_device *device,
465 		    int generation, int index, u32 *data)
466 {
467 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
468 	int i, rcode;
469 
470 	/* device->node_id, accessed below, must not be older than generation */
471 	smp_rmb();
472 
473 	for (i = 10; i < 100; i += 10) {
474 		rcode = fw_run_transaction(device->card,
475 				TCODE_READ_QUADLET_REQUEST, device->node_id,
476 				generation, device->max_speed, offset, data, 4);
477 		if (rcode != RCODE_BUSY)
478 			break;
479 		msleep(i);
480 	}
481 	be32_to_cpus(data);
482 
483 	return rcode;
484 }
485 
486 #define MAX_CONFIG_ROM_SIZE 256
487 
488 /*
489  * Read the bus info block, perform a speed probe, and read all of the rest of
490  * the config ROM.  We do all this with a cached bus generation.  If the bus
491  * generation changes under us, read_config_rom will fail and get retried.
492  * It's better to start all over in this case because the node from which we
493  * are reading the ROM may have changed the ROM during the reset.
494  * Returns either a result code or a negative error code.
495  */
496 static int read_config_rom(struct fw_device *device, int generation)
497 {
498 	struct fw_card *card = device->card;
499 	const u32 *old_rom, *new_rom;
500 	u32 *rom, *stack;
501 	u32 sp, key;
502 	int i, end, length, ret;
503 
504 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
505 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506 	if (rom == NULL)
507 		return -ENOMEM;
508 
509 	stack = &rom[MAX_CONFIG_ROM_SIZE];
510 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511 
512 	device->max_speed = SCODE_100;
513 
514 	/* First read the bus info block. */
515 	for (i = 0; i < 5; i++) {
516 		ret = read_rom(device, generation, i, &rom[i]);
517 		if (ret != RCODE_COMPLETE)
518 			goto out;
519 		/*
520 		 * As per IEEE1212 7.2, during initialization, devices can
521 		 * reply with a 0 for the first quadlet of the config
522 		 * rom to indicate that they are booting (for example,
523 		 * if the firmware is on the disk of a external
524 		 * harddisk).  In that case we just fail, and the
525 		 * retry mechanism will try again later.
526 		 */
527 		if (i == 0 && rom[i] == 0) {
528 			ret = RCODE_BUSY;
529 			goto out;
530 		}
531 	}
532 
533 	device->max_speed = device->node->max_speed;
534 
535 	/*
536 	 * Determine the speed of
537 	 *   - devices with link speed less than PHY speed,
538 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
539 	 *   - all devices if there are 1394b repeaters.
540 	 * Note, we cannot use the bus info block's link_spd as starting point
541 	 * because some buggy firmwares set it lower than necessary and because
542 	 * 1394-1995 nodes do not have the field.
543 	 */
544 	if ((rom[2] & 0x7) < device->max_speed ||
545 	    device->max_speed == SCODE_BETA ||
546 	    card->beta_repeaters_present) {
547 		u32 dummy;
548 
549 		/* for S1600 and S3200 */
550 		if (device->max_speed == SCODE_BETA)
551 			device->max_speed = card->link_speed;
552 
553 		while (device->max_speed > SCODE_100) {
554 			if (read_rom(device, generation, 0, &dummy) ==
555 			    RCODE_COMPLETE)
556 				break;
557 			device->max_speed--;
558 		}
559 	}
560 
561 	/*
562 	 * Now parse the config rom.  The config rom is a recursive
563 	 * directory structure so we parse it using a stack of
564 	 * references to the blocks that make up the structure.  We
565 	 * push a reference to the root directory on the stack to
566 	 * start things off.
567 	 */
568 	length = i;
569 	sp = 0;
570 	stack[sp++] = 0xc0000005;
571 	while (sp > 0) {
572 		/*
573 		 * Pop the next block reference of the stack.  The
574 		 * lower 24 bits is the offset into the config rom,
575 		 * the upper 8 bits are the type of the reference the
576 		 * block.
577 		 */
578 		key = stack[--sp];
579 		i = key & 0xffffff;
580 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
581 			ret = -ENXIO;
582 			goto out;
583 		}
584 
585 		/* Read header quadlet for the block to get the length. */
586 		ret = read_rom(device, generation, i, &rom[i]);
587 		if (ret != RCODE_COMPLETE)
588 			goto out;
589 		end = i + (rom[i] >> 16) + 1;
590 		if (end > MAX_CONFIG_ROM_SIZE) {
591 			/*
592 			 * This block extends outside the config ROM which is
593 			 * a firmware bug.  Ignore this whole block, i.e.
594 			 * simply set a fake block length of 0.
595 			 */
596 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
597 			       rom[i],
598 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
599 			rom[i] = 0;
600 			end = i;
601 		}
602 		i++;
603 
604 		/*
605 		 * Now read in the block.  If this is a directory
606 		 * block, check the entries as we read them to see if
607 		 * it references another block, and push it in that case.
608 		 */
609 		for (; i < end; i++) {
610 			ret = read_rom(device, generation, i, &rom[i]);
611 			if (ret != RCODE_COMPLETE)
612 				goto out;
613 
614 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615 				continue;
616 			/*
617 			 * Offset points outside the ROM.  May be a firmware
618 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
619 			 * 7.7.18).  Simply overwrite this pointer here by a
620 			 * fake immediate entry so that later iterators over
621 			 * the ROM don't have to check offsets all the time.
622 			 */
623 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624 				fw_err(card,
625 				       "skipped unsupported ROM entry %x at %llx\n",
626 				       rom[i],
627 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 				rom[i] = 0;
629 				continue;
630 			}
631 			stack[sp++] = i + rom[i];
632 		}
633 		if (length < i)
634 			length = i;
635 	}
636 
637 	old_rom = device->config_rom;
638 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 	if (new_rom == NULL) {
640 		ret = -ENOMEM;
641 		goto out;
642 	}
643 
644 	down_write(&fw_device_rwsem);
645 	device->config_rom = new_rom;
646 	device->config_rom_length = length;
647 	up_write(&fw_device_rwsem);
648 
649 	kfree(old_rom);
650 	ret = RCODE_COMPLETE;
651 	device->max_rec	= rom[2] >> 12 & 0xf;
652 	device->cmc	= rom[2] >> 30 & 1;
653 	device->irmc	= rom[2] >> 31 & 1;
654  out:
655 	kfree(rom);
656 
657 	return ret;
658 }
659 
660 static void fw_unit_release(struct device *dev)
661 {
662 	struct fw_unit *unit = fw_unit(dev);
663 
664 	fw_device_put(fw_parent_device(unit));
665 	kfree(unit);
666 }
667 
668 static struct device_type fw_unit_type = {
669 	.uevent		= fw_unit_uevent,
670 	.release	= fw_unit_release,
671 };
672 
673 static bool is_fw_unit(struct device *dev)
674 {
675 	return dev->type == &fw_unit_type;
676 }
677 
678 static void create_units(struct fw_device *device)
679 {
680 	struct fw_csr_iterator ci;
681 	struct fw_unit *unit;
682 	int key, value, i;
683 
684 	i = 0;
685 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
686 	while (fw_csr_iterator_next(&ci, &key, &value)) {
687 		if (key != (CSR_UNIT | CSR_DIRECTORY))
688 			continue;
689 
690 		/*
691 		 * Get the address of the unit directory and try to
692 		 * match the drivers id_tables against it.
693 		 */
694 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695 		if (unit == NULL) {
696 			fw_err(device->card, "out of memory for unit\n");
697 			continue;
698 		}
699 
700 		unit->directory = ci.p + value - 1;
701 		unit->device.bus = &fw_bus_type;
702 		unit->device.type = &fw_unit_type;
703 		unit->device.parent = &device->device;
704 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
705 
706 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
707 				ARRAY_SIZE(fw_unit_attributes) +
708 				ARRAY_SIZE(config_rom_attributes));
709 		init_fw_attribute_group(&unit->device,
710 					fw_unit_attributes,
711 					&unit->attribute_group);
712 
713 		if (device_register(&unit->device) < 0)
714 			goto skip_unit;
715 
716 		fw_device_get(device);
717 		continue;
718 
719 	skip_unit:
720 		kfree(unit);
721 	}
722 }
723 
724 static int shutdown_unit(struct device *device, void *data)
725 {
726 	device_unregister(device);
727 
728 	return 0;
729 }
730 
731 /*
732  * fw_device_rwsem acts as dual purpose mutex:
733  *   - serializes accesses to fw_device_idr,
734  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
735  *     fw_unit.directory, unless those accesses happen at safe occasions
736  */
737 DECLARE_RWSEM(fw_device_rwsem);
738 
739 DEFINE_IDR(fw_device_idr);
740 int fw_cdev_major;
741 
742 struct fw_device *fw_device_get_by_devt(dev_t devt)
743 {
744 	struct fw_device *device;
745 
746 	down_read(&fw_device_rwsem);
747 	device = idr_find(&fw_device_idr, MINOR(devt));
748 	if (device)
749 		fw_device_get(device);
750 	up_read(&fw_device_rwsem);
751 
752 	return device;
753 }
754 
755 struct workqueue_struct *fw_workqueue;
756 EXPORT_SYMBOL(fw_workqueue);
757 
758 static void fw_schedule_device_work(struct fw_device *device,
759 				    unsigned long delay)
760 {
761 	queue_delayed_work(fw_workqueue, &device->work, delay);
762 }
763 
764 /*
765  * These defines control the retry behavior for reading the config
766  * rom.  It shouldn't be necessary to tweak these; if the device
767  * doesn't respond to a config rom read within 10 seconds, it's not
768  * going to respond at all.  As for the initial delay, a lot of
769  * devices will be able to respond within half a second after bus
770  * reset.  On the other hand, it's not really worth being more
771  * aggressive than that, since it scales pretty well; if 10 devices
772  * are plugged in, they're all getting read within one second.
773  */
774 
775 #define MAX_RETRIES	10
776 #define RETRY_DELAY	(3 * HZ)
777 #define INITIAL_DELAY	(HZ / 2)
778 #define SHUTDOWN_DELAY	(2 * HZ)
779 
780 static void fw_device_shutdown(struct work_struct *work)
781 {
782 	struct fw_device *device =
783 		container_of(work, struct fw_device, work.work);
784 	int minor = MINOR(device->device.devt);
785 
786 	if (time_before64(get_jiffies_64(),
787 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
788 	    && !list_empty(&device->card->link)) {
789 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
790 		return;
791 	}
792 
793 	if (atomic_cmpxchg(&device->state,
794 			   FW_DEVICE_GONE,
795 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
796 		return;
797 
798 	fw_device_cdev_remove(device);
799 	device_for_each_child(&device->device, NULL, shutdown_unit);
800 	device_unregister(&device->device);
801 
802 	down_write(&fw_device_rwsem);
803 	idr_remove(&fw_device_idr, minor);
804 	up_write(&fw_device_rwsem);
805 
806 	fw_device_put(device);
807 }
808 
809 static void fw_device_release(struct device *dev)
810 {
811 	struct fw_device *device = fw_device(dev);
812 	struct fw_card *card = device->card;
813 	unsigned long flags;
814 
815 	/*
816 	 * Take the card lock so we don't set this to NULL while a
817 	 * FW_NODE_UPDATED callback is being handled or while the
818 	 * bus manager work looks at this node.
819 	 */
820 	spin_lock_irqsave(&card->lock, flags);
821 	device->node->data = NULL;
822 	spin_unlock_irqrestore(&card->lock, flags);
823 
824 	fw_node_put(device->node);
825 	kfree(device->config_rom);
826 	kfree(device);
827 	fw_card_put(card);
828 }
829 
830 static struct device_type fw_device_type = {
831 	.release = fw_device_release,
832 };
833 
834 static bool is_fw_device(struct device *dev)
835 {
836 	return dev->type == &fw_device_type;
837 }
838 
839 static int update_unit(struct device *dev, void *data)
840 {
841 	struct fw_unit *unit = fw_unit(dev);
842 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
843 
844 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
845 		device_lock(dev);
846 		driver->update(unit);
847 		device_unlock(dev);
848 	}
849 
850 	return 0;
851 }
852 
853 static void fw_device_update(struct work_struct *work)
854 {
855 	struct fw_device *device =
856 		container_of(work, struct fw_device, work.work);
857 
858 	fw_device_cdev_update(device);
859 	device_for_each_child(&device->device, NULL, update_unit);
860 }
861 
862 /*
863  * If a device was pending for deletion because its node went away but its
864  * bus info block and root directory header matches that of a newly discovered
865  * device, revive the existing fw_device.
866  * The newly allocated fw_device becomes obsolete instead.
867  */
868 static int lookup_existing_device(struct device *dev, void *data)
869 {
870 	struct fw_device *old = fw_device(dev);
871 	struct fw_device *new = data;
872 	struct fw_card *card = new->card;
873 	int match = 0;
874 
875 	if (!is_fw_device(dev))
876 		return 0;
877 
878 	down_read(&fw_device_rwsem); /* serialize config_rom access */
879 	spin_lock_irq(&card->lock);  /* serialize node access */
880 
881 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
882 	    atomic_cmpxchg(&old->state,
883 			   FW_DEVICE_GONE,
884 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
885 		struct fw_node *current_node = new->node;
886 		struct fw_node *obsolete_node = old->node;
887 
888 		new->node = obsolete_node;
889 		new->node->data = new;
890 		old->node = current_node;
891 		old->node->data = old;
892 
893 		old->max_speed = new->max_speed;
894 		old->node_id = current_node->node_id;
895 		smp_wmb();  /* update node_id before generation */
896 		old->generation = card->generation;
897 		old->config_rom_retries = 0;
898 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
899 
900 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
901 		fw_schedule_device_work(old, 0);
902 
903 		if (current_node == card->root_node)
904 			fw_schedule_bm_work(card, 0);
905 
906 		match = 1;
907 	}
908 
909 	spin_unlock_irq(&card->lock);
910 	up_read(&fw_device_rwsem);
911 
912 	return match;
913 }
914 
915 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
916 
917 static void set_broadcast_channel(struct fw_device *device, int generation)
918 {
919 	struct fw_card *card = device->card;
920 	__be32 data;
921 	int rcode;
922 
923 	if (!card->broadcast_channel_allocated)
924 		return;
925 
926 	/*
927 	 * The Broadcast_Channel Valid bit is required by nodes which want to
928 	 * transmit on this channel.  Such transmissions are practically
929 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
930 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
931 	 * to narrow down to which nodes we send Broadcast_Channel updates.
932 	 */
933 	if (!device->irmc || device->max_rec < 8)
934 		return;
935 
936 	/*
937 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
938 	 * Perform a read test first.
939 	 */
940 	if (device->bc_implemented == BC_UNKNOWN) {
941 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
942 				device->node_id, generation, device->max_speed,
943 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
944 				&data, 4);
945 		switch (rcode) {
946 		case RCODE_COMPLETE:
947 			if (data & cpu_to_be32(1 << 31)) {
948 				device->bc_implemented = BC_IMPLEMENTED;
949 				break;
950 			}
951 			/* else fall through to case address error */
952 		case RCODE_ADDRESS_ERROR:
953 			device->bc_implemented = BC_UNIMPLEMENTED;
954 		}
955 	}
956 
957 	if (device->bc_implemented == BC_IMPLEMENTED) {
958 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
959 				   BROADCAST_CHANNEL_VALID);
960 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
961 				device->node_id, generation, device->max_speed,
962 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
963 				&data, 4);
964 	}
965 }
966 
967 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
968 {
969 	if (is_fw_device(dev))
970 		set_broadcast_channel(fw_device(dev), (long)gen);
971 
972 	return 0;
973 }
974 
975 static void fw_device_init(struct work_struct *work)
976 {
977 	struct fw_device *device =
978 		container_of(work, struct fw_device, work.work);
979 	struct fw_card *card = device->card;
980 	struct device *revived_dev;
981 	int minor, ret;
982 
983 	/*
984 	 * All failure paths here set node->data to NULL, so that we
985 	 * don't try to do device_for_each_child() on a kfree()'d
986 	 * device.
987 	 */
988 
989 	ret = read_config_rom(device, device->generation);
990 	if (ret != RCODE_COMPLETE) {
991 		if (device->config_rom_retries < MAX_RETRIES &&
992 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
993 			device->config_rom_retries++;
994 			fw_schedule_device_work(device, RETRY_DELAY);
995 		} else {
996 			if (device->node->link_on)
997 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
998 					  device->node_id,
999 					  fw_rcode_string(ret));
1000 			if (device->node == card->root_node)
1001 				fw_schedule_bm_work(card, 0);
1002 			fw_device_release(&device->device);
1003 		}
1004 		return;
1005 	}
1006 
1007 	revived_dev = device_find_child(card->device,
1008 					device, lookup_existing_device);
1009 	if (revived_dev) {
1010 		put_device(revived_dev);
1011 		fw_device_release(&device->device);
1012 
1013 		return;
1014 	}
1015 
1016 	device_initialize(&device->device);
1017 
1018 	fw_device_get(device);
1019 	down_write(&fw_device_rwsem);
1020 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1021 			GFP_KERNEL);
1022 	up_write(&fw_device_rwsem);
1023 
1024 	if (minor < 0)
1025 		goto error;
1026 
1027 	device->device.bus = &fw_bus_type;
1028 	device->device.type = &fw_device_type;
1029 	device->device.parent = card->device;
1030 	device->device.devt = MKDEV(fw_cdev_major, minor);
1031 	dev_set_name(&device->device, "fw%d", minor);
1032 
1033 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1034 			ARRAY_SIZE(fw_device_attributes) +
1035 			ARRAY_SIZE(config_rom_attributes));
1036 	init_fw_attribute_group(&device->device,
1037 				fw_device_attributes,
1038 				&device->attribute_group);
1039 
1040 	if (device_add(&device->device)) {
1041 		fw_err(card, "failed to add device\n");
1042 		goto error_with_cdev;
1043 	}
1044 
1045 	create_units(device);
1046 
1047 	/*
1048 	 * Transition the device to running state.  If it got pulled
1049 	 * out from under us while we did the intialization work, we
1050 	 * have to shut down the device again here.  Normally, though,
1051 	 * fw_node_event will be responsible for shutting it down when
1052 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1053 	 * racing with the FW_NODE_DESTROYED case in
1054 	 * fw_node_event().
1055 	 */
1056 	if (atomic_cmpxchg(&device->state,
1057 			   FW_DEVICE_INITIALIZING,
1058 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1059 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1060 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1061 	} else {
1062 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1063 			  dev_name(&device->device),
1064 			  device->config_rom[3], device->config_rom[4],
1065 			  1 << device->max_speed);
1066 		device->config_rom_retries = 0;
1067 
1068 		set_broadcast_channel(device, device->generation);
1069 
1070 		add_device_randomness(&device->config_rom[3], 8);
1071 	}
1072 
1073 	/*
1074 	 * Reschedule the IRM work if we just finished reading the
1075 	 * root node config rom.  If this races with a bus reset we
1076 	 * just end up running the IRM work a couple of extra times -
1077 	 * pretty harmless.
1078 	 */
1079 	if (device->node == card->root_node)
1080 		fw_schedule_bm_work(card, 0);
1081 
1082 	return;
1083 
1084  error_with_cdev:
1085 	down_write(&fw_device_rwsem);
1086 	idr_remove(&fw_device_idr, minor);
1087 	up_write(&fw_device_rwsem);
1088  error:
1089 	fw_device_put(device);		/* fw_device_idr's reference */
1090 
1091 	put_device(&device->device);	/* our reference */
1092 }
1093 
1094 /* Reread and compare bus info block and header of root directory */
1095 static int reread_config_rom(struct fw_device *device, int generation,
1096 			     bool *changed)
1097 {
1098 	u32 q;
1099 	int i, rcode;
1100 
1101 	for (i = 0; i < 6; i++) {
1102 		rcode = read_rom(device, generation, i, &q);
1103 		if (rcode != RCODE_COMPLETE)
1104 			return rcode;
1105 
1106 		if (i == 0 && q == 0)
1107 			/* inaccessible (see read_config_rom); retry later */
1108 			return RCODE_BUSY;
1109 
1110 		if (q != device->config_rom[i]) {
1111 			*changed = true;
1112 			return RCODE_COMPLETE;
1113 		}
1114 	}
1115 
1116 	*changed = false;
1117 	return RCODE_COMPLETE;
1118 }
1119 
1120 static void fw_device_refresh(struct work_struct *work)
1121 {
1122 	struct fw_device *device =
1123 		container_of(work, struct fw_device, work.work);
1124 	struct fw_card *card = device->card;
1125 	int ret, node_id = device->node_id;
1126 	bool changed;
1127 
1128 	ret = reread_config_rom(device, device->generation, &changed);
1129 	if (ret != RCODE_COMPLETE)
1130 		goto failed_config_rom;
1131 
1132 	if (!changed) {
1133 		if (atomic_cmpxchg(&device->state,
1134 				   FW_DEVICE_INITIALIZING,
1135 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1136 			goto gone;
1137 
1138 		fw_device_update(work);
1139 		device->config_rom_retries = 0;
1140 		goto out;
1141 	}
1142 
1143 	/*
1144 	 * Something changed.  We keep things simple and don't investigate
1145 	 * further.  We just destroy all previous units and create new ones.
1146 	 */
1147 	device_for_each_child(&device->device, NULL, shutdown_unit);
1148 
1149 	ret = read_config_rom(device, device->generation);
1150 	if (ret != RCODE_COMPLETE)
1151 		goto failed_config_rom;
1152 
1153 	fw_device_cdev_update(device);
1154 	create_units(device);
1155 
1156 	/* Userspace may want to re-read attributes. */
1157 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1158 
1159 	if (atomic_cmpxchg(&device->state,
1160 			   FW_DEVICE_INITIALIZING,
1161 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1162 		goto gone;
1163 
1164 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1165 	device->config_rom_retries = 0;
1166 	goto out;
1167 
1168  failed_config_rom:
1169 	if (device->config_rom_retries < MAX_RETRIES &&
1170 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1171 		device->config_rom_retries++;
1172 		fw_schedule_device_work(device, RETRY_DELAY);
1173 		return;
1174 	}
1175 
1176 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1177 		  dev_name(&device->device), fw_rcode_string(ret));
1178  gone:
1179 	atomic_set(&device->state, FW_DEVICE_GONE);
1180 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1181 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1182  out:
1183 	if (node_id == card->root_node->node_id)
1184 		fw_schedule_bm_work(card, 0);
1185 }
1186 
1187 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1188 {
1189 	struct fw_device *device;
1190 
1191 	switch (event) {
1192 	case FW_NODE_CREATED:
1193 		/*
1194 		 * Attempt to scan the node, regardless whether its self ID has
1195 		 * the L (link active) flag set or not.  Some broken devices
1196 		 * send L=0 but have an up-and-running link; others send L=1
1197 		 * without actually having a link.
1198 		 */
1199  create:
1200 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1201 		if (device == NULL)
1202 			break;
1203 
1204 		/*
1205 		 * Do minimal intialization of the device here, the
1206 		 * rest will happen in fw_device_init().
1207 		 *
1208 		 * Attention:  A lot of things, even fw_device_get(),
1209 		 * cannot be done before fw_device_init() finished!
1210 		 * You can basically just check device->state and
1211 		 * schedule work until then, but only while holding
1212 		 * card->lock.
1213 		 */
1214 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1215 		device->card = fw_card_get(card);
1216 		device->node = fw_node_get(node);
1217 		device->node_id = node->node_id;
1218 		device->generation = card->generation;
1219 		device->is_local = node == card->local_node;
1220 		mutex_init(&device->client_list_mutex);
1221 		INIT_LIST_HEAD(&device->client_list);
1222 
1223 		/*
1224 		 * Set the node data to point back to this device so
1225 		 * FW_NODE_UPDATED callbacks can update the node_id
1226 		 * and generation for the device.
1227 		 */
1228 		node->data = device;
1229 
1230 		/*
1231 		 * Many devices are slow to respond after bus resets,
1232 		 * especially if they are bus powered and go through
1233 		 * power-up after getting plugged in.  We schedule the
1234 		 * first config rom scan half a second after bus reset.
1235 		 */
1236 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1237 		fw_schedule_device_work(device, INITIAL_DELAY);
1238 		break;
1239 
1240 	case FW_NODE_INITIATED_RESET:
1241 	case FW_NODE_LINK_ON:
1242 		device = node->data;
1243 		if (device == NULL)
1244 			goto create;
1245 
1246 		device->node_id = node->node_id;
1247 		smp_wmb();  /* update node_id before generation */
1248 		device->generation = card->generation;
1249 		if (atomic_cmpxchg(&device->state,
1250 			    FW_DEVICE_RUNNING,
1251 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1252 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1253 			fw_schedule_device_work(device,
1254 				device->is_local ? 0 : INITIAL_DELAY);
1255 		}
1256 		break;
1257 
1258 	case FW_NODE_UPDATED:
1259 		device = node->data;
1260 		if (device == NULL)
1261 			break;
1262 
1263 		device->node_id = node->node_id;
1264 		smp_wmb();  /* update node_id before generation */
1265 		device->generation = card->generation;
1266 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1267 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1268 			fw_schedule_device_work(device, 0);
1269 		}
1270 		break;
1271 
1272 	case FW_NODE_DESTROYED:
1273 	case FW_NODE_LINK_OFF:
1274 		if (!node->data)
1275 			break;
1276 
1277 		/*
1278 		 * Destroy the device associated with the node.  There
1279 		 * are two cases here: either the device is fully
1280 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1281 		 * process of reading its config rom
1282 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1283 		 * initialized we can reuse device->work to schedule a
1284 		 * full fw_device_shutdown().  If not, there's work
1285 		 * scheduled to read it's config rom, and we just put
1286 		 * the device in shutdown state to have that code fail
1287 		 * to create the device.
1288 		 */
1289 		device = node->data;
1290 		if (atomic_xchg(&device->state,
1291 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1292 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1293 			fw_schedule_device_work(device,
1294 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1295 		}
1296 		break;
1297 	}
1298 }
1299