xref: /linux/drivers/crypto/padlock-aes.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for VIA PadLock hardware crypto engine.
6  *
7  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
8  *
9  */
10 
11 #include <crypto/algapi.h>
12 #include <crypto/aes.h>
13 #include <crypto/padlock.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/smp.h>
22 #include <linux/slab.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/byteorder.h>
25 #include <asm/processor.h>
26 #include <asm/fpu/api.h>
27 
28 /*
29  * Number of data blocks actually fetched for each xcrypt insn.
30  * Processors with prefetch errata will fetch extra blocks.
31  */
32 static unsigned int ecb_fetch_blocks = 2;
33 #define MAX_ECB_FETCH_BLOCKS (8)
34 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
35 
36 static unsigned int cbc_fetch_blocks = 1;
37 #define MAX_CBC_FETCH_BLOCKS (4)
38 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
39 
40 /* Control word. */
41 struct cword {
42 	unsigned int __attribute__ ((__packed__))
43 		rounds:4,
44 		algo:3,
45 		keygen:1,
46 		interm:1,
47 		encdec:1,
48 		ksize:2;
49 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
50 
51 /* Whenever making any changes to the following
52  * structure *make sure* you keep E, d_data
53  * and cword aligned on 16 Bytes boundaries and
54  * the Hardware can access 16 * 16 bytes of E and d_data
55  * (only the first 15 * 16 bytes matter but the HW reads
56  * more).
57  */
58 struct aes_ctx {
59 	u32 E[AES_MAX_KEYLENGTH_U32]
60 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
61 	u32 d_data[AES_MAX_KEYLENGTH_U32]
62 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
63 	struct {
64 		struct cword encrypt;
65 		struct cword decrypt;
66 	} cword;
67 	u32 *D;
68 };
69 
70 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
71 
72 /* Tells whether the ACE is capable to generate
73    the extended key for a given key_len. */
74 static inline int
75 aes_hw_extkey_available(uint8_t key_len)
76 {
77 	/* TODO: We should check the actual CPU model/stepping
78 	         as it's possible that the capability will be
79 	         added in the next CPU revisions. */
80 	if (key_len == 16)
81 		return 1;
82 	return 0;
83 }
84 
85 static inline struct aes_ctx *aes_ctx_common(void *ctx)
86 {
87 	unsigned long addr = (unsigned long)ctx;
88 	unsigned long align = PADLOCK_ALIGNMENT;
89 
90 	if (align <= crypto_tfm_ctx_alignment())
91 		align = 1;
92 	return (struct aes_ctx *)ALIGN(addr, align);
93 }
94 
95 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
96 {
97 	return aes_ctx_common(crypto_tfm_ctx(tfm));
98 }
99 
100 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
101 {
102 	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
103 }
104 
105 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
106 		       unsigned int key_len)
107 {
108 	struct aes_ctx *ctx = aes_ctx(tfm);
109 	const __le32 *key = (const __le32 *)in_key;
110 	u32 *flags = &tfm->crt_flags;
111 	struct crypto_aes_ctx gen_aes;
112 	int cpu;
113 
114 	if (key_len % 8) {
115 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
116 		return -EINVAL;
117 	}
118 
119 	/*
120 	 * If the hardware is capable of generating the extended key
121 	 * itself we must supply the plain key for both encryption
122 	 * and decryption.
123 	 */
124 	ctx->D = ctx->E;
125 
126 	ctx->E[0] = le32_to_cpu(key[0]);
127 	ctx->E[1] = le32_to_cpu(key[1]);
128 	ctx->E[2] = le32_to_cpu(key[2]);
129 	ctx->E[3] = le32_to_cpu(key[3]);
130 
131 	/* Prepare control words. */
132 	memset(&ctx->cword, 0, sizeof(ctx->cword));
133 
134 	ctx->cword.decrypt.encdec = 1;
135 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
136 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
137 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
138 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
139 
140 	/* Don't generate extended keys if the hardware can do it. */
141 	if (aes_hw_extkey_available(key_len))
142 		goto ok;
143 
144 	ctx->D = ctx->d_data;
145 	ctx->cword.encrypt.keygen = 1;
146 	ctx->cword.decrypt.keygen = 1;
147 
148 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
149 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
150 		return -EINVAL;
151 	}
152 
153 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
154 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
155 
156 ok:
157 	for_each_online_cpu(cpu)
158 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
159 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
160 			per_cpu(paes_last_cword, cpu) = NULL;
161 
162 	return 0;
163 }
164 
165 /* ====== Encryption/decryption routines ====== */
166 
167 /* These are the real call to PadLock. */
168 static inline void padlock_reset_key(struct cword *cword)
169 {
170 	int cpu = raw_smp_processor_id();
171 
172 	if (cword != per_cpu(paes_last_cword, cpu))
173 #ifndef CONFIG_X86_64
174 		asm volatile ("pushfl; popfl");
175 #else
176 		asm volatile ("pushfq; popfq");
177 #endif
178 }
179 
180 static inline void padlock_store_cword(struct cword *cword)
181 {
182 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
183 }
184 
185 /*
186  * While the padlock instructions don't use FP/SSE registers, they
187  * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
188  * the kernel doesn't use CR0.TS.
189  */
190 
191 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
192 				  struct cword *control_word, int count)
193 {
194 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
195 		      : "+S"(input), "+D"(output)
196 		      : "d"(control_word), "b"(key), "c"(count));
197 }
198 
199 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
200 				 u8 *iv, struct cword *control_word, int count)
201 {
202 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
203 		      : "+S" (input), "+D" (output), "+a" (iv)
204 		      : "d" (control_word), "b" (key), "c" (count));
205 	return iv;
206 }
207 
208 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
209 			   struct cword *cword, int count)
210 {
211 	/*
212 	 * Padlock prefetches extra data so we must provide mapped input buffers.
213 	 * Assume there are at least 16 bytes of stack already in use.
214 	 */
215 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
216 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
217 
218 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
219 	rep_xcrypt_ecb(tmp, out, key, cword, count);
220 }
221 
222 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
223 			   u8 *iv, struct cword *cword, int count)
224 {
225 	/*
226 	 * Padlock prefetches extra data so we must provide mapped input buffers.
227 	 * Assume there are at least 16 bytes of stack already in use.
228 	 */
229 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
230 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
231 
232 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
233 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
234 }
235 
236 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
237 			     struct cword *cword, int count)
238 {
239 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
240 	 * We could avoid some copying here but it's probably not worth it.
241 	 */
242 	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
243 		ecb_crypt_copy(in, out, key, cword, count);
244 		return;
245 	}
246 
247 	rep_xcrypt_ecb(in, out, key, cword, count);
248 }
249 
250 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
251 			    u8 *iv, struct cword *cword, int count)
252 {
253 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
254 	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
255 		return cbc_crypt_copy(in, out, key, iv, cword, count);
256 
257 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
258 }
259 
260 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
261 				      void *control_word, u32 count)
262 {
263 	u32 initial = count & (ecb_fetch_blocks - 1);
264 
265 	if (count < ecb_fetch_blocks) {
266 		ecb_crypt(input, output, key, control_word, count);
267 		return;
268 	}
269 
270 	count -= initial;
271 
272 	if (initial)
273 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
274 			      : "+S"(input), "+D"(output)
275 			      : "d"(control_word), "b"(key), "c"(initial));
276 
277 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
278 		      : "+S"(input), "+D"(output)
279 		      : "d"(control_word), "b"(key), "c"(count));
280 }
281 
282 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
283 				     u8 *iv, void *control_word, u32 count)
284 {
285 	u32 initial = count & (cbc_fetch_blocks - 1);
286 
287 	if (count < cbc_fetch_blocks)
288 		return cbc_crypt(input, output, key, iv, control_word, count);
289 
290 	count -= initial;
291 
292 	if (initial)
293 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
294 			      : "+S" (input), "+D" (output), "+a" (iv)
295 			      : "d" (control_word), "b" (key), "c" (initial));
296 
297 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
298 		      : "+S" (input), "+D" (output), "+a" (iv)
299 		      : "d" (control_word), "b" (key), "c" (count));
300 	return iv;
301 }
302 
303 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
304 {
305 	struct aes_ctx *ctx = aes_ctx(tfm);
306 
307 	padlock_reset_key(&ctx->cword.encrypt);
308 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
309 	padlock_store_cword(&ctx->cword.encrypt);
310 }
311 
312 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
313 {
314 	struct aes_ctx *ctx = aes_ctx(tfm);
315 
316 	padlock_reset_key(&ctx->cword.encrypt);
317 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318 	padlock_store_cword(&ctx->cword.encrypt);
319 }
320 
321 static struct crypto_alg aes_alg = {
322 	.cra_name		=	"aes",
323 	.cra_driver_name	=	"aes-padlock",
324 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
325 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
326 	.cra_blocksize		=	AES_BLOCK_SIZE,
327 	.cra_ctxsize		=	sizeof(struct aes_ctx),
328 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
329 	.cra_module		=	THIS_MODULE,
330 	.cra_u			=	{
331 		.cipher = {
332 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
333 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
334 			.cia_setkey	   	= 	aes_set_key,
335 			.cia_encrypt	 	=	aes_encrypt,
336 			.cia_decrypt	  	=	aes_decrypt,
337 		}
338 	}
339 };
340 
341 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
342 			   struct scatterlist *dst, struct scatterlist *src,
343 			   unsigned int nbytes)
344 {
345 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
346 	struct blkcipher_walk walk;
347 	int err;
348 
349 	padlock_reset_key(&ctx->cword.encrypt);
350 
351 	blkcipher_walk_init(&walk, dst, src, nbytes);
352 	err = blkcipher_walk_virt(desc, &walk);
353 
354 	while ((nbytes = walk.nbytes)) {
355 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
356 				   ctx->E, &ctx->cword.encrypt,
357 				   nbytes / AES_BLOCK_SIZE);
358 		nbytes &= AES_BLOCK_SIZE - 1;
359 		err = blkcipher_walk_done(desc, &walk, nbytes);
360 	}
361 
362 	padlock_store_cword(&ctx->cword.encrypt);
363 
364 	return err;
365 }
366 
367 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
368 			   struct scatterlist *dst, struct scatterlist *src,
369 			   unsigned int nbytes)
370 {
371 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
372 	struct blkcipher_walk walk;
373 	int err;
374 
375 	padlock_reset_key(&ctx->cword.decrypt);
376 
377 	blkcipher_walk_init(&walk, dst, src, nbytes);
378 	err = blkcipher_walk_virt(desc, &walk);
379 
380 	while ((nbytes = walk.nbytes)) {
381 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
382 				   ctx->D, &ctx->cword.decrypt,
383 				   nbytes / AES_BLOCK_SIZE);
384 		nbytes &= AES_BLOCK_SIZE - 1;
385 		err = blkcipher_walk_done(desc, &walk, nbytes);
386 	}
387 
388 	padlock_store_cword(&ctx->cword.encrypt);
389 
390 	return err;
391 }
392 
393 static struct crypto_alg ecb_aes_alg = {
394 	.cra_name		=	"ecb(aes)",
395 	.cra_driver_name	=	"ecb-aes-padlock",
396 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
397 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
398 	.cra_blocksize		=	AES_BLOCK_SIZE,
399 	.cra_ctxsize		=	sizeof(struct aes_ctx),
400 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
401 	.cra_type		=	&crypto_blkcipher_type,
402 	.cra_module		=	THIS_MODULE,
403 	.cra_u			=	{
404 		.blkcipher = {
405 			.min_keysize		=	AES_MIN_KEY_SIZE,
406 			.max_keysize		=	AES_MAX_KEY_SIZE,
407 			.setkey	   		= 	aes_set_key,
408 			.encrypt		=	ecb_aes_encrypt,
409 			.decrypt		=	ecb_aes_decrypt,
410 		}
411 	}
412 };
413 
414 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
415 			   struct scatterlist *dst, struct scatterlist *src,
416 			   unsigned int nbytes)
417 {
418 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
419 	struct blkcipher_walk walk;
420 	int err;
421 
422 	padlock_reset_key(&ctx->cword.encrypt);
423 
424 	blkcipher_walk_init(&walk, dst, src, nbytes);
425 	err = blkcipher_walk_virt(desc, &walk);
426 
427 	while ((nbytes = walk.nbytes)) {
428 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
429 					    walk.dst.virt.addr, ctx->E,
430 					    walk.iv, &ctx->cword.encrypt,
431 					    nbytes / AES_BLOCK_SIZE);
432 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
433 		nbytes &= AES_BLOCK_SIZE - 1;
434 		err = blkcipher_walk_done(desc, &walk, nbytes);
435 	}
436 
437 	padlock_store_cword(&ctx->cword.decrypt);
438 
439 	return err;
440 }
441 
442 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
443 			   struct scatterlist *dst, struct scatterlist *src,
444 			   unsigned int nbytes)
445 {
446 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
447 	struct blkcipher_walk walk;
448 	int err;
449 
450 	padlock_reset_key(&ctx->cword.encrypt);
451 
452 	blkcipher_walk_init(&walk, dst, src, nbytes);
453 	err = blkcipher_walk_virt(desc, &walk);
454 
455 	while ((nbytes = walk.nbytes)) {
456 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
457 				   ctx->D, walk.iv, &ctx->cword.decrypt,
458 				   nbytes / AES_BLOCK_SIZE);
459 		nbytes &= AES_BLOCK_SIZE - 1;
460 		err = blkcipher_walk_done(desc, &walk, nbytes);
461 	}
462 
463 	padlock_store_cword(&ctx->cword.encrypt);
464 
465 	return err;
466 }
467 
468 static struct crypto_alg cbc_aes_alg = {
469 	.cra_name		=	"cbc(aes)",
470 	.cra_driver_name	=	"cbc-aes-padlock",
471 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
472 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
473 	.cra_blocksize		=	AES_BLOCK_SIZE,
474 	.cra_ctxsize		=	sizeof(struct aes_ctx),
475 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
476 	.cra_type		=	&crypto_blkcipher_type,
477 	.cra_module		=	THIS_MODULE,
478 	.cra_u			=	{
479 		.blkcipher = {
480 			.min_keysize		=	AES_MIN_KEY_SIZE,
481 			.max_keysize		=	AES_MAX_KEY_SIZE,
482 			.ivsize			=	AES_BLOCK_SIZE,
483 			.setkey	   		= 	aes_set_key,
484 			.encrypt		=	cbc_aes_encrypt,
485 			.decrypt		=	cbc_aes_decrypt,
486 		}
487 	}
488 };
489 
490 static const struct x86_cpu_id padlock_cpu_id[] = {
491 	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
492 	{}
493 };
494 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
495 
496 static int __init padlock_init(void)
497 {
498 	int ret;
499 	struct cpuinfo_x86 *c = &cpu_data(0);
500 
501 	if (!x86_match_cpu(padlock_cpu_id))
502 		return -ENODEV;
503 
504 	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
505 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
506 		return -ENODEV;
507 	}
508 
509 	if ((ret = crypto_register_alg(&aes_alg)))
510 		goto aes_err;
511 
512 	if ((ret = crypto_register_alg(&ecb_aes_alg)))
513 		goto ecb_aes_err;
514 
515 	if ((ret = crypto_register_alg(&cbc_aes_alg)))
516 		goto cbc_aes_err;
517 
518 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
519 
520 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
521 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
522 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
523 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
524 	}
525 
526 out:
527 	return ret;
528 
529 cbc_aes_err:
530 	crypto_unregister_alg(&ecb_aes_alg);
531 ecb_aes_err:
532 	crypto_unregister_alg(&aes_alg);
533 aes_err:
534 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
535 	goto out;
536 }
537 
538 static void __exit padlock_fini(void)
539 {
540 	crypto_unregister_alg(&cbc_aes_alg);
541 	crypto_unregister_alg(&ecb_aes_alg);
542 	crypto_unregister_alg(&aes_alg);
543 }
544 
545 module_init(padlock_init);
546 module_exit(padlock_fini);
547 
548 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
549 MODULE_LICENSE("GPL");
550 MODULE_AUTHOR("Michal Ludvig");
551 
552 MODULE_ALIAS_CRYPTO("aes");
553