xref: /linux/drivers/crypto/atmel-i2c.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip / Atmel ECC (I2C) driver.
4  *
5  * Copyright (c) 2017, Microchip Technology Inc.
6  * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
7  */
8 
9 #include <linux/bitrev.h>
10 #include <linux/crc16.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 #include <linux/workqueue.h>
22 #include "atmel-i2c.h"
23 
24 /**
25  * atmel_i2c_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
26  * CRC16 verification of the count, opcode, param1, param2 and data bytes.
27  * The checksum is saved in little-endian format in the least significant
28  * two bytes of the command. CRC polynomial is 0x8005 and the initial register
29  * value should be zero.
30  *
31  * @cmd : structure used for communicating with the device.
32  */
33 static void atmel_i2c_checksum(struct atmel_i2c_cmd *cmd)
34 {
35 	u8 *data = &cmd->count;
36 	size_t len = cmd->count - CRC_SIZE;
37 	__le16 *__crc16 = (__le16 *)(data + len);
38 
39 	*__crc16 = cpu_to_le16(bitrev16(crc16(0, data, len)));
40 }
41 
42 void atmel_i2c_init_read_cmd(struct atmel_i2c_cmd *cmd)
43 {
44 	cmd->word_addr = COMMAND;
45 	cmd->opcode = OPCODE_READ;
46 	/*
47 	 * Read the word from Configuration zone that contains the lock bytes
48 	 * (UserExtra, Selector, LockValue, LockConfig).
49 	 */
50 	cmd->param1 = CONFIG_ZONE;
51 	cmd->param2 = cpu_to_le16(DEVICE_LOCK_ADDR);
52 	cmd->count = READ_COUNT;
53 
54 	atmel_i2c_checksum(cmd);
55 
56 	cmd->msecs = MAX_EXEC_TIME_READ;
57 	cmd->rxsize = READ_RSP_SIZE;
58 }
59 EXPORT_SYMBOL(atmel_i2c_init_read_cmd);
60 
61 void atmel_i2c_init_random_cmd(struct atmel_i2c_cmd *cmd)
62 {
63 	cmd->word_addr = COMMAND;
64 	cmd->opcode = OPCODE_RANDOM;
65 	cmd->param1 = 0;
66 	cmd->param2 = 0;
67 	cmd->count = RANDOM_COUNT;
68 
69 	atmel_i2c_checksum(cmd);
70 
71 	cmd->msecs = MAX_EXEC_TIME_RANDOM;
72 	cmd->rxsize = RANDOM_RSP_SIZE;
73 }
74 EXPORT_SYMBOL(atmel_i2c_init_random_cmd);
75 
76 void atmel_i2c_init_genkey_cmd(struct atmel_i2c_cmd *cmd, u16 keyid)
77 {
78 	cmd->word_addr = COMMAND;
79 	cmd->count = GENKEY_COUNT;
80 	cmd->opcode = OPCODE_GENKEY;
81 	cmd->param1 = GENKEY_MODE_PRIVATE;
82 	/* a random private key will be generated and stored in slot keyID */
83 	cmd->param2 = cpu_to_le16(keyid);
84 
85 	atmel_i2c_checksum(cmd);
86 
87 	cmd->msecs = MAX_EXEC_TIME_GENKEY;
88 	cmd->rxsize = GENKEY_RSP_SIZE;
89 }
90 EXPORT_SYMBOL(atmel_i2c_init_genkey_cmd);
91 
92 int atmel_i2c_init_ecdh_cmd(struct atmel_i2c_cmd *cmd,
93 			    struct scatterlist *pubkey)
94 {
95 	size_t copied;
96 
97 	cmd->word_addr = COMMAND;
98 	cmd->count = ECDH_COUNT;
99 	cmd->opcode = OPCODE_ECDH;
100 	cmd->param1 = ECDH_PREFIX_MODE;
101 	/* private key slot */
102 	cmd->param2 = cpu_to_le16(DATA_SLOT_2);
103 
104 	/*
105 	 * The device only supports NIST P256 ECC keys. The public key size will
106 	 * always be the same. Use a macro for the key size to avoid unnecessary
107 	 * computations.
108 	 */
109 	copied = sg_copy_to_buffer(pubkey,
110 				   sg_nents_for_len(pubkey,
111 						    ATMEL_ECC_PUBKEY_SIZE),
112 				   cmd->data, ATMEL_ECC_PUBKEY_SIZE);
113 	if (copied != ATMEL_ECC_PUBKEY_SIZE)
114 		return -EINVAL;
115 
116 	atmel_i2c_checksum(cmd);
117 
118 	cmd->msecs = MAX_EXEC_TIME_ECDH;
119 	cmd->rxsize = ECDH_RSP_SIZE;
120 
121 	return 0;
122 }
123 EXPORT_SYMBOL(atmel_i2c_init_ecdh_cmd);
124 
125 /*
126  * After wake and after execution of a command, there will be error, status, or
127  * result bytes in the device's output register that can be retrieved by the
128  * system. When the length of that group is four bytes, the codes returned are
129  * detailed in error_list.
130  */
131 static int atmel_i2c_status(struct device *dev, u8 *status)
132 {
133 	size_t err_list_len = ARRAY_SIZE(error_list);
134 	int i;
135 	u8 err_id = status[1];
136 
137 	if (*status != STATUS_SIZE)
138 		return 0;
139 
140 	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
141 		return 0;
142 
143 	for (i = 0; i < err_list_len; i++)
144 		if (error_list[i].value == err_id)
145 			break;
146 
147 	/* if err_id is not in the error_list then ignore it */
148 	if (i != err_list_len) {
149 		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
150 		return err_id;
151 	}
152 
153 	return 0;
154 }
155 
156 static int atmel_i2c_wakeup(struct i2c_client *client)
157 {
158 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
159 	u8 status[STATUS_RSP_SIZE];
160 	int ret;
161 
162 	/*
163 	 * The device ignores any levels or transitions on the SCL pin when the
164 	 * device is idle, asleep or during waking up. Don't check for error
165 	 * when waking up the device.
166 	 */
167 	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
168 
169 	/*
170 	 * Wait to wake the device. Typical execution times for ecdh and genkey
171 	 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
172 	 */
173 	usleep_range(TWHI_MIN, TWHI_MAX);
174 
175 	ret = i2c_master_recv(client, status, STATUS_SIZE);
176 	if (ret < 0)
177 		return ret;
178 
179 	return atmel_i2c_status(&client->dev, status);
180 }
181 
182 static int atmel_i2c_sleep(struct i2c_client *client)
183 {
184 	u8 sleep = SLEEP_TOKEN;
185 
186 	return i2c_master_send(client, &sleep, 1);
187 }
188 
189 /*
190  * atmel_i2c_send_receive() - send a command to the device and receive its
191  *                            response.
192  * @client: i2c client device
193  * @cmd   : structure used to communicate with the device
194  *
195  * After the device receives a Wake token, a watchdog counter starts within the
196  * device. After the watchdog timer expires, the device enters sleep mode
197  * regardless of whether some I/O transmission or command execution is in
198  * progress. If a command is attempted when insufficient time remains prior to
199  * watchdog timer execution, the device will return the watchdog timeout error
200  * code without attempting to execute the command. There is no way to reset the
201  * counter other than to put the device into sleep or idle mode and then
202  * wake it up again.
203  */
204 int atmel_i2c_send_receive(struct i2c_client *client, struct atmel_i2c_cmd *cmd)
205 {
206 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
207 	int ret;
208 
209 	mutex_lock(&i2c_priv->lock);
210 
211 	ret = atmel_i2c_wakeup(client);
212 	if (ret)
213 		goto err;
214 
215 	/* send the command */
216 	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
217 	if (ret < 0)
218 		goto err;
219 
220 	/* delay the appropriate amount of time for command to execute */
221 	msleep(cmd->msecs);
222 
223 	/* receive the response */
224 	ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
225 	if (ret < 0)
226 		goto err;
227 
228 	/* put the device into low-power mode */
229 	ret = atmel_i2c_sleep(client);
230 	if (ret < 0)
231 		goto err;
232 
233 	mutex_unlock(&i2c_priv->lock);
234 	return atmel_i2c_status(&client->dev, cmd->data);
235 err:
236 	mutex_unlock(&i2c_priv->lock);
237 	return ret;
238 }
239 EXPORT_SYMBOL(atmel_i2c_send_receive);
240 
241 static void atmel_i2c_work_handler(struct work_struct *work)
242 {
243 	struct atmel_i2c_work_data *work_data =
244 			container_of(work, struct atmel_i2c_work_data, work);
245 	struct atmel_i2c_cmd *cmd = &work_data->cmd;
246 	struct i2c_client *client = work_data->client;
247 	int status;
248 
249 	status = atmel_i2c_send_receive(client, cmd);
250 	work_data->cbk(work_data, work_data->areq, status);
251 }
252 
253 void atmel_i2c_enqueue(struct atmel_i2c_work_data *work_data,
254 		       void (*cbk)(struct atmel_i2c_work_data *work_data,
255 				   void *areq, int status),
256 		       void *areq)
257 {
258 	work_data->cbk = (void *)cbk;
259 	work_data->areq = areq;
260 
261 	INIT_WORK(&work_data->work, atmel_i2c_work_handler);
262 	schedule_work(&work_data->work);
263 }
264 EXPORT_SYMBOL(atmel_i2c_enqueue);
265 
266 static inline size_t atmel_i2c_wake_token_sz(u32 bus_clk_rate)
267 {
268 	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
269 
270 	/* return the size of the wake_token in bytes */
271 	return DIV_ROUND_UP(no_of_bits, 8);
272 }
273 
274 static int device_sanity_check(struct i2c_client *client)
275 {
276 	struct atmel_i2c_cmd *cmd;
277 	int ret;
278 
279 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
280 	if (!cmd)
281 		return -ENOMEM;
282 
283 	atmel_i2c_init_read_cmd(cmd);
284 
285 	ret = atmel_i2c_send_receive(client, cmd);
286 	if (ret)
287 		goto free_cmd;
288 
289 	/*
290 	 * It is vital that the Configuration, Data and OTP zones be locked
291 	 * prior to release into the field of the system containing the device.
292 	 * Failure to lock these zones may permit modification of any secret
293 	 * keys and may lead to other security problems.
294 	 */
295 	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
296 		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
297 		ret = -ENOTSUPP;
298 	}
299 
300 	/* fall through */
301 free_cmd:
302 	kfree(cmd);
303 	return ret;
304 }
305 
306 int atmel_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id)
307 {
308 	struct atmel_i2c_client_priv *i2c_priv;
309 	struct device *dev = &client->dev;
310 	int ret;
311 	u32 bus_clk_rate;
312 
313 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
314 		dev_err(dev, "I2C_FUNC_I2C not supported\n");
315 		return -ENODEV;
316 	}
317 
318 	bus_clk_rate = i2c_acpi_find_bus_speed(&client->adapter->dev);
319 	if (!bus_clk_rate) {
320 		ret = device_property_read_u32(&client->adapter->dev,
321 					       "clock-frequency", &bus_clk_rate);
322 		if (ret) {
323 			dev_err(dev, "failed to read clock-frequency property\n");
324 			return ret;
325 		}
326 	}
327 
328 	if (bus_clk_rate > 1000000L) {
329 		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
330 			bus_clk_rate);
331 		return -EINVAL;
332 	}
333 
334 	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
335 	if (!i2c_priv)
336 		return -ENOMEM;
337 
338 	i2c_priv->client = client;
339 	mutex_init(&i2c_priv->lock);
340 
341 	/*
342 	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
343 	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
344 	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
345 	 */
346 	i2c_priv->wake_token_sz = atmel_i2c_wake_token_sz(bus_clk_rate);
347 
348 	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
349 
350 	atomic_set(&i2c_priv->tfm_count, 0);
351 
352 	i2c_set_clientdata(client, i2c_priv);
353 
354 	ret = device_sanity_check(client);
355 	if (ret)
356 		return ret;
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(atmel_i2c_probe);
361 
362 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
363 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
364 MODULE_LICENSE("GPL v2");
365