xref: /linux/drivers/cpufreq/powernv-cpufreq.c (revision 06ed6aa56ffac9241e03a24649e8d048f8f1b10c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * POWERNV cpufreq driver for the IBM POWER processors
4  *
5  * (C) Copyright IBM 2014
6  *
7  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8  */
9 
10 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/cpu.h>
22 #include <linux/hashtable.h>
23 #include <trace/events/power.h>
24 
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
27 #include <asm/reg.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29 #include <asm/opal.h>
30 #include <linux/timer.h>
31 
32 #define POWERNV_MAX_PSTATES_ORDER  8
33 #define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
34 #define PMSR_PSAFE_ENABLE	(1UL << 30)
35 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
36 #define MAX_PSTATE_SHIFT	32
37 #define LPSTATE_SHIFT		48
38 #define GPSTATE_SHIFT		56
39 
40 #define MAX_RAMP_DOWN_TIME				5120
41 /*
42  * On an idle system we want the global pstate to ramp-down from max value to
43  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
44  * then ramp-down rapidly later on.
45  *
46  * This gives a percentage rampdown for time elapsed in milliseconds.
47  * ramp_down_percentage = ((ms * ms) >> 18)
48  *			~= 3.8 * (sec * sec)
49  *
50  * At 0 ms	ramp_down_percent = 0
51  * At 5120 ms	ramp_down_percent = 100
52  */
53 #define ramp_down_percent(time)		((time * time) >> 18)
54 
55 /* Interval after which the timer is queued to bring down global pstate */
56 #define GPSTATE_TIMER_INTERVAL				2000
57 
58 /**
59  * struct global_pstate_info -	Per policy data structure to maintain history of
60  *				global pstates
61  * @highest_lpstate_idx:	The local pstate index from which we are
62  *				ramping down
63  * @elapsed_time:		Time in ms spent in ramping down from
64  *				highest_lpstate_idx
65  * @last_sampled_time:		Time from boot in ms when global pstates were
66  *				last set
67  * @last_lpstate_idx,		Last set value of local pstate and global
68  * last_gpstate_idx		pstate in terms of cpufreq table index
69  * @timer:			Is used for ramping down if cpu goes idle for
70  *				a long time with global pstate held high
71  * @gpstate_lock:		A spinlock to maintain synchronization between
72  *				routines called by the timer handler and
73  *				governer's target_index calls
74  */
75 struct global_pstate_info {
76 	int highest_lpstate_idx;
77 	unsigned int elapsed_time;
78 	unsigned int last_sampled_time;
79 	int last_lpstate_idx;
80 	int last_gpstate_idx;
81 	spinlock_t gpstate_lock;
82 	struct timer_list timer;
83 	struct cpufreq_policy *policy;
84 };
85 
86 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
87 
88 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
89 /**
90  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
91  *				  indexed by a function of pstate id.
92  *
93  * @pstate_id: pstate id for this entry.
94  *
95  * @cpufreq_table_idx: Index into the powernv_freqs
96  *		       cpufreq_frequency_table for frequency
97  *		       corresponding to pstate_id.
98  *
99  * @hentry: hlist_node that hooks this entry into the pstate_revmap
100  *	    hashtable
101  */
102 struct pstate_idx_revmap_data {
103 	u8 pstate_id;
104 	unsigned int cpufreq_table_idx;
105 	struct hlist_node hentry;
106 };
107 
108 static bool rebooting, throttled, occ_reset;
109 
110 static const char * const throttle_reason[] = {
111 	"No throttling",
112 	"Power Cap",
113 	"Processor Over Temperature",
114 	"Power Supply Failure",
115 	"Over Current",
116 	"OCC Reset"
117 };
118 
119 enum throttle_reason_type {
120 	NO_THROTTLE = 0,
121 	POWERCAP,
122 	CPU_OVERTEMP,
123 	POWER_SUPPLY_FAILURE,
124 	OVERCURRENT,
125 	OCC_RESET_THROTTLE,
126 	OCC_MAX_REASON
127 };
128 
129 static struct chip {
130 	unsigned int id;
131 	bool throttled;
132 	bool restore;
133 	u8 throttle_reason;
134 	cpumask_t mask;
135 	struct work_struct throttle;
136 	int throttle_turbo;
137 	int throttle_sub_turbo;
138 	int reason[OCC_MAX_REASON];
139 } *chips;
140 
141 static int nr_chips;
142 static DEFINE_PER_CPU(struct chip *, chip_info);
143 
144 /*
145  * Note:
146  * The set of pstates consists of contiguous integers.
147  * powernv_pstate_info stores the index of the frequency table for
148  * max, min and nominal frequencies. It also stores number of
149  * available frequencies.
150  *
151  * powernv_pstate_info.nominal indicates the index to the highest
152  * non-turbo frequency.
153  */
154 static struct powernv_pstate_info {
155 	unsigned int min;
156 	unsigned int max;
157 	unsigned int nominal;
158 	unsigned int nr_pstates;
159 	bool wof_enabled;
160 } powernv_pstate_info;
161 
162 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
163 {
164 	return ((pmsr_val >> shift) & 0xFF);
165 }
166 
167 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
168 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
169 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
170 
171 /* Use following functions for conversions between pstate_id and index */
172 
173 /**
174  * idx_to_pstate : Returns the pstate id corresponding to the
175  *		   frequency in the cpufreq frequency table
176  *		   powernv_freqs indexed by @i.
177  *
178  *		   If @i is out of bound, this will return the pstate
179  *		   corresponding to the nominal frequency.
180  */
181 static inline u8 idx_to_pstate(unsigned int i)
182 {
183 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
184 		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
185 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
186 	}
187 
188 	return powernv_freqs[i].driver_data;
189 }
190 
191 /**
192  * pstate_to_idx : Returns the index in the cpufreq frequencytable
193  *		   powernv_freqs for the frequency whose corresponding
194  *		   pstate id is @pstate.
195  *
196  *		   If no frequency corresponding to @pstate is found,
197  *		   this will return the index of the nominal
198  *		   frequency.
199  */
200 static unsigned int pstate_to_idx(u8 pstate)
201 {
202 	unsigned int key = pstate % POWERNV_MAX_PSTATES;
203 	struct pstate_idx_revmap_data *revmap_data;
204 
205 	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
206 		if (revmap_data->pstate_id == pstate)
207 			return revmap_data->cpufreq_table_idx;
208 	}
209 
210 	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
211 	return powernv_pstate_info.nominal;
212 }
213 
214 static inline void reset_gpstates(struct cpufreq_policy *policy)
215 {
216 	struct global_pstate_info *gpstates = policy->driver_data;
217 
218 	gpstates->highest_lpstate_idx = 0;
219 	gpstates->elapsed_time = 0;
220 	gpstates->last_sampled_time = 0;
221 	gpstates->last_lpstate_idx = 0;
222 	gpstates->last_gpstate_idx = 0;
223 }
224 
225 /*
226  * Initialize the freq table based on data obtained
227  * from the firmware passed via device-tree
228  */
229 static int init_powernv_pstates(void)
230 {
231 	struct device_node *power_mgt;
232 	int i, nr_pstates = 0;
233 	const __be32 *pstate_ids, *pstate_freqs;
234 	u32 len_ids, len_freqs;
235 	u32 pstate_min, pstate_max, pstate_nominal;
236 	u32 pstate_turbo, pstate_ultra_turbo;
237 	int rc = -ENODEV;
238 
239 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
240 	if (!power_mgt) {
241 		pr_warn("power-mgt node not found\n");
242 		return -ENODEV;
243 	}
244 
245 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
246 		pr_warn("ibm,pstate-min node not found\n");
247 		goto out;
248 	}
249 
250 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
251 		pr_warn("ibm,pstate-max node not found\n");
252 		goto out;
253 	}
254 
255 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
256 				 &pstate_nominal)) {
257 		pr_warn("ibm,pstate-nominal not found\n");
258 		goto out;
259 	}
260 
261 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
262 				 &pstate_ultra_turbo)) {
263 		powernv_pstate_info.wof_enabled = false;
264 		goto next;
265 	}
266 
267 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
268 				 &pstate_turbo)) {
269 		powernv_pstate_info.wof_enabled = false;
270 		goto next;
271 	}
272 
273 	if (pstate_turbo == pstate_ultra_turbo)
274 		powernv_pstate_info.wof_enabled = false;
275 	else
276 		powernv_pstate_info.wof_enabled = true;
277 
278 next:
279 	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
280 		pstate_nominal, pstate_max);
281 	pr_info("Workload Optimized Frequency is %s in the platform\n",
282 		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
283 
284 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
285 	if (!pstate_ids) {
286 		pr_warn("ibm,pstate-ids not found\n");
287 		goto out;
288 	}
289 
290 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
291 				      &len_freqs);
292 	if (!pstate_freqs) {
293 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
294 		goto out;
295 	}
296 
297 	if (len_ids != len_freqs) {
298 		pr_warn("Entries in ibm,pstate-ids and "
299 			"ibm,pstate-frequencies-mhz does not match\n");
300 	}
301 
302 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
303 	if (!nr_pstates) {
304 		pr_warn("No PStates found\n");
305 		goto out;
306 	}
307 
308 	powernv_pstate_info.nr_pstates = nr_pstates;
309 	pr_debug("NR PStates %d\n", nr_pstates);
310 
311 	for (i = 0; i < nr_pstates; i++) {
312 		u32 id = be32_to_cpu(pstate_ids[i]);
313 		u32 freq = be32_to_cpu(pstate_freqs[i]);
314 		struct pstate_idx_revmap_data *revmap_data;
315 		unsigned int key;
316 
317 		pr_debug("PState id %d freq %d MHz\n", id, freq);
318 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
319 		powernv_freqs[i].driver_data = id & 0xFF;
320 
321 		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
322 		if (!revmap_data) {
323 			rc = -ENOMEM;
324 			goto out;
325 		}
326 
327 		revmap_data->pstate_id = id & 0xFF;
328 		revmap_data->cpufreq_table_idx = i;
329 		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
330 		hash_add(pstate_revmap, &revmap_data->hentry, key);
331 
332 		if (id == pstate_max)
333 			powernv_pstate_info.max = i;
334 		if (id == pstate_nominal)
335 			powernv_pstate_info.nominal = i;
336 		if (id == pstate_min)
337 			powernv_pstate_info.min = i;
338 
339 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
340 			int j;
341 
342 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
343 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
344 		}
345 	}
346 
347 	/* End of list marker entry */
348 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
349 
350 	of_node_put(power_mgt);
351 	return 0;
352 out:
353 	of_node_put(power_mgt);
354 	return rc;
355 }
356 
357 /* Returns the CPU frequency corresponding to the pstate_id. */
358 static unsigned int pstate_id_to_freq(u8 pstate_id)
359 {
360 	int i;
361 
362 	i = pstate_to_idx(pstate_id);
363 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
364 		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
365 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
366 		i = powernv_pstate_info.nominal;
367 	}
368 
369 	return powernv_freqs[i].frequency;
370 }
371 
372 /*
373  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
374  * the firmware
375  */
376 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
377 					char *buf)
378 {
379 	return sprintf(buf, "%u\n",
380 		powernv_freqs[powernv_pstate_info.nominal].frequency);
381 }
382 
383 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
384 	__ATTR_RO(cpuinfo_nominal_freq);
385 
386 #define SCALING_BOOST_FREQS_ATTR_INDEX		2
387 
388 static struct freq_attr *powernv_cpu_freq_attr[] = {
389 	&cpufreq_freq_attr_scaling_available_freqs,
390 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
391 	&cpufreq_freq_attr_scaling_boost_freqs,
392 	NULL,
393 };
394 
395 #define throttle_attr(name, member)					\
396 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
397 {									\
398 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
399 									\
400 	return sprintf(buf, "%u\n", chip->member);			\
401 }									\
402 									\
403 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
404 
405 throttle_attr(unthrottle, reason[NO_THROTTLE]);
406 throttle_attr(powercap, reason[POWERCAP]);
407 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
408 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
409 throttle_attr(overcurrent, reason[OVERCURRENT]);
410 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
411 throttle_attr(turbo_stat, throttle_turbo);
412 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
413 
414 static struct attribute *throttle_attrs[] = {
415 	&throttle_attr_unthrottle.attr,
416 	&throttle_attr_powercap.attr,
417 	&throttle_attr_overtemp.attr,
418 	&throttle_attr_supply_fault.attr,
419 	&throttle_attr_overcurrent.attr,
420 	&throttle_attr_occ_reset.attr,
421 	&throttle_attr_turbo_stat.attr,
422 	&throttle_attr_sub_turbo_stat.attr,
423 	NULL,
424 };
425 
426 static const struct attribute_group throttle_attr_grp = {
427 	.name	= "throttle_stats",
428 	.attrs	= throttle_attrs,
429 };
430 
431 /* Helper routines */
432 
433 /* Access helpers to power mgt SPR */
434 
435 static inline unsigned long get_pmspr(unsigned long sprn)
436 {
437 	switch (sprn) {
438 	case SPRN_PMCR:
439 		return mfspr(SPRN_PMCR);
440 
441 	case SPRN_PMICR:
442 		return mfspr(SPRN_PMICR);
443 
444 	case SPRN_PMSR:
445 		return mfspr(SPRN_PMSR);
446 	}
447 	BUG();
448 }
449 
450 static inline void set_pmspr(unsigned long sprn, unsigned long val)
451 {
452 	switch (sprn) {
453 	case SPRN_PMCR:
454 		mtspr(SPRN_PMCR, val);
455 		return;
456 
457 	case SPRN_PMICR:
458 		mtspr(SPRN_PMICR, val);
459 		return;
460 	}
461 	BUG();
462 }
463 
464 /*
465  * Use objects of this type to query/update
466  * pstates on a remote CPU via smp_call_function.
467  */
468 struct powernv_smp_call_data {
469 	unsigned int freq;
470 	u8 pstate_id;
471 	u8 gpstate_id;
472 };
473 
474 /*
475  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
476  *
477  * Called via smp_call_function.
478  *
479  * Note: The caller of the smp_call_function should pass an argument of
480  * the type 'struct powernv_smp_call_data *' along with this function.
481  *
482  * The current frequency on this CPU will be returned via
483  * ((struct powernv_smp_call_data *)arg)->freq;
484  */
485 static void powernv_read_cpu_freq(void *arg)
486 {
487 	unsigned long pmspr_val;
488 	struct powernv_smp_call_data *freq_data = arg;
489 
490 	pmspr_val = get_pmspr(SPRN_PMSR);
491 	freq_data->pstate_id = extract_local_pstate(pmspr_val);
492 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
493 
494 	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
495 		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
496 		 freq_data->freq);
497 }
498 
499 /*
500  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
501  * firmware for CPU 'cpu'. This value is reported through the sysfs
502  * file cpuinfo_cur_freq.
503  */
504 static unsigned int powernv_cpufreq_get(unsigned int cpu)
505 {
506 	struct powernv_smp_call_data freq_data;
507 
508 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
509 			&freq_data, 1);
510 
511 	return freq_data.freq;
512 }
513 
514 /*
515  * set_pstate: Sets the pstate on this CPU.
516  *
517  * This is called via an smp_call_function.
518  *
519  * The caller must ensure that freq_data is of the type
520  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
521  * on this CPU should be present in freq_data->pstate_id.
522  */
523 static void set_pstate(void *data)
524 {
525 	unsigned long val;
526 	struct powernv_smp_call_data *freq_data = data;
527 	unsigned long pstate_ul = freq_data->pstate_id;
528 	unsigned long gpstate_ul = freq_data->gpstate_id;
529 
530 	val = get_pmspr(SPRN_PMCR);
531 	val = val & 0x0000FFFFFFFFFFFFULL;
532 
533 	pstate_ul = pstate_ul & 0xFF;
534 	gpstate_ul = gpstate_ul & 0xFF;
535 
536 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
537 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
538 
539 	pr_debug("Setting cpu %d pmcr to %016lX\n",
540 			raw_smp_processor_id(), val);
541 	set_pmspr(SPRN_PMCR, val);
542 }
543 
544 /*
545  * get_nominal_index: Returns the index corresponding to the nominal
546  * pstate in the cpufreq table
547  */
548 static inline unsigned int get_nominal_index(void)
549 {
550 	return powernv_pstate_info.nominal;
551 }
552 
553 static void powernv_cpufreq_throttle_check(void *data)
554 {
555 	struct chip *chip;
556 	unsigned int cpu = smp_processor_id();
557 	unsigned long pmsr;
558 	u8 pmsr_pmax;
559 	unsigned int pmsr_pmax_idx;
560 
561 	pmsr = get_pmspr(SPRN_PMSR);
562 	chip = this_cpu_read(chip_info);
563 
564 	/* Check for Pmax Capping */
565 	pmsr_pmax = extract_max_pstate(pmsr);
566 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
567 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
568 		if (chip->throttled)
569 			goto next;
570 		chip->throttled = true;
571 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
572 			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
573 				     cpu, chip->id, pmsr_pmax,
574 				     idx_to_pstate(powernv_pstate_info.nominal));
575 			chip->throttle_sub_turbo++;
576 		} else {
577 			chip->throttle_turbo++;
578 		}
579 		trace_powernv_throttle(chip->id,
580 				      throttle_reason[chip->throttle_reason],
581 				      pmsr_pmax);
582 	} else if (chip->throttled) {
583 		chip->throttled = false;
584 		trace_powernv_throttle(chip->id,
585 				      throttle_reason[chip->throttle_reason],
586 				      pmsr_pmax);
587 	}
588 
589 	/* Check if Psafe_mode_active is set in PMSR. */
590 next:
591 	if (pmsr & PMSR_PSAFE_ENABLE) {
592 		throttled = true;
593 		pr_info("Pstate set to safe frequency\n");
594 	}
595 
596 	/* Check if SPR_EM_DISABLE is set in PMSR */
597 	if (pmsr & PMSR_SPR_EM_DISABLE) {
598 		throttled = true;
599 		pr_info("Frequency Control disabled from OS\n");
600 	}
601 
602 	if (throttled) {
603 		pr_info("PMSR = %16lx\n", pmsr);
604 		pr_warn("CPU Frequency could be throttled\n");
605 	}
606 }
607 
608 /**
609  * calc_global_pstate - Calculate global pstate
610  * @elapsed_time:		Elapsed time in milliseconds
611  * @local_pstate_idx:		New local pstate
612  * @highest_lpstate_idx:	pstate from which its ramping down
613  *
614  * Finds the appropriate global pstate based on the pstate from which its
615  * ramping down and the time elapsed in ramping down. It follows a quadratic
616  * equation which ensures that it reaches ramping down to pmin in 5sec.
617  */
618 static inline int calc_global_pstate(unsigned int elapsed_time,
619 				     int highest_lpstate_idx,
620 				     int local_pstate_idx)
621 {
622 	int index_diff;
623 
624 	/*
625 	 * Using ramp_down_percent we get the percentage of rampdown
626 	 * that we are expecting to be dropping. Difference between
627 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
628 	 * number of how many pstates we will drop eventually by the end of
629 	 * 5 seconds, then just scale it get the number pstates to be dropped.
630 	 */
631 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
632 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
633 
634 	/* Ensure that global pstate is >= to local pstate */
635 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
636 		return local_pstate_idx;
637 	else
638 		return highest_lpstate_idx + index_diff;
639 }
640 
641 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
642 {
643 	unsigned int timer_interval;
644 
645 	/*
646 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
647 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
648 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
649 	 * seconds of ramp down time.
650 	 */
651 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
652 	     > MAX_RAMP_DOWN_TIME)
653 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
654 	else
655 		timer_interval = GPSTATE_TIMER_INTERVAL;
656 
657 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
658 }
659 
660 /**
661  * gpstate_timer_handler
662  *
663  * @data: pointer to cpufreq_policy on which timer was queued
664  *
665  * This handler brings down the global pstate closer to the local pstate
666  * according quadratic equation. Queues a new timer if it is still not equal
667  * to local pstate
668  */
669 void gpstate_timer_handler(struct timer_list *t)
670 {
671 	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
672 	struct cpufreq_policy *policy = gpstates->policy;
673 	int gpstate_idx, lpstate_idx;
674 	unsigned long val;
675 	unsigned int time_diff = jiffies_to_msecs(jiffies)
676 					- gpstates->last_sampled_time;
677 	struct powernv_smp_call_data freq_data;
678 
679 	if (!spin_trylock(&gpstates->gpstate_lock))
680 		return;
681 	/*
682 	 * If the timer has migrated to the different cpu then bring
683 	 * it back to one of the policy->cpus
684 	 */
685 	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
686 		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
687 		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
688 		spin_unlock(&gpstates->gpstate_lock);
689 		return;
690 	}
691 
692 	/*
693 	 * If PMCR was last updated was using fast_swtich then
694 	 * We may have wrong in gpstate->last_lpstate_idx
695 	 * value. Hence, read from PMCR to get correct data.
696 	 */
697 	val = get_pmspr(SPRN_PMCR);
698 	freq_data.gpstate_id = extract_global_pstate(val);
699 	freq_data.pstate_id = extract_local_pstate(val);
700 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
701 		reset_gpstates(policy);
702 		spin_unlock(&gpstates->gpstate_lock);
703 		return;
704 	}
705 
706 	gpstates->last_sampled_time += time_diff;
707 	gpstates->elapsed_time += time_diff;
708 
709 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
710 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
711 		lpstate_idx = gpstate_idx;
712 		reset_gpstates(policy);
713 		gpstates->highest_lpstate_idx = gpstate_idx;
714 	} else {
715 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
716 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
717 						 gpstates->highest_lpstate_idx,
718 						 lpstate_idx);
719 	}
720 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
721 	gpstates->last_gpstate_idx = gpstate_idx;
722 	gpstates->last_lpstate_idx = lpstate_idx;
723 	/*
724 	 * If local pstate is equal to global pstate, rampdown is over
725 	 * So timer is not required to be queued.
726 	 */
727 	if (gpstate_idx != gpstates->last_lpstate_idx)
728 		queue_gpstate_timer(gpstates);
729 
730 	set_pstate(&freq_data);
731 	spin_unlock(&gpstates->gpstate_lock);
732 }
733 
734 /*
735  * powernv_cpufreq_target_index: Sets the frequency corresponding to
736  * the cpufreq table entry indexed by new_index on the cpus in the
737  * mask policy->cpus
738  */
739 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
740 					unsigned int new_index)
741 {
742 	struct powernv_smp_call_data freq_data;
743 	unsigned int cur_msec, gpstate_idx;
744 	struct global_pstate_info *gpstates = policy->driver_data;
745 
746 	if (unlikely(rebooting) && new_index != get_nominal_index())
747 		return 0;
748 
749 	if (!throttled) {
750 		/* we don't want to be preempted while
751 		 * checking if the CPU frequency has been throttled
752 		 */
753 		preempt_disable();
754 		powernv_cpufreq_throttle_check(NULL);
755 		preempt_enable();
756 	}
757 
758 	cur_msec = jiffies_to_msecs(get_jiffies_64());
759 
760 	freq_data.pstate_id = idx_to_pstate(new_index);
761 	if (!gpstates) {
762 		freq_data.gpstate_id = freq_data.pstate_id;
763 		goto no_gpstate;
764 	}
765 
766 	spin_lock(&gpstates->gpstate_lock);
767 
768 	if (!gpstates->last_sampled_time) {
769 		gpstate_idx = new_index;
770 		gpstates->highest_lpstate_idx = new_index;
771 		goto gpstates_done;
772 	}
773 
774 	if (gpstates->last_gpstate_idx < new_index) {
775 		gpstates->elapsed_time += cur_msec -
776 						 gpstates->last_sampled_time;
777 
778 		/*
779 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
780 		 * we should be resetting all global pstate related data. Set it
781 		 * equal to local pstate to start fresh.
782 		 */
783 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
784 			reset_gpstates(policy);
785 			gpstates->highest_lpstate_idx = new_index;
786 			gpstate_idx = new_index;
787 		} else {
788 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
789 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
790 							 gpstates->highest_lpstate_idx,
791 							 new_index);
792 		}
793 	} else {
794 		reset_gpstates(policy);
795 		gpstates->highest_lpstate_idx = new_index;
796 		gpstate_idx = new_index;
797 	}
798 
799 	/*
800 	 * If local pstate is equal to global pstate, rampdown is over
801 	 * So timer is not required to be queued.
802 	 */
803 	if (gpstate_idx != new_index)
804 		queue_gpstate_timer(gpstates);
805 	else
806 		del_timer_sync(&gpstates->timer);
807 
808 gpstates_done:
809 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
810 	gpstates->last_sampled_time = cur_msec;
811 	gpstates->last_gpstate_idx = gpstate_idx;
812 	gpstates->last_lpstate_idx = new_index;
813 
814 	spin_unlock(&gpstates->gpstate_lock);
815 
816 no_gpstate:
817 	/*
818 	 * Use smp_call_function to send IPI and execute the
819 	 * mtspr on target CPU.  We could do that without IPI
820 	 * if current CPU is within policy->cpus (core)
821 	 */
822 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
823 	return 0;
824 }
825 
826 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
827 {
828 	int base, i;
829 	struct kernfs_node *kn;
830 	struct global_pstate_info *gpstates;
831 
832 	base = cpu_first_thread_sibling(policy->cpu);
833 
834 	for (i = 0; i < threads_per_core; i++)
835 		cpumask_set_cpu(base + i, policy->cpus);
836 
837 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
838 	if (!kn) {
839 		int ret;
840 
841 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
842 		if (ret) {
843 			pr_info("Failed to create throttle stats directory for cpu %d\n",
844 				policy->cpu);
845 			return ret;
846 		}
847 	} else {
848 		kernfs_put(kn);
849 	}
850 
851 	policy->freq_table = powernv_freqs;
852 	policy->fast_switch_possible = true;
853 
854 	if (pvr_version_is(PVR_POWER9))
855 		return 0;
856 
857 	/* Initialise Gpstate ramp-down timer only on POWER8 */
858 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
859 	if (!gpstates)
860 		return -ENOMEM;
861 
862 	policy->driver_data = gpstates;
863 
864 	/* initialize timer */
865 	gpstates->policy = policy;
866 	timer_setup(&gpstates->timer, gpstate_timer_handler,
867 		    TIMER_PINNED | TIMER_DEFERRABLE);
868 	gpstates->timer.expires = jiffies +
869 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
870 	spin_lock_init(&gpstates->gpstate_lock);
871 
872 	return 0;
873 }
874 
875 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
876 {
877 	/* timer is deleted in cpufreq_cpu_stop() */
878 	kfree(policy->driver_data);
879 
880 	return 0;
881 }
882 
883 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
884 				unsigned long action, void *unused)
885 {
886 	int cpu;
887 	struct cpufreq_policy cpu_policy;
888 
889 	rebooting = true;
890 	for_each_online_cpu(cpu) {
891 		cpufreq_get_policy(&cpu_policy, cpu);
892 		powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
893 	}
894 
895 	return NOTIFY_DONE;
896 }
897 
898 static struct notifier_block powernv_cpufreq_reboot_nb = {
899 	.notifier_call = powernv_cpufreq_reboot_notifier,
900 };
901 
902 void powernv_cpufreq_work_fn(struct work_struct *work)
903 {
904 	struct chip *chip = container_of(work, struct chip, throttle);
905 	struct cpufreq_policy *policy;
906 	unsigned int cpu;
907 	cpumask_t mask;
908 
909 	get_online_cpus();
910 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
911 	smp_call_function_any(&mask,
912 			      powernv_cpufreq_throttle_check, NULL, 0);
913 
914 	if (!chip->restore)
915 		goto out;
916 
917 	chip->restore = false;
918 	for_each_cpu(cpu, &mask) {
919 		int index;
920 
921 		policy = cpufreq_cpu_get(cpu);
922 		if (!policy)
923 			continue;
924 		index = cpufreq_table_find_index_c(policy, policy->cur);
925 		powernv_cpufreq_target_index(policy, index);
926 		cpumask_andnot(&mask, &mask, policy->cpus);
927 		cpufreq_cpu_put(policy);
928 	}
929 out:
930 	put_online_cpus();
931 }
932 
933 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
934 				   unsigned long msg_type, void *_msg)
935 {
936 	struct opal_msg *msg = _msg;
937 	struct opal_occ_msg omsg;
938 	int i;
939 
940 	if (msg_type != OPAL_MSG_OCC)
941 		return 0;
942 
943 	omsg.type = be64_to_cpu(msg->params[0]);
944 
945 	switch (omsg.type) {
946 	case OCC_RESET:
947 		occ_reset = true;
948 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
949 		/*
950 		 * powernv_cpufreq_throttle_check() is called in
951 		 * target() callback which can detect the throttle state
952 		 * for governors like ondemand.
953 		 * But static governors will not call target() often thus
954 		 * report throttling here.
955 		 */
956 		if (!throttled) {
957 			throttled = true;
958 			pr_warn("CPU frequency is throttled for duration\n");
959 		}
960 
961 		break;
962 	case OCC_LOAD:
963 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
964 		break;
965 	case OCC_THROTTLE:
966 		omsg.chip = be64_to_cpu(msg->params[1]);
967 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
968 
969 		if (occ_reset) {
970 			occ_reset = false;
971 			throttled = false;
972 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
973 
974 			for (i = 0; i < nr_chips; i++) {
975 				chips[i].restore = true;
976 				schedule_work(&chips[i].throttle);
977 			}
978 
979 			return 0;
980 		}
981 
982 		for (i = 0; i < nr_chips; i++)
983 			if (chips[i].id == omsg.chip)
984 				break;
985 
986 		if (omsg.throttle_status >= 0 &&
987 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
988 			chips[i].throttle_reason = omsg.throttle_status;
989 			chips[i].reason[omsg.throttle_status]++;
990 		}
991 
992 		if (!omsg.throttle_status)
993 			chips[i].restore = true;
994 
995 		schedule_work(&chips[i].throttle);
996 	}
997 	return 0;
998 }
999 
1000 static struct notifier_block powernv_cpufreq_opal_nb = {
1001 	.notifier_call	= powernv_cpufreq_occ_msg,
1002 	.next		= NULL,
1003 	.priority	= 0,
1004 };
1005 
1006 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1007 {
1008 	struct powernv_smp_call_data freq_data;
1009 	struct global_pstate_info *gpstates = policy->driver_data;
1010 
1011 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1012 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1013 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1014 	if (gpstates)
1015 		del_timer_sync(&gpstates->timer);
1016 }
1017 
1018 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1019 					unsigned int target_freq)
1020 {
1021 	int index;
1022 	struct powernv_smp_call_data freq_data;
1023 
1024 	index = cpufreq_table_find_index_dl(policy, target_freq);
1025 	freq_data.pstate_id = powernv_freqs[index].driver_data;
1026 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1027 	set_pstate(&freq_data);
1028 
1029 	return powernv_freqs[index].frequency;
1030 }
1031 
1032 static struct cpufreq_driver powernv_cpufreq_driver = {
1033 	.name		= "powernv-cpufreq",
1034 	.flags		= CPUFREQ_CONST_LOOPS,
1035 	.init		= powernv_cpufreq_cpu_init,
1036 	.exit		= powernv_cpufreq_cpu_exit,
1037 	.verify		= cpufreq_generic_frequency_table_verify,
1038 	.target_index	= powernv_cpufreq_target_index,
1039 	.fast_switch	= powernv_fast_switch,
1040 	.get		= powernv_cpufreq_get,
1041 	.stop_cpu	= powernv_cpufreq_stop_cpu,
1042 	.attr		= powernv_cpu_freq_attr,
1043 };
1044 
1045 static int init_chip_info(void)
1046 {
1047 	unsigned int *chip;
1048 	unsigned int cpu, i;
1049 	unsigned int prev_chip_id = UINT_MAX;
1050 	int ret = 0;
1051 
1052 	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1053 	if (!chip)
1054 		return -ENOMEM;
1055 
1056 	for_each_possible_cpu(cpu) {
1057 		unsigned int id = cpu_to_chip_id(cpu);
1058 
1059 		if (prev_chip_id != id) {
1060 			prev_chip_id = id;
1061 			chip[nr_chips++] = id;
1062 		}
1063 	}
1064 
1065 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1066 	if (!chips) {
1067 		ret = -ENOMEM;
1068 		goto free_and_return;
1069 	}
1070 
1071 	for (i = 0; i < nr_chips; i++) {
1072 		chips[i].id = chip[i];
1073 		cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1074 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1075 		for_each_cpu(cpu, &chips[i].mask)
1076 			per_cpu(chip_info, cpu) =  &chips[i];
1077 	}
1078 
1079 free_and_return:
1080 	kfree(chip);
1081 	return ret;
1082 }
1083 
1084 static inline void clean_chip_info(void)
1085 {
1086 	int i;
1087 
1088 	/* flush any pending work items */
1089 	if (chips)
1090 		for (i = 0; i < nr_chips; i++)
1091 			cancel_work_sync(&chips[i].throttle);
1092 	kfree(chips);
1093 }
1094 
1095 static inline void unregister_all_notifiers(void)
1096 {
1097 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1098 					 &powernv_cpufreq_opal_nb);
1099 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1100 }
1101 
1102 static int __init powernv_cpufreq_init(void)
1103 {
1104 	int rc = 0;
1105 
1106 	/* Don't probe on pseries (guest) platforms */
1107 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1108 		return -ENODEV;
1109 
1110 	/* Discover pstates from device tree and init */
1111 	rc = init_powernv_pstates();
1112 	if (rc)
1113 		goto out;
1114 
1115 	/* Populate chip info */
1116 	rc = init_chip_info();
1117 	if (rc)
1118 		goto out;
1119 
1120 	if (powernv_pstate_info.wof_enabled)
1121 		powernv_cpufreq_driver.boost_enabled = true;
1122 	else
1123 		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1124 
1125 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1126 	if (rc) {
1127 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1128 		goto cleanup;
1129 	}
1130 
1131 	if (powernv_pstate_info.wof_enabled)
1132 		cpufreq_enable_boost_support();
1133 
1134 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1135 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1136 
1137 	return 0;
1138 cleanup:
1139 	clean_chip_info();
1140 out:
1141 	pr_info("Platform driver disabled. System does not support PState control\n");
1142 	return rc;
1143 }
1144 module_init(powernv_cpufreq_init);
1145 
1146 static void __exit powernv_cpufreq_exit(void)
1147 {
1148 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1149 	unregister_all_notifiers();
1150 	clean_chip_info();
1151 }
1152 module_exit(powernv_cpufreq_exit);
1153 
1154 MODULE_LICENSE("GPL");
1155 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1156