xref: /linux/drivers/clocksource/em_sti.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * Emma Mobile Timer Support - STI
3  *
4  *  Copyright (C) 2012 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 
35 enum { USER_CLOCKSOURCE, USER_CLOCKEVENT, USER_NR };
36 
37 struct em_sti_priv {
38 	void __iomem *base;
39 	struct clk *clk;
40 	struct platform_device *pdev;
41 	unsigned int active[USER_NR];
42 	unsigned long rate;
43 	raw_spinlock_t lock;
44 	struct clock_event_device ced;
45 	struct clocksource cs;
46 };
47 
48 #define STI_CONTROL 0x00
49 #define STI_COMPA_H 0x10
50 #define STI_COMPA_L 0x14
51 #define STI_COMPB_H 0x18
52 #define STI_COMPB_L 0x1c
53 #define STI_COUNT_H 0x20
54 #define STI_COUNT_L 0x24
55 #define STI_COUNT_RAW_H 0x28
56 #define STI_COUNT_RAW_L 0x2c
57 #define STI_SET_H 0x30
58 #define STI_SET_L 0x34
59 #define STI_INTSTATUS 0x40
60 #define STI_INTRAWSTATUS 0x44
61 #define STI_INTENSET 0x48
62 #define STI_INTENCLR 0x4c
63 #define STI_INTFFCLR 0x50
64 
65 static inline unsigned long em_sti_read(struct em_sti_priv *p, int offs)
66 {
67 	return ioread32(p->base + offs);
68 }
69 
70 static inline void em_sti_write(struct em_sti_priv *p, int offs,
71 				unsigned long value)
72 {
73 	iowrite32(value, p->base + offs);
74 }
75 
76 static int em_sti_enable(struct em_sti_priv *p)
77 {
78 	int ret;
79 
80 	/* enable clock */
81 	ret = clk_enable(p->clk);
82 	if (ret) {
83 		dev_err(&p->pdev->dev, "cannot enable clock\n");
84 		return ret;
85 	}
86 
87 	/* configure channel, periodic mode and maximum timeout */
88 	p->rate = clk_get_rate(p->clk);
89 
90 	/* reset the counter */
91 	em_sti_write(p, STI_SET_H, 0x40000000);
92 	em_sti_write(p, STI_SET_L, 0x00000000);
93 
94 	/* mask and clear pending interrupts */
95 	em_sti_write(p, STI_INTENCLR, 3);
96 	em_sti_write(p, STI_INTFFCLR, 3);
97 
98 	/* enable updates of counter registers */
99 	em_sti_write(p, STI_CONTROL, 1);
100 
101 	return 0;
102 }
103 
104 static void em_sti_disable(struct em_sti_priv *p)
105 {
106 	/* mask interrupts */
107 	em_sti_write(p, STI_INTENCLR, 3);
108 
109 	/* stop clock */
110 	clk_disable(p->clk);
111 }
112 
113 static cycle_t em_sti_count(struct em_sti_priv *p)
114 {
115 	cycle_t ticks;
116 	unsigned long flags;
117 
118 	/* the STI hardware buffers the 48-bit count, but to
119 	 * break it out into two 32-bit access the registers
120 	 * must be accessed in a certain order.
121 	 * Always read STI_COUNT_H before STI_COUNT_L.
122 	 */
123 	raw_spin_lock_irqsave(&p->lock, flags);
124 	ticks = (cycle_t)(em_sti_read(p, STI_COUNT_H) & 0xffff) << 32;
125 	ticks |= em_sti_read(p, STI_COUNT_L);
126 	raw_spin_unlock_irqrestore(&p->lock, flags);
127 
128 	return ticks;
129 }
130 
131 static cycle_t em_sti_set_next(struct em_sti_priv *p, cycle_t next)
132 {
133 	unsigned long flags;
134 
135 	raw_spin_lock_irqsave(&p->lock, flags);
136 
137 	/* mask compare A interrupt */
138 	em_sti_write(p, STI_INTENCLR, 1);
139 
140 	/* update compare A value */
141 	em_sti_write(p, STI_COMPA_H, next >> 32);
142 	em_sti_write(p, STI_COMPA_L, next & 0xffffffff);
143 
144 	/* clear compare A interrupt source */
145 	em_sti_write(p, STI_INTFFCLR, 1);
146 
147 	/* unmask compare A interrupt */
148 	em_sti_write(p, STI_INTENSET, 1);
149 
150 	raw_spin_unlock_irqrestore(&p->lock, flags);
151 
152 	return next;
153 }
154 
155 static irqreturn_t em_sti_interrupt(int irq, void *dev_id)
156 {
157 	struct em_sti_priv *p = dev_id;
158 
159 	p->ced.event_handler(&p->ced);
160 	return IRQ_HANDLED;
161 }
162 
163 static int em_sti_start(struct em_sti_priv *p, unsigned int user)
164 {
165 	unsigned long flags;
166 	int used_before;
167 	int ret = 0;
168 
169 	raw_spin_lock_irqsave(&p->lock, flags);
170 	used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
171 	if (!used_before)
172 		ret = em_sti_enable(p);
173 
174 	if (!ret)
175 		p->active[user] = 1;
176 	raw_spin_unlock_irqrestore(&p->lock, flags);
177 
178 	return ret;
179 }
180 
181 static void em_sti_stop(struct em_sti_priv *p, unsigned int user)
182 {
183 	unsigned long flags;
184 	int used_before, used_after;
185 
186 	raw_spin_lock_irqsave(&p->lock, flags);
187 	used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
188 	p->active[user] = 0;
189 	used_after = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
190 
191 	if (used_before && !used_after)
192 		em_sti_disable(p);
193 	raw_spin_unlock_irqrestore(&p->lock, flags);
194 }
195 
196 static struct em_sti_priv *cs_to_em_sti(struct clocksource *cs)
197 {
198 	return container_of(cs, struct em_sti_priv, cs);
199 }
200 
201 static cycle_t em_sti_clocksource_read(struct clocksource *cs)
202 {
203 	return em_sti_count(cs_to_em_sti(cs));
204 }
205 
206 static int em_sti_clocksource_enable(struct clocksource *cs)
207 {
208 	int ret;
209 	struct em_sti_priv *p = cs_to_em_sti(cs);
210 
211 	ret = em_sti_start(p, USER_CLOCKSOURCE);
212 	if (!ret)
213 		__clocksource_updatefreq_hz(cs, p->rate);
214 	return ret;
215 }
216 
217 static void em_sti_clocksource_disable(struct clocksource *cs)
218 {
219 	em_sti_stop(cs_to_em_sti(cs), USER_CLOCKSOURCE);
220 }
221 
222 static void em_sti_clocksource_resume(struct clocksource *cs)
223 {
224 	em_sti_clocksource_enable(cs);
225 }
226 
227 static int em_sti_register_clocksource(struct em_sti_priv *p)
228 {
229 	struct clocksource *cs = &p->cs;
230 
231 	memset(cs, 0, sizeof(*cs));
232 	cs->name = dev_name(&p->pdev->dev);
233 	cs->rating = 200;
234 	cs->read = em_sti_clocksource_read;
235 	cs->enable = em_sti_clocksource_enable;
236 	cs->disable = em_sti_clocksource_disable;
237 	cs->suspend = em_sti_clocksource_disable;
238 	cs->resume = em_sti_clocksource_resume;
239 	cs->mask = CLOCKSOURCE_MASK(48);
240 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
241 
242 	dev_info(&p->pdev->dev, "used as clock source\n");
243 
244 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
245 	clocksource_register_hz(cs, 1);
246 	return 0;
247 }
248 
249 static struct em_sti_priv *ced_to_em_sti(struct clock_event_device *ced)
250 {
251 	return container_of(ced, struct em_sti_priv, ced);
252 }
253 
254 static void em_sti_clock_event_mode(enum clock_event_mode mode,
255 				    struct clock_event_device *ced)
256 {
257 	struct em_sti_priv *p = ced_to_em_sti(ced);
258 
259 	/* deal with old setting first */
260 	switch (ced->mode) {
261 	case CLOCK_EVT_MODE_ONESHOT:
262 		em_sti_stop(p, USER_CLOCKEVENT);
263 		break;
264 	default:
265 		break;
266 	}
267 
268 	switch (mode) {
269 	case CLOCK_EVT_MODE_ONESHOT:
270 		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
271 		em_sti_start(p, USER_CLOCKEVENT);
272 		clockevents_config(&p->ced, p->rate);
273 		break;
274 	case CLOCK_EVT_MODE_SHUTDOWN:
275 	case CLOCK_EVT_MODE_UNUSED:
276 		em_sti_stop(p, USER_CLOCKEVENT);
277 		break;
278 	default:
279 		break;
280 	}
281 }
282 
283 static int em_sti_clock_event_next(unsigned long delta,
284 				   struct clock_event_device *ced)
285 {
286 	struct em_sti_priv *p = ced_to_em_sti(ced);
287 	cycle_t next;
288 	int safe;
289 
290 	next = em_sti_set_next(p, em_sti_count(p) + delta);
291 	safe = em_sti_count(p) < (next - 1);
292 
293 	return !safe;
294 }
295 
296 static void em_sti_register_clockevent(struct em_sti_priv *p)
297 {
298 	struct clock_event_device *ced = &p->ced;
299 
300 	memset(ced, 0, sizeof(*ced));
301 	ced->name = dev_name(&p->pdev->dev);
302 	ced->features = CLOCK_EVT_FEAT_ONESHOT;
303 	ced->rating = 200;
304 	ced->cpumask = cpumask_of(0);
305 	ced->set_next_event = em_sti_clock_event_next;
306 	ced->set_mode = em_sti_clock_event_mode;
307 
308 	dev_info(&p->pdev->dev, "used for clock events\n");
309 
310 	/* Register with dummy 1 Hz value, gets updated in ->set_mode() */
311 	clockevents_config_and_register(ced, 1, 2, 0xffffffff);
312 }
313 
314 static int em_sti_probe(struct platform_device *pdev)
315 {
316 	struct em_sti_priv *p;
317 	struct resource *res;
318 	int irq, ret;
319 
320 	p = kzalloc(sizeof(*p), GFP_KERNEL);
321 	if (p == NULL) {
322 		dev_err(&pdev->dev, "failed to allocate driver data\n");
323 		ret = -ENOMEM;
324 		goto err0;
325 	}
326 
327 	p->pdev = pdev;
328 	platform_set_drvdata(pdev, p);
329 
330 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
331 	if (!res) {
332 		dev_err(&pdev->dev, "failed to get I/O memory\n");
333 		ret = -EINVAL;
334 		goto err0;
335 	}
336 
337 	irq = platform_get_irq(pdev, 0);
338 	if (irq < 0) {
339 		dev_err(&pdev->dev, "failed to get irq\n");
340 		ret = -EINVAL;
341 		goto err0;
342 	}
343 
344 	/* map memory, let base point to the STI instance */
345 	p->base = ioremap_nocache(res->start, resource_size(res));
346 	if (p->base == NULL) {
347 		dev_err(&pdev->dev, "failed to remap I/O memory\n");
348 		ret = -ENXIO;
349 		goto err0;
350 	}
351 
352 	/* get hold of clock */
353 	p->clk = clk_get(&pdev->dev, "sclk");
354 	if (IS_ERR(p->clk)) {
355 		dev_err(&pdev->dev, "cannot get clock\n");
356 		ret = PTR_ERR(p->clk);
357 		goto err1;
358 	}
359 
360 	if (request_irq(irq, em_sti_interrupt,
361 			IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
362 			dev_name(&pdev->dev), p)) {
363 		dev_err(&pdev->dev, "failed to request low IRQ\n");
364 		ret = -ENOENT;
365 		goto err2;
366 	}
367 
368 	raw_spin_lock_init(&p->lock);
369 	em_sti_register_clockevent(p);
370 	em_sti_register_clocksource(p);
371 	return 0;
372 
373 err2:
374 	clk_put(p->clk);
375 err1:
376 	iounmap(p->base);
377 err0:
378 	kfree(p);
379 	return ret;
380 }
381 
382 static int em_sti_remove(struct platform_device *pdev)
383 {
384 	return -EBUSY; /* cannot unregister clockevent and clocksource */
385 }
386 
387 static const struct of_device_id em_sti_dt_ids[] = {
388 	{ .compatible = "renesas,em-sti", },
389 	{},
390 };
391 MODULE_DEVICE_TABLE(of, em_sti_dt_ids);
392 
393 static struct platform_driver em_sti_device_driver = {
394 	.probe		= em_sti_probe,
395 	.remove		= em_sti_remove,
396 	.driver		= {
397 		.name	= "em_sti",
398 		.of_match_table = em_sti_dt_ids,
399 	}
400 };
401 
402 module_platform_driver(em_sti_device_driver);
403 
404 MODULE_AUTHOR("Magnus Damm");
405 MODULE_DESCRIPTION("Renesas Emma Mobile STI Timer Driver");
406 MODULE_LICENSE("GPL v2");
407