xref: /linux/drivers/block/xen-blkfront.c (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 
51 #include <xen/xen.h>
52 #include <xen/xenbus.h>
53 #include <xen/grant_table.h>
54 #include <xen/events.h>
55 #include <xen/page.h>
56 #include <xen/platform_pci.h>
57 
58 #include <xen/interface/grant_table.h>
59 #include <xen/interface/io/blkif.h>
60 #include <xen/interface/io/protocols.h>
61 
62 #include <asm/xen/hypervisor.h>
63 
64 /*
65  * The minimal size of segment supported by the block framework is PAGE_SIZE.
66  * When Linux is using a different page size than Xen, it may not be possible
67  * to put all the data in a single segment.
68  * This can happen when the backend doesn't support indirect descriptor and
69  * therefore the maximum amount of data that a request can carry is
70  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
71  *
72  * Note that we only support one extra request. So the Linux page size
73  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
74  * 88KB.
75  */
76 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
77 
78 enum blkif_state {
79 	BLKIF_STATE_DISCONNECTED,
80 	BLKIF_STATE_CONNECTED,
81 	BLKIF_STATE_SUSPENDED,
82 };
83 
84 struct grant {
85 	grant_ref_t gref;
86 	struct page *page;
87 	struct list_head node;
88 };
89 
90 enum blk_req_status {
91 	REQ_WAITING,
92 	REQ_DONE,
93 	REQ_ERROR,
94 	REQ_EOPNOTSUPP,
95 };
96 
97 struct blk_shadow {
98 	struct blkif_request req;
99 	struct request *request;
100 	struct grant **grants_used;
101 	struct grant **indirect_grants;
102 	struct scatterlist *sg;
103 	unsigned int num_sg;
104 	enum blk_req_status status;
105 
106 	#define NO_ASSOCIATED_ID ~0UL
107 	/*
108 	 * Id of the sibling if we ever need 2 requests when handling a
109 	 * block I/O request
110 	 */
111 	unsigned long associated_id;
112 };
113 
114 struct blkif_req {
115 	blk_status_t	error;
116 };
117 
118 static inline struct blkif_req *blkif_req(struct request *rq)
119 {
120 	return blk_mq_rq_to_pdu(rq);
121 }
122 
123 static DEFINE_MUTEX(blkfront_mutex);
124 static const struct block_device_operations xlvbd_block_fops;
125 static struct delayed_work blkfront_work;
126 static LIST_HEAD(info_list);
127 
128 /*
129  * Maximum number of segments in indirect requests, the actual value used by
130  * the frontend driver is the minimum of this value and the value provided
131  * by the backend driver.
132  */
133 
134 static unsigned int xen_blkif_max_segments = 32;
135 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
136 MODULE_PARM_DESC(max_indirect_segments,
137 		 "Maximum amount of segments in indirect requests (default is 32)");
138 
139 static unsigned int xen_blkif_max_queues = 4;
140 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
141 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
142 
143 /*
144  * Maximum order of pages to be used for the shared ring between front and
145  * backend, 4KB page granularity is used.
146  */
147 static unsigned int xen_blkif_max_ring_order;
148 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
149 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
150 
151 #define BLK_RING_SIZE(info)	\
152 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
153 
154 #define BLK_MAX_RING_SIZE	\
155 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * XENBUS_MAX_RING_GRANTS)
156 
157 /*
158  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
159  * characters are enough. Define to 20 to keep consistent with backend.
160  */
161 #define RINGREF_NAME_LEN (20)
162 /*
163  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
164  */
165 #define QUEUE_NAME_LEN (17)
166 
167 /*
168  *  Per-ring info.
169  *  Every blkfront device can associate with one or more blkfront_ring_info,
170  *  depending on how many hardware queues/rings to be used.
171  */
172 struct blkfront_ring_info {
173 	/* Lock to protect data in every ring buffer. */
174 	spinlock_t ring_lock;
175 	struct blkif_front_ring ring;
176 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
177 	unsigned int evtchn, irq;
178 	struct work_struct work;
179 	struct gnttab_free_callback callback;
180 	struct blk_shadow shadow[BLK_MAX_RING_SIZE];
181 	struct list_head indirect_pages;
182 	struct list_head grants;
183 	unsigned int persistent_gnts_c;
184 	unsigned long shadow_free;
185 	struct blkfront_info *dev_info;
186 };
187 
188 /*
189  * We have one of these per vbd, whether ide, scsi or 'other'.  They
190  * hang in private_data off the gendisk structure. We may end up
191  * putting all kinds of interesting stuff here :-)
192  */
193 struct blkfront_info
194 {
195 	struct mutex mutex;
196 	struct xenbus_device *xbdev;
197 	struct gendisk *gd;
198 	u16 sector_size;
199 	unsigned int physical_sector_size;
200 	int vdevice;
201 	blkif_vdev_t handle;
202 	enum blkif_state connected;
203 	/* Number of pages per ring buffer. */
204 	unsigned int nr_ring_pages;
205 	struct request_queue *rq;
206 	unsigned int feature_flush:1;
207 	unsigned int feature_fua:1;
208 	unsigned int feature_discard:1;
209 	unsigned int feature_secdiscard:1;
210 	unsigned int feature_persistent:1;
211 	unsigned int discard_granularity;
212 	unsigned int discard_alignment;
213 	/* Number of 4KB segments handled */
214 	unsigned int max_indirect_segments;
215 	int is_ready;
216 	struct blk_mq_tag_set tag_set;
217 	struct blkfront_ring_info *rinfo;
218 	unsigned int nr_rings;
219 	/* Save uncomplete reqs and bios for migration. */
220 	struct list_head requests;
221 	struct bio_list bio_list;
222 	struct list_head info_list;
223 };
224 
225 static unsigned int nr_minors;
226 static unsigned long *minors;
227 static DEFINE_SPINLOCK(minor_lock);
228 
229 #define GRANT_INVALID_REF	0
230 
231 #define PARTS_PER_DISK		16
232 #define PARTS_PER_EXT_DISK      256
233 
234 #define BLKIF_MAJOR(dev) ((dev)>>8)
235 #define BLKIF_MINOR(dev) ((dev) & 0xff)
236 
237 #define EXT_SHIFT 28
238 #define EXTENDED (1<<EXT_SHIFT)
239 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
240 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
241 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
242 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
243 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
244 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
245 
246 #define DEV_NAME	"xvd"	/* name in /dev */
247 
248 /*
249  * Grants are always the same size as a Xen page (i.e 4KB).
250  * A physical segment is always the same size as a Linux page.
251  * Number of grants per physical segment
252  */
253 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
254 
255 #define GRANTS_PER_INDIRECT_FRAME \
256 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
257 
258 #define INDIRECT_GREFS(_grants)		\
259 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
260 
261 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
262 static void blkfront_gather_backend_features(struct blkfront_info *info);
263 static int negotiate_mq(struct blkfront_info *info);
264 
265 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
266 {
267 	unsigned long free = rinfo->shadow_free;
268 
269 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
270 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
271 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
272 	return free;
273 }
274 
275 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
276 			      unsigned long id)
277 {
278 	if (rinfo->shadow[id].req.u.rw.id != id)
279 		return -EINVAL;
280 	if (rinfo->shadow[id].request == NULL)
281 		return -EINVAL;
282 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
283 	rinfo->shadow[id].request = NULL;
284 	rinfo->shadow_free = id;
285 	return 0;
286 }
287 
288 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
289 {
290 	struct blkfront_info *info = rinfo->dev_info;
291 	struct page *granted_page;
292 	struct grant *gnt_list_entry, *n;
293 	int i = 0;
294 
295 	while (i < num) {
296 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
297 		if (!gnt_list_entry)
298 			goto out_of_memory;
299 
300 		if (info->feature_persistent) {
301 			granted_page = alloc_page(GFP_NOIO);
302 			if (!granted_page) {
303 				kfree(gnt_list_entry);
304 				goto out_of_memory;
305 			}
306 			gnt_list_entry->page = granted_page;
307 		}
308 
309 		gnt_list_entry->gref = GRANT_INVALID_REF;
310 		list_add(&gnt_list_entry->node, &rinfo->grants);
311 		i++;
312 	}
313 
314 	return 0;
315 
316 out_of_memory:
317 	list_for_each_entry_safe(gnt_list_entry, n,
318 	                         &rinfo->grants, node) {
319 		list_del(&gnt_list_entry->node);
320 		if (info->feature_persistent)
321 			__free_page(gnt_list_entry->page);
322 		kfree(gnt_list_entry);
323 		i--;
324 	}
325 	BUG_ON(i != 0);
326 	return -ENOMEM;
327 }
328 
329 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
330 {
331 	struct grant *gnt_list_entry;
332 
333 	BUG_ON(list_empty(&rinfo->grants));
334 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
335 					  node);
336 	list_del(&gnt_list_entry->node);
337 
338 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
339 		rinfo->persistent_gnts_c--;
340 
341 	return gnt_list_entry;
342 }
343 
344 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
345 					const struct blkfront_info *info)
346 {
347 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
348 						 info->xbdev->otherend_id,
349 						 gnt_list_entry->page,
350 						 0);
351 }
352 
353 static struct grant *get_grant(grant_ref_t *gref_head,
354 			       unsigned long gfn,
355 			       struct blkfront_ring_info *rinfo)
356 {
357 	struct grant *gnt_list_entry = get_free_grant(rinfo);
358 	struct blkfront_info *info = rinfo->dev_info;
359 
360 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
361 		return gnt_list_entry;
362 
363 	/* Assign a gref to this page */
364 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
365 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
366 	if (info->feature_persistent)
367 		grant_foreign_access(gnt_list_entry, info);
368 	else {
369 		/* Grant access to the GFN passed by the caller */
370 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
371 						info->xbdev->otherend_id,
372 						gfn, 0);
373 	}
374 
375 	return gnt_list_entry;
376 }
377 
378 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
379 					struct blkfront_ring_info *rinfo)
380 {
381 	struct grant *gnt_list_entry = get_free_grant(rinfo);
382 	struct blkfront_info *info = rinfo->dev_info;
383 
384 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
385 		return gnt_list_entry;
386 
387 	/* Assign a gref to this page */
388 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
389 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
390 	if (!info->feature_persistent) {
391 		struct page *indirect_page;
392 
393 		/* Fetch a pre-allocated page to use for indirect grefs */
394 		BUG_ON(list_empty(&rinfo->indirect_pages));
395 		indirect_page = list_first_entry(&rinfo->indirect_pages,
396 						 struct page, lru);
397 		list_del(&indirect_page->lru);
398 		gnt_list_entry->page = indirect_page;
399 	}
400 	grant_foreign_access(gnt_list_entry, info);
401 
402 	return gnt_list_entry;
403 }
404 
405 static const char *op_name(int op)
406 {
407 	static const char *const names[] = {
408 		[BLKIF_OP_READ] = "read",
409 		[BLKIF_OP_WRITE] = "write",
410 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
411 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
412 		[BLKIF_OP_DISCARD] = "discard" };
413 
414 	if (op < 0 || op >= ARRAY_SIZE(names))
415 		return "unknown";
416 
417 	if (!names[op])
418 		return "reserved";
419 
420 	return names[op];
421 }
422 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
423 {
424 	unsigned int end = minor + nr;
425 	int rc;
426 
427 	if (end > nr_minors) {
428 		unsigned long *bitmap, *old;
429 
430 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
431 				 GFP_KERNEL);
432 		if (bitmap == NULL)
433 			return -ENOMEM;
434 
435 		spin_lock(&minor_lock);
436 		if (end > nr_minors) {
437 			old = minors;
438 			memcpy(bitmap, minors,
439 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
440 			minors = bitmap;
441 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
442 		} else
443 			old = bitmap;
444 		spin_unlock(&minor_lock);
445 		kfree(old);
446 	}
447 
448 	spin_lock(&minor_lock);
449 	if (find_next_bit(minors, end, minor) >= end) {
450 		bitmap_set(minors, minor, nr);
451 		rc = 0;
452 	} else
453 		rc = -EBUSY;
454 	spin_unlock(&minor_lock);
455 
456 	return rc;
457 }
458 
459 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
460 {
461 	unsigned int end = minor + nr;
462 
463 	BUG_ON(end > nr_minors);
464 	spin_lock(&minor_lock);
465 	bitmap_clear(minors,  minor, nr);
466 	spin_unlock(&minor_lock);
467 }
468 
469 static void blkif_restart_queue_callback(void *arg)
470 {
471 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
472 	schedule_work(&rinfo->work);
473 }
474 
475 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
476 {
477 	/* We don't have real geometry info, but let's at least return
478 	   values consistent with the size of the device */
479 	sector_t nsect = get_capacity(bd->bd_disk);
480 	sector_t cylinders = nsect;
481 
482 	hg->heads = 0xff;
483 	hg->sectors = 0x3f;
484 	sector_div(cylinders, hg->heads * hg->sectors);
485 	hg->cylinders = cylinders;
486 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
487 		hg->cylinders = 0xffff;
488 	return 0;
489 }
490 
491 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
492 		       unsigned command, unsigned long argument)
493 {
494 	struct blkfront_info *info = bdev->bd_disk->private_data;
495 	int i;
496 
497 	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
498 		command, (long)argument);
499 
500 	switch (command) {
501 	case CDROMMULTISESSION:
502 		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
503 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
504 			if (put_user(0, (char __user *)(argument + i)))
505 				return -EFAULT;
506 		return 0;
507 
508 	case CDROM_GET_CAPABILITY: {
509 		struct gendisk *gd = info->gd;
510 		if (gd->flags & GENHD_FL_CD)
511 			return 0;
512 		return -EINVAL;
513 	}
514 
515 	default:
516 		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
517 		  command);*/
518 		return -EINVAL; /* same return as native Linux */
519 	}
520 
521 	return 0;
522 }
523 
524 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
525 					    struct request *req,
526 					    struct blkif_request **ring_req)
527 {
528 	unsigned long id;
529 
530 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
531 	rinfo->ring.req_prod_pvt++;
532 
533 	id = get_id_from_freelist(rinfo);
534 	rinfo->shadow[id].request = req;
535 	rinfo->shadow[id].status = REQ_WAITING;
536 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
537 
538 	(*ring_req)->u.rw.id = id;
539 
540 	return id;
541 }
542 
543 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
544 {
545 	struct blkfront_info *info = rinfo->dev_info;
546 	struct blkif_request *ring_req;
547 	unsigned long id;
548 
549 	/* Fill out a communications ring structure. */
550 	id = blkif_ring_get_request(rinfo, req, &ring_req);
551 
552 	ring_req->operation = BLKIF_OP_DISCARD;
553 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
554 	ring_req->u.discard.id = id;
555 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
556 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
557 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
558 	else
559 		ring_req->u.discard.flag = 0;
560 
561 	/* Keep a private copy so we can reissue requests when recovering. */
562 	rinfo->shadow[id].req = *ring_req;
563 
564 	return 0;
565 }
566 
567 struct setup_rw_req {
568 	unsigned int grant_idx;
569 	struct blkif_request_segment *segments;
570 	struct blkfront_ring_info *rinfo;
571 	struct blkif_request *ring_req;
572 	grant_ref_t gref_head;
573 	unsigned int id;
574 	/* Only used when persistent grant is used and it's a read request */
575 	bool need_copy;
576 	unsigned int bvec_off;
577 	char *bvec_data;
578 
579 	bool require_extra_req;
580 	struct blkif_request *extra_ring_req;
581 };
582 
583 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
584 				     unsigned int len, void *data)
585 {
586 	struct setup_rw_req *setup = data;
587 	int n, ref;
588 	struct grant *gnt_list_entry;
589 	unsigned int fsect, lsect;
590 	/* Convenient aliases */
591 	unsigned int grant_idx = setup->grant_idx;
592 	struct blkif_request *ring_req = setup->ring_req;
593 	struct blkfront_ring_info *rinfo = setup->rinfo;
594 	/*
595 	 * We always use the shadow of the first request to store the list
596 	 * of grant associated to the block I/O request. This made the
597 	 * completion more easy to handle even if the block I/O request is
598 	 * split.
599 	 */
600 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
601 
602 	if (unlikely(setup->require_extra_req &&
603 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
604 		/*
605 		 * We are using the second request, setup grant_idx
606 		 * to be the index of the segment array.
607 		 */
608 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
609 		ring_req = setup->extra_ring_req;
610 	}
611 
612 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
613 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
614 		if (setup->segments)
615 			kunmap_atomic(setup->segments);
616 
617 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
618 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
619 		shadow->indirect_grants[n] = gnt_list_entry;
620 		setup->segments = kmap_atomic(gnt_list_entry->page);
621 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
622 	}
623 
624 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
625 	ref = gnt_list_entry->gref;
626 	/*
627 	 * All the grants are stored in the shadow of the first
628 	 * request. Therefore we have to use the global index.
629 	 */
630 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
631 
632 	if (setup->need_copy) {
633 		void *shared_data;
634 
635 		shared_data = kmap_atomic(gnt_list_entry->page);
636 		/*
637 		 * this does not wipe data stored outside the
638 		 * range sg->offset..sg->offset+sg->length.
639 		 * Therefore, blkback *could* see data from
640 		 * previous requests. This is OK as long as
641 		 * persistent grants are shared with just one
642 		 * domain. It may need refactoring if this
643 		 * changes
644 		 */
645 		memcpy(shared_data + offset,
646 		       setup->bvec_data + setup->bvec_off,
647 		       len);
648 
649 		kunmap_atomic(shared_data);
650 		setup->bvec_off += len;
651 	}
652 
653 	fsect = offset >> 9;
654 	lsect = fsect + (len >> 9) - 1;
655 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
656 		ring_req->u.rw.seg[grant_idx] =
657 			(struct blkif_request_segment) {
658 				.gref       = ref,
659 				.first_sect = fsect,
660 				.last_sect  = lsect };
661 	} else {
662 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
663 			(struct blkif_request_segment) {
664 				.gref       = ref,
665 				.first_sect = fsect,
666 				.last_sect  = lsect };
667 	}
668 
669 	(setup->grant_idx)++;
670 }
671 
672 static void blkif_setup_extra_req(struct blkif_request *first,
673 				  struct blkif_request *second)
674 {
675 	uint16_t nr_segments = first->u.rw.nr_segments;
676 
677 	/*
678 	 * The second request is only present when the first request uses
679 	 * all its segments. It's always the continuity of the first one.
680 	 */
681 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
682 
683 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
684 	second->u.rw.sector_number = first->u.rw.sector_number +
685 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
686 
687 	second->u.rw.handle = first->u.rw.handle;
688 	second->operation = first->operation;
689 }
690 
691 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
692 {
693 	struct blkfront_info *info = rinfo->dev_info;
694 	struct blkif_request *ring_req, *extra_ring_req = NULL;
695 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
696 	bool require_extra_req = false;
697 	int i;
698 	struct setup_rw_req setup = {
699 		.grant_idx = 0,
700 		.segments = NULL,
701 		.rinfo = rinfo,
702 		.need_copy = rq_data_dir(req) && info->feature_persistent,
703 	};
704 
705 	/*
706 	 * Used to store if we are able to queue the request by just using
707 	 * existing persistent grants, or if we have to get new grants,
708 	 * as there are not sufficiently many free.
709 	 */
710 	bool new_persistent_gnts = false;
711 	struct scatterlist *sg;
712 	int num_sg, max_grefs, num_grant;
713 
714 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
715 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
716 		/*
717 		 * If we are using indirect segments we need to account
718 		 * for the indirect grefs used in the request.
719 		 */
720 		max_grefs += INDIRECT_GREFS(max_grefs);
721 
722 	/* Check if we have enough persistent grants to allocate a requests */
723 	if (rinfo->persistent_gnts_c < max_grefs) {
724 		new_persistent_gnts = true;
725 
726 		if (gnttab_alloc_grant_references(
727 		    max_grefs - rinfo->persistent_gnts_c,
728 		    &setup.gref_head) < 0) {
729 			gnttab_request_free_callback(
730 				&rinfo->callback,
731 				blkif_restart_queue_callback,
732 				rinfo,
733 				max_grefs - rinfo->persistent_gnts_c);
734 			return 1;
735 		}
736 	}
737 
738 	/* Fill out a communications ring structure. */
739 	id = blkif_ring_get_request(rinfo, req, &ring_req);
740 
741 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
742 	num_grant = 0;
743 	/* Calculate the number of grant used */
744 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
745 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
746 
747 	require_extra_req = info->max_indirect_segments == 0 &&
748 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
749 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
750 
751 	rinfo->shadow[id].num_sg = num_sg;
752 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
753 	    likely(!require_extra_req)) {
754 		/*
755 		 * The indirect operation can only be a BLKIF_OP_READ or
756 		 * BLKIF_OP_WRITE
757 		 */
758 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
759 		ring_req->operation = BLKIF_OP_INDIRECT;
760 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
761 			BLKIF_OP_WRITE : BLKIF_OP_READ;
762 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
763 		ring_req->u.indirect.handle = info->handle;
764 		ring_req->u.indirect.nr_segments = num_grant;
765 	} else {
766 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
767 		ring_req->u.rw.handle = info->handle;
768 		ring_req->operation = rq_data_dir(req) ?
769 			BLKIF_OP_WRITE : BLKIF_OP_READ;
770 		if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
771 			/*
772 			 * Ideally we can do an unordered flush-to-disk.
773 			 * In case the backend onlysupports barriers, use that.
774 			 * A barrier request a superset of FUA, so we can
775 			 * implement it the same way.  (It's also a FLUSH+FUA,
776 			 * since it is guaranteed ordered WRT previous writes.)
777 			 */
778 			if (info->feature_flush && info->feature_fua)
779 				ring_req->operation =
780 					BLKIF_OP_WRITE_BARRIER;
781 			else if (info->feature_flush)
782 				ring_req->operation =
783 					BLKIF_OP_FLUSH_DISKCACHE;
784 			else
785 				ring_req->operation = 0;
786 		}
787 		ring_req->u.rw.nr_segments = num_grant;
788 		if (unlikely(require_extra_req)) {
789 			extra_id = blkif_ring_get_request(rinfo, req,
790 							  &extra_ring_req);
791 			/*
792 			 * Only the first request contains the scatter-gather
793 			 * list.
794 			 */
795 			rinfo->shadow[extra_id].num_sg = 0;
796 
797 			blkif_setup_extra_req(ring_req, extra_ring_req);
798 
799 			/* Link the 2 requests together */
800 			rinfo->shadow[extra_id].associated_id = id;
801 			rinfo->shadow[id].associated_id = extra_id;
802 		}
803 	}
804 
805 	setup.ring_req = ring_req;
806 	setup.id = id;
807 
808 	setup.require_extra_req = require_extra_req;
809 	if (unlikely(require_extra_req))
810 		setup.extra_ring_req = extra_ring_req;
811 
812 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
813 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
814 
815 		if (setup.need_copy) {
816 			setup.bvec_off = sg->offset;
817 			setup.bvec_data = kmap_atomic(sg_page(sg));
818 		}
819 
820 		gnttab_foreach_grant_in_range(sg_page(sg),
821 					      sg->offset,
822 					      sg->length,
823 					      blkif_setup_rw_req_grant,
824 					      &setup);
825 
826 		if (setup.need_copy)
827 			kunmap_atomic(setup.bvec_data);
828 	}
829 	if (setup.segments)
830 		kunmap_atomic(setup.segments);
831 
832 	/* Keep a private copy so we can reissue requests when recovering. */
833 	rinfo->shadow[id].req = *ring_req;
834 	if (unlikely(require_extra_req))
835 		rinfo->shadow[extra_id].req = *extra_ring_req;
836 
837 	if (new_persistent_gnts)
838 		gnttab_free_grant_references(setup.gref_head);
839 
840 	return 0;
841 }
842 
843 /*
844  * Generate a Xen blkfront IO request from a blk layer request.  Reads
845  * and writes are handled as expected.
846  *
847  * @req: a request struct
848  */
849 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
850 {
851 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
852 		return 1;
853 
854 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
855 		     req_op(req) == REQ_OP_SECURE_ERASE))
856 		return blkif_queue_discard_req(req, rinfo);
857 	else
858 		return blkif_queue_rw_req(req, rinfo);
859 }
860 
861 static inline void flush_requests(struct blkfront_ring_info *rinfo)
862 {
863 	int notify;
864 
865 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
866 
867 	if (notify)
868 		notify_remote_via_irq(rinfo->irq);
869 }
870 
871 static inline bool blkif_request_flush_invalid(struct request *req,
872 					       struct blkfront_info *info)
873 {
874 	return (blk_rq_is_passthrough(req) ||
875 		((req_op(req) == REQ_OP_FLUSH) &&
876 		 !info->feature_flush) ||
877 		((req->cmd_flags & REQ_FUA) &&
878 		 !info->feature_fua));
879 }
880 
881 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
882 			  const struct blk_mq_queue_data *qd)
883 {
884 	unsigned long flags;
885 	int qid = hctx->queue_num;
886 	struct blkfront_info *info = hctx->queue->queuedata;
887 	struct blkfront_ring_info *rinfo = NULL;
888 
889 	BUG_ON(info->nr_rings <= qid);
890 	rinfo = &info->rinfo[qid];
891 	blk_mq_start_request(qd->rq);
892 	spin_lock_irqsave(&rinfo->ring_lock, flags);
893 	if (RING_FULL(&rinfo->ring))
894 		goto out_busy;
895 
896 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
897 		goto out_err;
898 
899 	if (blkif_queue_request(qd->rq, rinfo))
900 		goto out_busy;
901 
902 	flush_requests(rinfo);
903 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
904 	return BLK_STS_OK;
905 
906 out_err:
907 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
908 	return BLK_STS_IOERR;
909 
910 out_busy:
911 	blk_mq_stop_hw_queue(hctx);
912 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
913 	return BLK_STS_DEV_RESOURCE;
914 }
915 
916 static void blkif_complete_rq(struct request *rq)
917 {
918 	blk_mq_end_request(rq, blkif_req(rq)->error);
919 }
920 
921 static const struct blk_mq_ops blkfront_mq_ops = {
922 	.queue_rq = blkif_queue_rq,
923 	.complete = blkif_complete_rq,
924 };
925 
926 static void blkif_set_queue_limits(struct blkfront_info *info)
927 {
928 	struct request_queue *rq = info->rq;
929 	struct gendisk *gd = info->gd;
930 	unsigned int segments = info->max_indirect_segments ? :
931 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
932 
933 	blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
934 
935 	if (info->feature_discard) {
936 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
937 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
938 		rq->limits.discard_granularity = info->discard_granularity;
939 		rq->limits.discard_alignment = info->discard_alignment;
940 		if (info->feature_secdiscard)
941 			blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
942 	}
943 
944 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
945 	blk_queue_logical_block_size(rq, info->sector_size);
946 	blk_queue_physical_block_size(rq, info->physical_sector_size);
947 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
948 
949 	/* Each segment in a request is up to an aligned page in size. */
950 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
951 	blk_queue_max_segment_size(rq, PAGE_SIZE);
952 
953 	/* Ensure a merged request will fit in a single I/O ring slot. */
954 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
955 
956 	/* Make sure buffer addresses are sector-aligned. */
957 	blk_queue_dma_alignment(rq, 511);
958 }
959 
960 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
961 				unsigned int physical_sector_size)
962 {
963 	struct request_queue *rq;
964 	struct blkfront_info *info = gd->private_data;
965 
966 	memset(&info->tag_set, 0, sizeof(info->tag_set));
967 	info->tag_set.ops = &blkfront_mq_ops;
968 	info->tag_set.nr_hw_queues = info->nr_rings;
969 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
970 		/*
971 		 * When indirect descriptior is not supported, the I/O request
972 		 * will be split between multiple request in the ring.
973 		 * To avoid problems when sending the request, divide by
974 		 * 2 the depth of the queue.
975 		 */
976 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
977 	} else
978 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
979 	info->tag_set.numa_node = NUMA_NO_NODE;
980 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
981 	info->tag_set.cmd_size = sizeof(struct blkif_req);
982 	info->tag_set.driver_data = info;
983 
984 	if (blk_mq_alloc_tag_set(&info->tag_set))
985 		return -EINVAL;
986 	rq = blk_mq_init_queue(&info->tag_set);
987 	if (IS_ERR(rq)) {
988 		blk_mq_free_tag_set(&info->tag_set);
989 		return PTR_ERR(rq);
990 	}
991 
992 	rq->queuedata = info;
993 	info->rq = gd->queue = rq;
994 	info->gd = gd;
995 	info->sector_size = sector_size;
996 	info->physical_sector_size = physical_sector_size;
997 	blkif_set_queue_limits(info);
998 
999 	return 0;
1000 }
1001 
1002 static const char *flush_info(struct blkfront_info *info)
1003 {
1004 	if (info->feature_flush && info->feature_fua)
1005 		return "barrier: enabled;";
1006 	else if (info->feature_flush)
1007 		return "flush diskcache: enabled;";
1008 	else
1009 		return "barrier or flush: disabled;";
1010 }
1011 
1012 static void xlvbd_flush(struct blkfront_info *info)
1013 {
1014 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1015 			      info->feature_fua ? true : false);
1016 	pr_info("blkfront: %s: %s %s %s %s %s\n",
1017 		info->gd->disk_name, flush_info(info),
1018 		"persistent grants:", info->feature_persistent ?
1019 		"enabled;" : "disabled;", "indirect descriptors:",
1020 		info->max_indirect_segments ? "enabled;" : "disabled;");
1021 }
1022 
1023 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1024 {
1025 	int major;
1026 	major = BLKIF_MAJOR(vdevice);
1027 	*minor = BLKIF_MINOR(vdevice);
1028 	switch (major) {
1029 		case XEN_IDE0_MAJOR:
1030 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1031 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1032 				EMULATED_HD_DISK_MINOR_OFFSET;
1033 			break;
1034 		case XEN_IDE1_MAJOR:
1035 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1036 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1037 				EMULATED_HD_DISK_MINOR_OFFSET;
1038 			break;
1039 		case XEN_SCSI_DISK0_MAJOR:
1040 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1041 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1042 			break;
1043 		case XEN_SCSI_DISK1_MAJOR:
1044 		case XEN_SCSI_DISK2_MAJOR:
1045 		case XEN_SCSI_DISK3_MAJOR:
1046 		case XEN_SCSI_DISK4_MAJOR:
1047 		case XEN_SCSI_DISK5_MAJOR:
1048 		case XEN_SCSI_DISK6_MAJOR:
1049 		case XEN_SCSI_DISK7_MAJOR:
1050 			*offset = (*minor / PARTS_PER_DISK) +
1051 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1052 				EMULATED_SD_DISK_NAME_OFFSET;
1053 			*minor = *minor +
1054 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1055 				EMULATED_SD_DISK_MINOR_OFFSET;
1056 			break;
1057 		case XEN_SCSI_DISK8_MAJOR:
1058 		case XEN_SCSI_DISK9_MAJOR:
1059 		case XEN_SCSI_DISK10_MAJOR:
1060 		case XEN_SCSI_DISK11_MAJOR:
1061 		case XEN_SCSI_DISK12_MAJOR:
1062 		case XEN_SCSI_DISK13_MAJOR:
1063 		case XEN_SCSI_DISK14_MAJOR:
1064 		case XEN_SCSI_DISK15_MAJOR:
1065 			*offset = (*minor / PARTS_PER_DISK) +
1066 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1067 				EMULATED_SD_DISK_NAME_OFFSET;
1068 			*minor = *minor +
1069 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1070 				EMULATED_SD_DISK_MINOR_OFFSET;
1071 			break;
1072 		case XENVBD_MAJOR:
1073 			*offset = *minor / PARTS_PER_DISK;
1074 			break;
1075 		default:
1076 			printk(KERN_WARNING "blkfront: your disk configuration is "
1077 					"incorrect, please use an xvd device instead\n");
1078 			return -ENODEV;
1079 	}
1080 	return 0;
1081 }
1082 
1083 static char *encode_disk_name(char *ptr, unsigned int n)
1084 {
1085 	if (n >= 26)
1086 		ptr = encode_disk_name(ptr, n / 26 - 1);
1087 	*ptr = 'a' + n % 26;
1088 	return ptr + 1;
1089 }
1090 
1091 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1092 			       struct blkfront_info *info,
1093 			       u16 vdisk_info, u16 sector_size,
1094 			       unsigned int physical_sector_size)
1095 {
1096 	struct gendisk *gd;
1097 	int nr_minors = 1;
1098 	int err;
1099 	unsigned int offset;
1100 	int minor;
1101 	int nr_parts;
1102 	char *ptr;
1103 
1104 	BUG_ON(info->gd != NULL);
1105 	BUG_ON(info->rq != NULL);
1106 
1107 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1108 		/* this is above the extended range; something is wrong */
1109 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1110 		return -ENODEV;
1111 	}
1112 
1113 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1114 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1115 		if (err)
1116 			return err;
1117  		nr_parts = PARTS_PER_DISK;
1118 	} else {
1119 		minor = BLKIF_MINOR_EXT(info->vdevice);
1120 		nr_parts = PARTS_PER_EXT_DISK;
1121 		offset = minor / nr_parts;
1122 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1123 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1124 					"emulated IDE disks,\n\t choose an xvd device name"
1125 					"from xvde on\n", info->vdevice);
1126 	}
1127 	if (minor >> MINORBITS) {
1128 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1129 			info->vdevice, minor);
1130 		return -ENODEV;
1131 	}
1132 
1133 	if ((minor % nr_parts) == 0)
1134 		nr_minors = nr_parts;
1135 
1136 	err = xlbd_reserve_minors(minor, nr_minors);
1137 	if (err)
1138 		goto out;
1139 	err = -ENODEV;
1140 
1141 	gd = alloc_disk(nr_minors);
1142 	if (gd == NULL)
1143 		goto release;
1144 
1145 	strcpy(gd->disk_name, DEV_NAME);
1146 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1147 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1148 	if (nr_minors > 1)
1149 		*ptr = 0;
1150 	else
1151 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1152 			 "%d", minor & (nr_parts - 1));
1153 
1154 	gd->major = XENVBD_MAJOR;
1155 	gd->first_minor = minor;
1156 	gd->fops = &xlvbd_block_fops;
1157 	gd->private_data = info;
1158 	set_capacity(gd, capacity);
1159 
1160 	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1161 		del_gendisk(gd);
1162 		goto release;
1163 	}
1164 
1165 	xlvbd_flush(info);
1166 
1167 	if (vdisk_info & VDISK_READONLY)
1168 		set_disk_ro(gd, 1);
1169 
1170 	if (vdisk_info & VDISK_REMOVABLE)
1171 		gd->flags |= GENHD_FL_REMOVABLE;
1172 
1173 	if (vdisk_info & VDISK_CDROM)
1174 		gd->flags |= GENHD_FL_CD;
1175 
1176 	return 0;
1177 
1178  release:
1179 	xlbd_release_minors(minor, nr_minors);
1180  out:
1181 	return err;
1182 }
1183 
1184 static void xlvbd_release_gendisk(struct blkfront_info *info)
1185 {
1186 	unsigned int minor, nr_minors, i;
1187 
1188 	if (info->rq == NULL)
1189 		return;
1190 
1191 	/* No more blkif_request(). */
1192 	blk_mq_stop_hw_queues(info->rq);
1193 
1194 	for (i = 0; i < info->nr_rings; i++) {
1195 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1196 
1197 		/* No more gnttab callback work. */
1198 		gnttab_cancel_free_callback(&rinfo->callback);
1199 
1200 		/* Flush gnttab callback work. Must be done with no locks held. */
1201 		flush_work(&rinfo->work);
1202 	}
1203 
1204 	del_gendisk(info->gd);
1205 
1206 	minor = info->gd->first_minor;
1207 	nr_minors = info->gd->minors;
1208 	xlbd_release_minors(minor, nr_minors);
1209 
1210 	blk_cleanup_queue(info->rq);
1211 	blk_mq_free_tag_set(&info->tag_set);
1212 	info->rq = NULL;
1213 
1214 	put_disk(info->gd);
1215 	info->gd = NULL;
1216 }
1217 
1218 /* Already hold rinfo->ring_lock. */
1219 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1220 {
1221 	if (!RING_FULL(&rinfo->ring))
1222 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1223 }
1224 
1225 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1226 {
1227 	unsigned long flags;
1228 
1229 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1230 	kick_pending_request_queues_locked(rinfo);
1231 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1232 }
1233 
1234 static void blkif_restart_queue(struct work_struct *work)
1235 {
1236 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1237 
1238 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1239 		kick_pending_request_queues(rinfo);
1240 }
1241 
1242 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1243 {
1244 	struct grant *persistent_gnt, *n;
1245 	struct blkfront_info *info = rinfo->dev_info;
1246 	int i, j, segs;
1247 
1248 	/*
1249 	 * Remove indirect pages, this only happens when using indirect
1250 	 * descriptors but not persistent grants
1251 	 */
1252 	if (!list_empty(&rinfo->indirect_pages)) {
1253 		struct page *indirect_page, *n;
1254 
1255 		BUG_ON(info->feature_persistent);
1256 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1257 			list_del(&indirect_page->lru);
1258 			__free_page(indirect_page);
1259 		}
1260 	}
1261 
1262 	/* Remove all persistent grants. */
1263 	if (!list_empty(&rinfo->grants)) {
1264 		list_for_each_entry_safe(persistent_gnt, n,
1265 					 &rinfo->grants, node) {
1266 			list_del(&persistent_gnt->node);
1267 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1268 				gnttab_end_foreign_access(persistent_gnt->gref,
1269 							  0, 0UL);
1270 				rinfo->persistent_gnts_c--;
1271 			}
1272 			if (info->feature_persistent)
1273 				__free_page(persistent_gnt->page);
1274 			kfree(persistent_gnt);
1275 		}
1276 	}
1277 	BUG_ON(rinfo->persistent_gnts_c != 0);
1278 
1279 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1280 		/*
1281 		 * Clear persistent grants present in requests already
1282 		 * on the shared ring
1283 		 */
1284 		if (!rinfo->shadow[i].request)
1285 			goto free_shadow;
1286 
1287 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1288 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1289 		       rinfo->shadow[i].req.u.rw.nr_segments;
1290 		for (j = 0; j < segs; j++) {
1291 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1292 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1293 			if (info->feature_persistent)
1294 				__free_page(persistent_gnt->page);
1295 			kfree(persistent_gnt);
1296 		}
1297 
1298 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1299 			/*
1300 			 * If this is not an indirect operation don't try to
1301 			 * free indirect segments
1302 			 */
1303 			goto free_shadow;
1304 
1305 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1306 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1307 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1308 			__free_page(persistent_gnt->page);
1309 			kfree(persistent_gnt);
1310 		}
1311 
1312 free_shadow:
1313 		kvfree(rinfo->shadow[i].grants_used);
1314 		rinfo->shadow[i].grants_used = NULL;
1315 		kvfree(rinfo->shadow[i].indirect_grants);
1316 		rinfo->shadow[i].indirect_grants = NULL;
1317 		kvfree(rinfo->shadow[i].sg);
1318 		rinfo->shadow[i].sg = NULL;
1319 	}
1320 
1321 	/* No more gnttab callback work. */
1322 	gnttab_cancel_free_callback(&rinfo->callback);
1323 
1324 	/* Flush gnttab callback work. Must be done with no locks held. */
1325 	flush_work(&rinfo->work);
1326 
1327 	/* Free resources associated with old device channel. */
1328 	for (i = 0; i < info->nr_ring_pages; i++) {
1329 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1330 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1331 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1332 		}
1333 	}
1334 	free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1335 	rinfo->ring.sring = NULL;
1336 
1337 	if (rinfo->irq)
1338 		unbind_from_irqhandler(rinfo->irq, rinfo);
1339 	rinfo->evtchn = rinfo->irq = 0;
1340 }
1341 
1342 static void blkif_free(struct blkfront_info *info, int suspend)
1343 {
1344 	unsigned int i;
1345 
1346 	/* Prevent new requests being issued until we fix things up. */
1347 	info->connected = suspend ?
1348 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1349 	/* No more blkif_request(). */
1350 	if (info->rq)
1351 		blk_mq_stop_hw_queues(info->rq);
1352 
1353 	for (i = 0; i < info->nr_rings; i++)
1354 		blkif_free_ring(&info->rinfo[i]);
1355 
1356 	kvfree(info->rinfo);
1357 	info->rinfo = NULL;
1358 	info->nr_rings = 0;
1359 }
1360 
1361 struct copy_from_grant {
1362 	const struct blk_shadow *s;
1363 	unsigned int grant_idx;
1364 	unsigned int bvec_offset;
1365 	char *bvec_data;
1366 };
1367 
1368 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1369 				  unsigned int len, void *data)
1370 {
1371 	struct copy_from_grant *info = data;
1372 	char *shared_data;
1373 	/* Convenient aliases */
1374 	const struct blk_shadow *s = info->s;
1375 
1376 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1377 
1378 	memcpy(info->bvec_data + info->bvec_offset,
1379 	       shared_data + offset, len);
1380 
1381 	info->bvec_offset += len;
1382 	info->grant_idx++;
1383 
1384 	kunmap_atomic(shared_data);
1385 }
1386 
1387 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1388 {
1389 	switch (rsp)
1390 	{
1391 	case BLKIF_RSP_OKAY:
1392 		return REQ_DONE;
1393 	case BLKIF_RSP_EOPNOTSUPP:
1394 		return REQ_EOPNOTSUPP;
1395 	case BLKIF_RSP_ERROR:
1396 		/* Fallthrough. */
1397 	default:
1398 		return REQ_ERROR;
1399 	}
1400 }
1401 
1402 /*
1403  * Get the final status of the block request based on two ring response
1404  */
1405 static int blkif_get_final_status(enum blk_req_status s1,
1406 				  enum blk_req_status s2)
1407 {
1408 	BUG_ON(s1 == REQ_WAITING);
1409 	BUG_ON(s2 == REQ_WAITING);
1410 
1411 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1412 		return BLKIF_RSP_ERROR;
1413 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1414 		return BLKIF_RSP_EOPNOTSUPP;
1415 	return BLKIF_RSP_OKAY;
1416 }
1417 
1418 static bool blkif_completion(unsigned long *id,
1419 			     struct blkfront_ring_info *rinfo,
1420 			     struct blkif_response *bret)
1421 {
1422 	int i = 0;
1423 	struct scatterlist *sg;
1424 	int num_sg, num_grant;
1425 	struct blkfront_info *info = rinfo->dev_info;
1426 	struct blk_shadow *s = &rinfo->shadow[*id];
1427 	struct copy_from_grant data = {
1428 		.grant_idx = 0,
1429 	};
1430 
1431 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1432 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1433 
1434 	/* The I/O request may be split in two. */
1435 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1436 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1437 
1438 		/* Keep the status of the current response in shadow. */
1439 		s->status = blkif_rsp_to_req_status(bret->status);
1440 
1441 		/* Wait the second response if not yet here. */
1442 		if (s2->status == REQ_WAITING)
1443 			return false;
1444 
1445 		bret->status = blkif_get_final_status(s->status,
1446 						      s2->status);
1447 
1448 		/*
1449 		 * All the grants is stored in the first shadow in order
1450 		 * to make the completion code simpler.
1451 		 */
1452 		num_grant += s2->req.u.rw.nr_segments;
1453 
1454 		/*
1455 		 * The two responses may not come in order. Only the
1456 		 * first request will store the scatter-gather list.
1457 		 */
1458 		if (s2->num_sg != 0) {
1459 			/* Update "id" with the ID of the first response. */
1460 			*id = s->associated_id;
1461 			s = s2;
1462 		}
1463 
1464 		/*
1465 		 * We don't need anymore the second request, so recycling
1466 		 * it now.
1467 		 */
1468 		if (add_id_to_freelist(rinfo, s->associated_id))
1469 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1470 			     info->gd->disk_name, s->associated_id);
1471 	}
1472 
1473 	data.s = s;
1474 	num_sg = s->num_sg;
1475 
1476 	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1477 		for_each_sg(s->sg, sg, num_sg, i) {
1478 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1479 
1480 			data.bvec_offset = sg->offset;
1481 			data.bvec_data = kmap_atomic(sg_page(sg));
1482 
1483 			gnttab_foreach_grant_in_range(sg_page(sg),
1484 						      sg->offset,
1485 						      sg->length,
1486 						      blkif_copy_from_grant,
1487 						      &data);
1488 
1489 			kunmap_atomic(data.bvec_data);
1490 		}
1491 	}
1492 	/* Add the persistent grant into the list of free grants */
1493 	for (i = 0; i < num_grant; i++) {
1494 		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1495 			/*
1496 			 * If the grant is still mapped by the backend (the
1497 			 * backend has chosen to make this grant persistent)
1498 			 * we add it at the head of the list, so it will be
1499 			 * reused first.
1500 			 */
1501 			if (!info->feature_persistent)
1502 				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1503 						     s->grants_used[i]->gref);
1504 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1505 			rinfo->persistent_gnts_c++;
1506 		} else {
1507 			/*
1508 			 * If the grant is not mapped by the backend we end the
1509 			 * foreign access and add it to the tail of the list,
1510 			 * so it will not be picked again unless we run out of
1511 			 * persistent grants.
1512 			 */
1513 			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1514 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1515 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1516 		}
1517 	}
1518 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1519 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1520 			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1521 				if (!info->feature_persistent)
1522 					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1523 							     s->indirect_grants[i]->gref);
1524 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1525 				rinfo->persistent_gnts_c++;
1526 			} else {
1527 				struct page *indirect_page;
1528 
1529 				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1530 				/*
1531 				 * Add the used indirect page back to the list of
1532 				 * available pages for indirect grefs.
1533 				 */
1534 				if (!info->feature_persistent) {
1535 					indirect_page = s->indirect_grants[i]->page;
1536 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1537 				}
1538 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1539 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1540 			}
1541 		}
1542 	}
1543 
1544 	return true;
1545 }
1546 
1547 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1548 {
1549 	struct request *req;
1550 	struct blkif_response *bret;
1551 	RING_IDX i, rp;
1552 	unsigned long flags;
1553 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1554 	struct blkfront_info *info = rinfo->dev_info;
1555 
1556 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1557 		return IRQ_HANDLED;
1558 
1559 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1560  again:
1561 	rp = rinfo->ring.sring->rsp_prod;
1562 	rmb(); /* Ensure we see queued responses up to 'rp'. */
1563 
1564 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1565 		unsigned long id;
1566 
1567 		bret = RING_GET_RESPONSE(&rinfo->ring, i);
1568 		id   = bret->id;
1569 		/*
1570 		 * The backend has messed up and given us an id that we would
1571 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1572 		 * look in get_id_from_freelist.
1573 		 */
1574 		if (id >= BLK_RING_SIZE(info)) {
1575 			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1576 			     info->gd->disk_name, op_name(bret->operation), id);
1577 			/* We can't safely get the 'struct request' as
1578 			 * the id is busted. */
1579 			continue;
1580 		}
1581 		req  = rinfo->shadow[id].request;
1582 
1583 		if (bret->operation != BLKIF_OP_DISCARD) {
1584 			/*
1585 			 * We may need to wait for an extra response if the
1586 			 * I/O request is split in 2
1587 			 */
1588 			if (!blkif_completion(&id, rinfo, bret))
1589 				continue;
1590 		}
1591 
1592 		if (add_id_to_freelist(rinfo, id)) {
1593 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1594 			     info->gd->disk_name, op_name(bret->operation), id);
1595 			continue;
1596 		}
1597 
1598 		if (bret->status == BLKIF_RSP_OKAY)
1599 			blkif_req(req)->error = BLK_STS_OK;
1600 		else
1601 			blkif_req(req)->error = BLK_STS_IOERR;
1602 
1603 		switch (bret->operation) {
1604 		case BLKIF_OP_DISCARD:
1605 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1606 				struct request_queue *rq = info->rq;
1607 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1608 					   info->gd->disk_name, op_name(bret->operation));
1609 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1610 				info->feature_discard = 0;
1611 				info->feature_secdiscard = 0;
1612 				blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1613 				blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1614 			}
1615 			break;
1616 		case BLKIF_OP_FLUSH_DISKCACHE:
1617 		case BLKIF_OP_WRITE_BARRIER:
1618 			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1619 				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1620 				       info->gd->disk_name, op_name(bret->operation));
1621 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1622 			}
1623 			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1624 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1625 				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1626 				       info->gd->disk_name, op_name(bret->operation));
1627 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1628 			}
1629 			if (unlikely(blkif_req(req)->error)) {
1630 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1631 					blkif_req(req)->error = BLK_STS_OK;
1632 				info->feature_fua = 0;
1633 				info->feature_flush = 0;
1634 				xlvbd_flush(info);
1635 			}
1636 			/* fall through */
1637 		case BLKIF_OP_READ:
1638 		case BLKIF_OP_WRITE:
1639 			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1640 				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1641 					"request: %x\n", bret->status);
1642 
1643 			break;
1644 		default:
1645 			BUG();
1646 		}
1647 
1648 		blk_mq_complete_request(req);
1649 	}
1650 
1651 	rinfo->ring.rsp_cons = i;
1652 
1653 	if (i != rinfo->ring.req_prod_pvt) {
1654 		int more_to_do;
1655 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1656 		if (more_to_do)
1657 			goto again;
1658 	} else
1659 		rinfo->ring.sring->rsp_event = i + 1;
1660 
1661 	kick_pending_request_queues_locked(rinfo);
1662 
1663 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1664 
1665 	return IRQ_HANDLED;
1666 }
1667 
1668 
1669 static int setup_blkring(struct xenbus_device *dev,
1670 			 struct blkfront_ring_info *rinfo)
1671 {
1672 	struct blkif_sring *sring;
1673 	int err, i;
1674 	struct blkfront_info *info = rinfo->dev_info;
1675 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1676 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1677 
1678 	for (i = 0; i < info->nr_ring_pages; i++)
1679 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1680 
1681 	sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1682 						       get_order(ring_size));
1683 	if (!sring) {
1684 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1685 		return -ENOMEM;
1686 	}
1687 	SHARED_RING_INIT(sring);
1688 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1689 
1690 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1691 	if (err < 0) {
1692 		free_pages((unsigned long)sring, get_order(ring_size));
1693 		rinfo->ring.sring = NULL;
1694 		goto fail;
1695 	}
1696 	for (i = 0; i < info->nr_ring_pages; i++)
1697 		rinfo->ring_ref[i] = gref[i];
1698 
1699 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1700 	if (err)
1701 		goto fail;
1702 
1703 	err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1704 					"blkif", rinfo);
1705 	if (err <= 0) {
1706 		xenbus_dev_fatal(dev, err,
1707 				 "bind_evtchn_to_irqhandler failed");
1708 		goto fail;
1709 	}
1710 	rinfo->irq = err;
1711 
1712 	return 0;
1713 fail:
1714 	blkif_free(info, 0);
1715 	return err;
1716 }
1717 
1718 /*
1719  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1720  * ring buffer may have multi pages depending on ->nr_ring_pages.
1721  */
1722 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1723 				struct blkfront_ring_info *rinfo, const char *dir)
1724 {
1725 	int err;
1726 	unsigned int i;
1727 	const char *message = NULL;
1728 	struct blkfront_info *info = rinfo->dev_info;
1729 
1730 	if (info->nr_ring_pages == 1) {
1731 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1732 		if (err) {
1733 			message = "writing ring-ref";
1734 			goto abort_transaction;
1735 		}
1736 	} else {
1737 		for (i = 0; i < info->nr_ring_pages; i++) {
1738 			char ring_ref_name[RINGREF_NAME_LEN];
1739 
1740 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1741 			err = xenbus_printf(xbt, dir, ring_ref_name,
1742 					    "%u", rinfo->ring_ref[i]);
1743 			if (err) {
1744 				message = "writing ring-ref";
1745 				goto abort_transaction;
1746 			}
1747 		}
1748 	}
1749 
1750 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1751 	if (err) {
1752 		message = "writing event-channel";
1753 		goto abort_transaction;
1754 	}
1755 
1756 	return 0;
1757 
1758 abort_transaction:
1759 	xenbus_transaction_end(xbt, 1);
1760 	if (message)
1761 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1762 
1763 	return err;
1764 }
1765 
1766 static void free_info(struct blkfront_info *info)
1767 {
1768 	list_del(&info->info_list);
1769 	kfree(info);
1770 }
1771 
1772 /* Common code used when first setting up, and when resuming. */
1773 static int talk_to_blkback(struct xenbus_device *dev,
1774 			   struct blkfront_info *info)
1775 {
1776 	const char *message = NULL;
1777 	struct xenbus_transaction xbt;
1778 	int err;
1779 	unsigned int i, max_page_order;
1780 	unsigned int ring_page_order;
1781 
1782 	if (!info)
1783 		return -ENODEV;
1784 
1785 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1786 					      "max-ring-page-order", 0);
1787 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1788 	info->nr_ring_pages = 1 << ring_page_order;
1789 
1790 	err = negotiate_mq(info);
1791 	if (err)
1792 		goto destroy_blkring;
1793 
1794 	for (i = 0; i < info->nr_rings; i++) {
1795 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1796 
1797 		/* Create shared ring, alloc event channel. */
1798 		err = setup_blkring(dev, rinfo);
1799 		if (err)
1800 			goto destroy_blkring;
1801 	}
1802 
1803 again:
1804 	err = xenbus_transaction_start(&xbt);
1805 	if (err) {
1806 		xenbus_dev_fatal(dev, err, "starting transaction");
1807 		goto destroy_blkring;
1808 	}
1809 
1810 	if (info->nr_ring_pages > 1) {
1811 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1812 				    ring_page_order);
1813 		if (err) {
1814 			message = "writing ring-page-order";
1815 			goto abort_transaction;
1816 		}
1817 	}
1818 
1819 	/* We already got the number of queues/rings in _probe */
1820 	if (info->nr_rings == 1) {
1821 		err = write_per_ring_nodes(xbt, &info->rinfo[0], dev->nodename);
1822 		if (err)
1823 			goto destroy_blkring;
1824 	} else {
1825 		char *path;
1826 		size_t pathsize;
1827 
1828 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1829 				    info->nr_rings);
1830 		if (err) {
1831 			message = "writing multi-queue-num-queues";
1832 			goto abort_transaction;
1833 		}
1834 
1835 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1836 		path = kmalloc(pathsize, GFP_KERNEL);
1837 		if (!path) {
1838 			err = -ENOMEM;
1839 			message = "ENOMEM while writing ring references";
1840 			goto abort_transaction;
1841 		}
1842 
1843 		for (i = 0; i < info->nr_rings; i++) {
1844 			memset(path, 0, pathsize);
1845 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1846 			err = write_per_ring_nodes(xbt, &info->rinfo[i], path);
1847 			if (err) {
1848 				kfree(path);
1849 				goto destroy_blkring;
1850 			}
1851 		}
1852 		kfree(path);
1853 	}
1854 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1855 			    XEN_IO_PROTO_ABI_NATIVE);
1856 	if (err) {
1857 		message = "writing protocol";
1858 		goto abort_transaction;
1859 	}
1860 	err = xenbus_printf(xbt, dev->nodename,
1861 			    "feature-persistent", "%u", 1);
1862 	if (err)
1863 		dev_warn(&dev->dev,
1864 			 "writing persistent grants feature to xenbus");
1865 
1866 	err = xenbus_transaction_end(xbt, 0);
1867 	if (err) {
1868 		if (err == -EAGAIN)
1869 			goto again;
1870 		xenbus_dev_fatal(dev, err, "completing transaction");
1871 		goto destroy_blkring;
1872 	}
1873 
1874 	for (i = 0; i < info->nr_rings; i++) {
1875 		unsigned int j;
1876 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
1877 
1878 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1879 			rinfo->shadow[j].req.u.rw.id = j + 1;
1880 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1881 	}
1882 	xenbus_switch_state(dev, XenbusStateInitialised);
1883 
1884 	return 0;
1885 
1886  abort_transaction:
1887 	xenbus_transaction_end(xbt, 1);
1888 	if (message)
1889 		xenbus_dev_fatal(dev, err, "%s", message);
1890  destroy_blkring:
1891 	blkif_free(info, 0);
1892 
1893 	mutex_lock(&blkfront_mutex);
1894 	free_info(info);
1895 	mutex_unlock(&blkfront_mutex);
1896 
1897 	dev_set_drvdata(&dev->dev, NULL);
1898 
1899 	return err;
1900 }
1901 
1902 static int negotiate_mq(struct blkfront_info *info)
1903 {
1904 	unsigned int backend_max_queues;
1905 	unsigned int i;
1906 
1907 	BUG_ON(info->nr_rings);
1908 
1909 	/* Check if backend supports multiple queues. */
1910 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1911 						  "multi-queue-max-queues", 1);
1912 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1913 	/* We need at least one ring. */
1914 	if (!info->nr_rings)
1915 		info->nr_rings = 1;
1916 
1917 	info->rinfo = kvcalloc(info->nr_rings,
1918 			       sizeof(struct blkfront_ring_info),
1919 			       GFP_KERNEL);
1920 	if (!info->rinfo) {
1921 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1922 		info->nr_rings = 0;
1923 		return -ENOMEM;
1924 	}
1925 
1926 	for (i = 0; i < info->nr_rings; i++) {
1927 		struct blkfront_ring_info *rinfo;
1928 
1929 		rinfo = &info->rinfo[i];
1930 		INIT_LIST_HEAD(&rinfo->indirect_pages);
1931 		INIT_LIST_HEAD(&rinfo->grants);
1932 		rinfo->dev_info = info;
1933 		INIT_WORK(&rinfo->work, blkif_restart_queue);
1934 		spin_lock_init(&rinfo->ring_lock);
1935 	}
1936 	return 0;
1937 }
1938 /**
1939  * Entry point to this code when a new device is created.  Allocate the basic
1940  * structures and the ring buffer for communication with the backend, and
1941  * inform the backend of the appropriate details for those.  Switch to
1942  * Initialised state.
1943  */
1944 static int blkfront_probe(struct xenbus_device *dev,
1945 			  const struct xenbus_device_id *id)
1946 {
1947 	int err, vdevice;
1948 	struct blkfront_info *info;
1949 
1950 	/* FIXME: Use dynamic device id if this is not set. */
1951 	err = xenbus_scanf(XBT_NIL, dev->nodename,
1952 			   "virtual-device", "%i", &vdevice);
1953 	if (err != 1) {
1954 		/* go looking in the extended area instead */
1955 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1956 				   "%i", &vdevice);
1957 		if (err != 1) {
1958 			xenbus_dev_fatal(dev, err, "reading virtual-device");
1959 			return err;
1960 		}
1961 	}
1962 
1963 	if (xen_hvm_domain()) {
1964 		char *type;
1965 		int len;
1966 		/* no unplug has been done: do not hook devices != xen vbds */
1967 		if (xen_has_pv_and_legacy_disk_devices()) {
1968 			int major;
1969 
1970 			if (!VDEV_IS_EXTENDED(vdevice))
1971 				major = BLKIF_MAJOR(vdevice);
1972 			else
1973 				major = XENVBD_MAJOR;
1974 
1975 			if (major != XENVBD_MAJOR) {
1976 				printk(KERN_INFO
1977 						"%s: HVM does not support vbd %d as xen block device\n",
1978 						__func__, vdevice);
1979 				return -ENODEV;
1980 			}
1981 		}
1982 		/* do not create a PV cdrom device if we are an HVM guest */
1983 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1984 		if (IS_ERR(type))
1985 			return -ENODEV;
1986 		if (strncmp(type, "cdrom", 5) == 0) {
1987 			kfree(type);
1988 			return -ENODEV;
1989 		}
1990 		kfree(type);
1991 	}
1992 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1993 	if (!info) {
1994 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1995 		return -ENOMEM;
1996 	}
1997 
1998 	info->xbdev = dev;
1999 
2000 	mutex_init(&info->mutex);
2001 	info->vdevice = vdevice;
2002 	info->connected = BLKIF_STATE_DISCONNECTED;
2003 
2004 	/* Front end dir is a number, which is used as the id. */
2005 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2006 	dev_set_drvdata(&dev->dev, info);
2007 
2008 	mutex_lock(&blkfront_mutex);
2009 	list_add(&info->info_list, &info_list);
2010 	mutex_unlock(&blkfront_mutex);
2011 
2012 	return 0;
2013 }
2014 
2015 static int blkif_recover(struct blkfront_info *info)
2016 {
2017 	unsigned int r_index;
2018 	struct request *req, *n;
2019 	int rc;
2020 	struct bio *bio;
2021 	unsigned int segs;
2022 
2023 	blkfront_gather_backend_features(info);
2024 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2025 	blkif_set_queue_limits(info);
2026 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2027 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2028 
2029 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2030 		struct blkfront_ring_info *rinfo = &info->rinfo[r_index];
2031 
2032 		rc = blkfront_setup_indirect(rinfo);
2033 		if (rc)
2034 			return rc;
2035 	}
2036 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2037 
2038 	/* Now safe for us to use the shared ring */
2039 	info->connected = BLKIF_STATE_CONNECTED;
2040 
2041 	for (r_index = 0; r_index < info->nr_rings; r_index++) {
2042 		struct blkfront_ring_info *rinfo;
2043 
2044 		rinfo = &info->rinfo[r_index];
2045 		/* Kick any other new requests queued since we resumed */
2046 		kick_pending_request_queues(rinfo);
2047 	}
2048 
2049 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2050 		/* Requeue pending requests (flush or discard) */
2051 		list_del_init(&req->queuelist);
2052 		BUG_ON(req->nr_phys_segments > segs);
2053 		blk_mq_requeue_request(req, false);
2054 	}
2055 	blk_mq_start_stopped_hw_queues(info->rq, true);
2056 	blk_mq_kick_requeue_list(info->rq);
2057 
2058 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2059 		/* Traverse the list of pending bios and re-queue them */
2060 		submit_bio(bio);
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2068  * driver restart.  We tear down our blkif structure and recreate it, but
2069  * leave the device-layer structures intact so that this is transparent to the
2070  * rest of the kernel.
2071  */
2072 static int blkfront_resume(struct xenbus_device *dev)
2073 {
2074 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2075 	int err = 0;
2076 	unsigned int i, j;
2077 
2078 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2079 
2080 	bio_list_init(&info->bio_list);
2081 	INIT_LIST_HEAD(&info->requests);
2082 	for (i = 0; i < info->nr_rings; i++) {
2083 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
2084 		struct bio_list merge_bio;
2085 		struct blk_shadow *shadow = rinfo->shadow;
2086 
2087 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2088 			/* Not in use? */
2089 			if (!shadow[j].request)
2090 				continue;
2091 
2092 			/*
2093 			 * Get the bios in the request so we can re-queue them.
2094 			 */
2095 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2096 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2097 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2098 			    shadow[j].request->cmd_flags & REQ_FUA) {
2099 				/*
2100 				 * Flush operations don't contain bios, so
2101 				 * we need to requeue the whole request
2102 				 *
2103 				 * XXX: but this doesn't make any sense for a
2104 				 * write with the FUA flag set..
2105 				 */
2106 				list_add(&shadow[j].request->queuelist, &info->requests);
2107 				continue;
2108 			}
2109 			merge_bio.head = shadow[j].request->bio;
2110 			merge_bio.tail = shadow[j].request->biotail;
2111 			bio_list_merge(&info->bio_list, &merge_bio);
2112 			shadow[j].request->bio = NULL;
2113 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2114 		}
2115 	}
2116 
2117 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2118 
2119 	err = talk_to_blkback(dev, info);
2120 	if (!err)
2121 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2122 
2123 	/*
2124 	 * We have to wait for the backend to switch to
2125 	 * connected state, since we want to read which
2126 	 * features it supports.
2127 	 */
2128 
2129 	return err;
2130 }
2131 
2132 static void blkfront_closing(struct blkfront_info *info)
2133 {
2134 	struct xenbus_device *xbdev = info->xbdev;
2135 	struct block_device *bdev = NULL;
2136 
2137 	mutex_lock(&info->mutex);
2138 
2139 	if (xbdev->state == XenbusStateClosing) {
2140 		mutex_unlock(&info->mutex);
2141 		return;
2142 	}
2143 
2144 	if (info->gd)
2145 		bdev = bdget_disk(info->gd, 0);
2146 
2147 	mutex_unlock(&info->mutex);
2148 
2149 	if (!bdev) {
2150 		xenbus_frontend_closed(xbdev);
2151 		return;
2152 	}
2153 
2154 	mutex_lock(&bdev->bd_mutex);
2155 
2156 	if (bdev->bd_openers) {
2157 		xenbus_dev_error(xbdev, -EBUSY,
2158 				 "Device in use; refusing to close");
2159 		xenbus_switch_state(xbdev, XenbusStateClosing);
2160 	} else {
2161 		xlvbd_release_gendisk(info);
2162 		xenbus_frontend_closed(xbdev);
2163 	}
2164 
2165 	mutex_unlock(&bdev->bd_mutex);
2166 	bdput(bdev);
2167 }
2168 
2169 static void blkfront_setup_discard(struct blkfront_info *info)
2170 {
2171 	int err;
2172 	unsigned int discard_granularity;
2173 	unsigned int discard_alignment;
2174 
2175 	info->feature_discard = 1;
2176 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2177 		"discard-granularity", "%u", &discard_granularity,
2178 		"discard-alignment", "%u", &discard_alignment,
2179 		NULL);
2180 	if (!err) {
2181 		info->discard_granularity = discard_granularity;
2182 		info->discard_alignment = discard_alignment;
2183 	}
2184 	info->feature_secdiscard =
2185 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2186 				       0);
2187 }
2188 
2189 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2190 {
2191 	unsigned int psegs, grants;
2192 	int err, i;
2193 	struct blkfront_info *info = rinfo->dev_info;
2194 
2195 	if (info->max_indirect_segments == 0) {
2196 		if (!HAS_EXTRA_REQ)
2197 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2198 		else {
2199 			/*
2200 			 * When an extra req is required, the maximum
2201 			 * grants supported is related to the size of the
2202 			 * Linux block segment.
2203 			 */
2204 			grants = GRANTS_PER_PSEG;
2205 		}
2206 	}
2207 	else
2208 		grants = info->max_indirect_segments;
2209 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2210 
2211 	err = fill_grant_buffer(rinfo,
2212 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2213 	if (err)
2214 		goto out_of_memory;
2215 
2216 	if (!info->feature_persistent && info->max_indirect_segments) {
2217 		/*
2218 		 * We are using indirect descriptors but not persistent
2219 		 * grants, we need to allocate a set of pages that can be
2220 		 * used for mapping indirect grefs
2221 		 */
2222 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2223 
2224 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2225 		for (i = 0; i < num; i++) {
2226 			struct page *indirect_page = alloc_page(GFP_NOIO);
2227 			if (!indirect_page)
2228 				goto out_of_memory;
2229 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2230 		}
2231 	}
2232 
2233 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2234 		rinfo->shadow[i].grants_used =
2235 			kvcalloc(grants,
2236 				 sizeof(rinfo->shadow[i].grants_used[0]),
2237 				 GFP_NOIO);
2238 		rinfo->shadow[i].sg = kvcalloc(psegs,
2239 					       sizeof(rinfo->shadow[i].sg[0]),
2240 					       GFP_NOIO);
2241 		if (info->max_indirect_segments)
2242 			rinfo->shadow[i].indirect_grants =
2243 				kvcalloc(INDIRECT_GREFS(grants),
2244 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2245 					 GFP_NOIO);
2246 		if ((rinfo->shadow[i].grants_used == NULL) ||
2247 			(rinfo->shadow[i].sg == NULL) ||
2248 		     (info->max_indirect_segments &&
2249 		     (rinfo->shadow[i].indirect_grants == NULL)))
2250 			goto out_of_memory;
2251 		sg_init_table(rinfo->shadow[i].sg, psegs);
2252 	}
2253 
2254 
2255 	return 0;
2256 
2257 out_of_memory:
2258 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2259 		kvfree(rinfo->shadow[i].grants_used);
2260 		rinfo->shadow[i].grants_used = NULL;
2261 		kvfree(rinfo->shadow[i].sg);
2262 		rinfo->shadow[i].sg = NULL;
2263 		kvfree(rinfo->shadow[i].indirect_grants);
2264 		rinfo->shadow[i].indirect_grants = NULL;
2265 	}
2266 	if (!list_empty(&rinfo->indirect_pages)) {
2267 		struct page *indirect_page, *n;
2268 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2269 			list_del(&indirect_page->lru);
2270 			__free_page(indirect_page);
2271 		}
2272 	}
2273 	return -ENOMEM;
2274 }
2275 
2276 /*
2277  * Gather all backend feature-*
2278  */
2279 static void blkfront_gather_backend_features(struct blkfront_info *info)
2280 {
2281 	unsigned int indirect_segments;
2282 
2283 	info->feature_flush = 0;
2284 	info->feature_fua = 0;
2285 
2286 	/*
2287 	 * If there's no "feature-barrier" defined, then it means
2288 	 * we're dealing with a very old backend which writes
2289 	 * synchronously; nothing to do.
2290 	 *
2291 	 * If there are barriers, then we use flush.
2292 	 */
2293 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2294 		info->feature_flush = 1;
2295 		info->feature_fua = 1;
2296 	}
2297 
2298 	/*
2299 	 * And if there is "feature-flush-cache" use that above
2300 	 * barriers.
2301 	 */
2302 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2303 				 0)) {
2304 		info->feature_flush = 1;
2305 		info->feature_fua = 0;
2306 	}
2307 
2308 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2309 		blkfront_setup_discard(info);
2310 
2311 	info->feature_persistent =
2312 		!!xenbus_read_unsigned(info->xbdev->otherend,
2313 				       "feature-persistent", 0);
2314 
2315 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2316 					"feature-max-indirect-segments", 0);
2317 	if (indirect_segments > xen_blkif_max_segments)
2318 		indirect_segments = xen_blkif_max_segments;
2319 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2320 		indirect_segments = 0;
2321 	info->max_indirect_segments = indirect_segments;
2322 
2323 	if (info->feature_persistent) {
2324 		mutex_lock(&blkfront_mutex);
2325 		schedule_delayed_work(&blkfront_work, HZ * 10);
2326 		mutex_unlock(&blkfront_mutex);
2327 	}
2328 }
2329 
2330 /*
2331  * Invoked when the backend is finally 'ready' (and has told produced
2332  * the details about the physical device - #sectors, size, etc).
2333  */
2334 static void blkfront_connect(struct blkfront_info *info)
2335 {
2336 	unsigned long long sectors;
2337 	unsigned long sector_size;
2338 	unsigned int physical_sector_size;
2339 	unsigned int binfo;
2340 	char *envp[] = { "RESIZE=1", NULL };
2341 	int err, i;
2342 
2343 	switch (info->connected) {
2344 	case BLKIF_STATE_CONNECTED:
2345 		/*
2346 		 * Potentially, the back-end may be signalling
2347 		 * a capacity change; update the capacity.
2348 		 */
2349 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2350 				   "sectors", "%Lu", &sectors);
2351 		if (XENBUS_EXIST_ERR(err))
2352 			return;
2353 		printk(KERN_INFO "Setting capacity to %Lu\n",
2354 		       sectors);
2355 		set_capacity(info->gd, sectors);
2356 		revalidate_disk(info->gd);
2357 		kobject_uevent_env(&disk_to_dev(info->gd)->kobj,
2358 				   KOBJ_CHANGE, envp);
2359 
2360 		return;
2361 	case BLKIF_STATE_SUSPENDED:
2362 		/*
2363 		 * If we are recovering from suspension, we need to wait
2364 		 * for the backend to announce it's features before
2365 		 * reconnecting, at least we need to know if the backend
2366 		 * supports indirect descriptors, and how many.
2367 		 */
2368 		blkif_recover(info);
2369 		return;
2370 
2371 	default:
2372 		break;
2373 	}
2374 
2375 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2376 		__func__, info->xbdev->otherend);
2377 
2378 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2379 			    "sectors", "%llu", &sectors,
2380 			    "info", "%u", &binfo,
2381 			    "sector-size", "%lu", &sector_size,
2382 			    NULL);
2383 	if (err) {
2384 		xenbus_dev_fatal(info->xbdev, err,
2385 				 "reading backend fields at %s",
2386 				 info->xbdev->otherend);
2387 		return;
2388 	}
2389 
2390 	/*
2391 	 * physcial-sector-size is a newer field, so old backends may not
2392 	 * provide this. Assume physical sector size to be the same as
2393 	 * sector_size in that case.
2394 	 */
2395 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2396 						    "physical-sector-size",
2397 						    sector_size);
2398 	blkfront_gather_backend_features(info);
2399 	for (i = 0; i < info->nr_rings; i++) {
2400 		err = blkfront_setup_indirect(&info->rinfo[i]);
2401 		if (err) {
2402 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2403 					 info->xbdev->otherend);
2404 			blkif_free(info, 0);
2405 			break;
2406 		}
2407 	}
2408 
2409 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2410 				  physical_sector_size);
2411 	if (err) {
2412 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2413 				 info->xbdev->otherend);
2414 		goto fail;
2415 	}
2416 
2417 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2418 
2419 	/* Kick pending requests. */
2420 	info->connected = BLKIF_STATE_CONNECTED;
2421 	for (i = 0; i < info->nr_rings; i++)
2422 		kick_pending_request_queues(&info->rinfo[i]);
2423 
2424 	device_add_disk(&info->xbdev->dev, info->gd, NULL);
2425 
2426 	info->is_ready = 1;
2427 	return;
2428 
2429 fail:
2430 	blkif_free(info, 0);
2431 	return;
2432 }
2433 
2434 /**
2435  * Callback received when the backend's state changes.
2436  */
2437 static void blkback_changed(struct xenbus_device *dev,
2438 			    enum xenbus_state backend_state)
2439 {
2440 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2441 
2442 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2443 
2444 	switch (backend_state) {
2445 	case XenbusStateInitWait:
2446 		if (dev->state != XenbusStateInitialising)
2447 			break;
2448 		if (talk_to_blkback(dev, info))
2449 			break;
2450 	case XenbusStateInitialising:
2451 	case XenbusStateInitialised:
2452 	case XenbusStateReconfiguring:
2453 	case XenbusStateReconfigured:
2454 	case XenbusStateUnknown:
2455 		break;
2456 
2457 	case XenbusStateConnected:
2458 		/*
2459 		 * talk_to_blkback sets state to XenbusStateInitialised
2460 		 * and blkfront_connect sets it to XenbusStateConnected
2461 		 * (if connection went OK).
2462 		 *
2463 		 * If the backend (or toolstack) decides to poke at backend
2464 		 * state (and re-trigger the watch by setting the state repeatedly
2465 		 * to XenbusStateConnected (4)) we need to deal with this.
2466 		 * This is allowed as this is used to communicate to the guest
2467 		 * that the size of disk has changed!
2468 		 */
2469 		if ((dev->state != XenbusStateInitialised) &&
2470 		    (dev->state != XenbusStateConnected)) {
2471 			if (talk_to_blkback(dev, info))
2472 				break;
2473 		}
2474 
2475 		blkfront_connect(info);
2476 		break;
2477 
2478 	case XenbusStateClosed:
2479 		if (dev->state == XenbusStateClosed)
2480 			break;
2481 		/* fall through */
2482 	case XenbusStateClosing:
2483 		if (info)
2484 			blkfront_closing(info);
2485 		break;
2486 	}
2487 }
2488 
2489 static int blkfront_remove(struct xenbus_device *xbdev)
2490 {
2491 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2492 	struct block_device *bdev = NULL;
2493 	struct gendisk *disk;
2494 
2495 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2496 
2497 	if (!info)
2498 		return 0;
2499 
2500 	blkif_free(info, 0);
2501 
2502 	mutex_lock(&info->mutex);
2503 
2504 	disk = info->gd;
2505 	if (disk)
2506 		bdev = bdget_disk(disk, 0);
2507 
2508 	info->xbdev = NULL;
2509 	mutex_unlock(&info->mutex);
2510 
2511 	if (!bdev) {
2512 		mutex_lock(&blkfront_mutex);
2513 		free_info(info);
2514 		mutex_unlock(&blkfront_mutex);
2515 		return 0;
2516 	}
2517 
2518 	/*
2519 	 * The xbdev was removed before we reached the Closed
2520 	 * state. See if it's safe to remove the disk. If the bdev
2521 	 * isn't closed yet, we let release take care of it.
2522 	 */
2523 
2524 	mutex_lock(&bdev->bd_mutex);
2525 	info = disk->private_data;
2526 
2527 	dev_warn(disk_to_dev(disk),
2528 		 "%s was hot-unplugged, %d stale handles\n",
2529 		 xbdev->nodename, bdev->bd_openers);
2530 
2531 	if (info && !bdev->bd_openers) {
2532 		xlvbd_release_gendisk(info);
2533 		disk->private_data = NULL;
2534 		mutex_lock(&blkfront_mutex);
2535 		free_info(info);
2536 		mutex_unlock(&blkfront_mutex);
2537 	}
2538 
2539 	mutex_unlock(&bdev->bd_mutex);
2540 	bdput(bdev);
2541 
2542 	return 0;
2543 }
2544 
2545 static int blkfront_is_ready(struct xenbus_device *dev)
2546 {
2547 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2548 
2549 	return info->is_ready && info->xbdev;
2550 }
2551 
2552 static int blkif_open(struct block_device *bdev, fmode_t mode)
2553 {
2554 	struct gendisk *disk = bdev->bd_disk;
2555 	struct blkfront_info *info;
2556 	int err = 0;
2557 
2558 	mutex_lock(&blkfront_mutex);
2559 
2560 	info = disk->private_data;
2561 	if (!info) {
2562 		/* xbdev gone */
2563 		err = -ERESTARTSYS;
2564 		goto out;
2565 	}
2566 
2567 	mutex_lock(&info->mutex);
2568 
2569 	if (!info->gd)
2570 		/* xbdev is closed */
2571 		err = -ERESTARTSYS;
2572 
2573 	mutex_unlock(&info->mutex);
2574 
2575 out:
2576 	mutex_unlock(&blkfront_mutex);
2577 	return err;
2578 }
2579 
2580 static void blkif_release(struct gendisk *disk, fmode_t mode)
2581 {
2582 	struct blkfront_info *info = disk->private_data;
2583 	struct block_device *bdev;
2584 	struct xenbus_device *xbdev;
2585 
2586 	mutex_lock(&blkfront_mutex);
2587 
2588 	bdev = bdget_disk(disk, 0);
2589 
2590 	if (!bdev) {
2591 		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2592 		goto out_mutex;
2593 	}
2594 	if (bdev->bd_openers)
2595 		goto out;
2596 
2597 	/*
2598 	 * Check if we have been instructed to close. We will have
2599 	 * deferred this request, because the bdev was still open.
2600 	 */
2601 
2602 	mutex_lock(&info->mutex);
2603 	xbdev = info->xbdev;
2604 
2605 	if (xbdev && xbdev->state == XenbusStateClosing) {
2606 		/* pending switch to state closed */
2607 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2608 		xlvbd_release_gendisk(info);
2609 		xenbus_frontend_closed(info->xbdev);
2610  	}
2611 
2612 	mutex_unlock(&info->mutex);
2613 
2614 	if (!xbdev) {
2615 		/* sudden device removal */
2616 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2617 		xlvbd_release_gendisk(info);
2618 		disk->private_data = NULL;
2619 		free_info(info);
2620 	}
2621 
2622 out:
2623 	bdput(bdev);
2624 out_mutex:
2625 	mutex_unlock(&blkfront_mutex);
2626 }
2627 
2628 static const struct block_device_operations xlvbd_block_fops =
2629 {
2630 	.owner = THIS_MODULE,
2631 	.open = blkif_open,
2632 	.release = blkif_release,
2633 	.getgeo = blkif_getgeo,
2634 	.ioctl = blkif_ioctl,
2635 };
2636 
2637 
2638 static const struct xenbus_device_id blkfront_ids[] = {
2639 	{ "vbd" },
2640 	{ "" }
2641 };
2642 
2643 static struct xenbus_driver blkfront_driver = {
2644 	.ids  = blkfront_ids,
2645 	.probe = blkfront_probe,
2646 	.remove = blkfront_remove,
2647 	.resume = blkfront_resume,
2648 	.otherend_changed = blkback_changed,
2649 	.is_ready = blkfront_is_ready,
2650 };
2651 
2652 static void purge_persistent_grants(struct blkfront_info *info)
2653 {
2654 	unsigned int i;
2655 	unsigned long flags;
2656 
2657 	for (i = 0; i < info->nr_rings; i++) {
2658 		struct blkfront_ring_info *rinfo = &info->rinfo[i];
2659 		struct grant *gnt_list_entry, *tmp;
2660 
2661 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2662 
2663 		if (rinfo->persistent_gnts_c == 0) {
2664 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2665 			continue;
2666 		}
2667 
2668 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2669 					 node) {
2670 			if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2671 			    gnttab_query_foreign_access(gnt_list_entry->gref))
2672 				continue;
2673 
2674 			list_del(&gnt_list_entry->node);
2675 			gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2676 			rinfo->persistent_gnts_c--;
2677 			gnt_list_entry->gref = GRANT_INVALID_REF;
2678 			list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2679 		}
2680 
2681 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2682 	}
2683 }
2684 
2685 static void blkfront_delay_work(struct work_struct *work)
2686 {
2687 	struct blkfront_info *info;
2688 	bool need_schedule_work = false;
2689 
2690 	mutex_lock(&blkfront_mutex);
2691 
2692 	list_for_each_entry(info, &info_list, info_list) {
2693 		if (info->feature_persistent) {
2694 			need_schedule_work = true;
2695 			mutex_lock(&info->mutex);
2696 			purge_persistent_grants(info);
2697 			mutex_unlock(&info->mutex);
2698 		}
2699 	}
2700 
2701 	if (need_schedule_work)
2702 		schedule_delayed_work(&blkfront_work, HZ * 10);
2703 
2704 	mutex_unlock(&blkfront_mutex);
2705 }
2706 
2707 static int __init xlblk_init(void)
2708 {
2709 	int ret;
2710 	int nr_cpus = num_online_cpus();
2711 
2712 	if (!xen_domain())
2713 		return -ENODEV;
2714 
2715 	if (!xen_has_pv_disk_devices())
2716 		return -ENODEV;
2717 
2718 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2719 		pr_warn("xen_blk: can't get major %d with name %s\n",
2720 			XENVBD_MAJOR, DEV_NAME);
2721 		return -ENODEV;
2722 	}
2723 
2724 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2725 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2726 
2727 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2728 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2729 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2730 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2731 	}
2732 
2733 	if (xen_blkif_max_queues > nr_cpus) {
2734 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2735 			xen_blkif_max_queues, nr_cpus);
2736 		xen_blkif_max_queues = nr_cpus;
2737 	}
2738 
2739 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2740 
2741 	ret = xenbus_register_frontend(&blkfront_driver);
2742 	if (ret) {
2743 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2744 		return ret;
2745 	}
2746 
2747 	return 0;
2748 }
2749 module_init(xlblk_init);
2750 
2751 
2752 static void __exit xlblk_exit(void)
2753 {
2754 	cancel_delayed_work_sync(&blkfront_work);
2755 
2756 	xenbus_unregister_driver(&blkfront_driver);
2757 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2758 	kfree(minors);
2759 }
2760 module_exit(xlblk_exit);
2761 
2762 MODULE_DESCRIPTION("Xen virtual block device frontend");
2763 MODULE_LICENSE("GPL");
2764 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2765 MODULE_ALIAS("xen:vbd");
2766 MODULE_ALIAS("xenblk");
2767