xref: /linux/drivers/block/loop.c (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include "loop.h"
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	loopsize = i_size_read(file->f_mapping->host);
169 	if (offset > 0)
170 		loopsize -= offset;
171 	/* offset is beyond i_size, weird but possible */
172 	if (loopsize < 0)
173 		return 0;
174 
175 	if (sizelimit > 0 && sizelimit < loopsize)
176 		loopsize = sizelimit;
177 	/*
178 	 * Unfortunately, if we want to do I/O on the device,
179 	 * the number of 512-byte sectors has to fit into a sector_t.
180 	 */
181 	return loopsize >> 9;
182 }
183 
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 {
186 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187 }
188 
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 {
192 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 	sector_t x = (sector_t)size;
194 	struct block_device *bdev = lo->lo_device;
195 
196 	if (unlikely((loff_t)x != size))
197 		return -EFBIG;
198 	if (lo->lo_offset != offset)
199 		lo->lo_offset = offset;
200 	if (lo->lo_sizelimit != sizelimit)
201 		lo->lo_sizelimit = sizelimit;
202 	set_capacity(lo->lo_disk, x);
203 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204 	/* let user-space know about the new size */
205 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206 	return 0;
207 }
208 
209 static inline int
210 lo_do_transfer(struct loop_device *lo, int cmd,
211 	       struct page *rpage, unsigned roffs,
212 	       struct page *lpage, unsigned loffs,
213 	       int size, sector_t rblock)
214 {
215 	if (unlikely(!lo->transfer))
216 		return 0;
217 
218 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
219 }
220 
221 /**
222  * __do_lo_send_write - helper for writing data to a loop device
223  *
224  * This helper just factors out common code between do_lo_send_direct_write()
225  * and do_lo_send_write().
226  */
227 static int __do_lo_send_write(struct file *file,
228 		u8 *buf, const int len, loff_t pos)
229 {
230 	ssize_t bw;
231 	mm_segment_t old_fs = get_fs();
232 
233 	file_start_write(file);
234 	set_fs(get_ds());
235 	bw = file->f_op->write(file, buf, len, &pos);
236 	set_fs(old_fs);
237 	file_end_write(file);
238 	if (likely(bw == len))
239 		return 0;
240 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
241 			(unsigned long long)pos, len);
242 	if (bw >= 0)
243 		bw = -EIO;
244 	return bw;
245 }
246 
247 /**
248  * do_lo_send_direct_write - helper for writing data to a loop device
249  *
250  * This is the fast, non-transforming version that does not need double
251  * buffering.
252  */
253 static int do_lo_send_direct_write(struct loop_device *lo,
254 		struct bio_vec *bvec, loff_t pos, struct page *page)
255 {
256 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
257 			kmap(bvec->bv_page) + bvec->bv_offset,
258 			bvec->bv_len, pos);
259 	kunmap(bvec->bv_page);
260 	cond_resched();
261 	return bw;
262 }
263 
264 /**
265  * do_lo_send_write - helper for writing data to a loop device
266  *
267  * This is the slow, transforming version that needs to double buffer the
268  * data as it cannot do the transformations in place without having direct
269  * access to the destination pages of the backing file.
270  */
271 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
272 		loff_t pos, struct page *page)
273 {
274 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
275 			bvec->bv_offset, bvec->bv_len, pos >> 9);
276 	if (likely(!ret))
277 		return __do_lo_send_write(lo->lo_backing_file,
278 				page_address(page), bvec->bv_len,
279 				pos);
280 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
281 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
282 	if (ret > 0)
283 		ret = -EIO;
284 	return ret;
285 }
286 
287 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
288 {
289 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
290 			struct page *page);
291 	struct bio_vec *bvec;
292 	struct page *page = NULL;
293 	int i, ret = 0;
294 
295 	if (lo->transfer != transfer_none) {
296 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
297 		if (unlikely(!page))
298 			goto fail;
299 		kmap(page);
300 		do_lo_send = do_lo_send_write;
301 	} else {
302 		do_lo_send = do_lo_send_direct_write;
303 	}
304 
305 	bio_for_each_segment(bvec, bio, i) {
306 		ret = do_lo_send(lo, bvec, pos, page);
307 		if (ret < 0)
308 			break;
309 		pos += bvec->bv_len;
310 	}
311 	if (page) {
312 		kunmap(page);
313 		__free_page(page);
314 	}
315 out:
316 	return ret;
317 fail:
318 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
319 	ret = -ENOMEM;
320 	goto out;
321 }
322 
323 struct lo_read_data {
324 	struct loop_device *lo;
325 	struct page *page;
326 	unsigned offset;
327 	int bsize;
328 };
329 
330 static int
331 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
332 		struct splice_desc *sd)
333 {
334 	struct lo_read_data *p = sd->u.data;
335 	struct loop_device *lo = p->lo;
336 	struct page *page = buf->page;
337 	sector_t IV;
338 	int size;
339 
340 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
341 							(buf->offset >> 9);
342 	size = sd->len;
343 	if (size > p->bsize)
344 		size = p->bsize;
345 
346 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
347 		printk(KERN_ERR "loop: transfer error block %ld\n",
348 		       page->index);
349 		size = -EINVAL;
350 	}
351 
352 	flush_dcache_page(p->page);
353 
354 	if (size > 0)
355 		p->offset += size;
356 
357 	return size;
358 }
359 
360 static int
361 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
362 {
363 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
364 }
365 
366 static ssize_t
367 do_lo_receive(struct loop_device *lo,
368 	      struct bio_vec *bvec, int bsize, loff_t pos)
369 {
370 	struct lo_read_data cookie;
371 	struct splice_desc sd;
372 	struct file *file;
373 	ssize_t retval;
374 
375 	cookie.lo = lo;
376 	cookie.page = bvec->bv_page;
377 	cookie.offset = bvec->bv_offset;
378 	cookie.bsize = bsize;
379 
380 	sd.len = 0;
381 	sd.total_len = bvec->bv_len;
382 	sd.flags = 0;
383 	sd.pos = pos;
384 	sd.u.data = &cookie;
385 
386 	file = lo->lo_backing_file;
387 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
388 
389 	return retval;
390 }
391 
392 static int
393 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
394 {
395 	struct bio_vec *bvec;
396 	ssize_t s;
397 	int i;
398 
399 	bio_for_each_segment(bvec, bio, i) {
400 		s = do_lo_receive(lo, bvec, bsize, pos);
401 		if (s < 0)
402 			return s;
403 
404 		if (s != bvec->bv_len) {
405 			zero_fill_bio(bio);
406 			break;
407 		}
408 		pos += bvec->bv_len;
409 	}
410 	return 0;
411 }
412 
413 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
414 {
415 	loff_t pos;
416 	int ret;
417 
418 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
419 
420 	if (bio_rw(bio) == WRITE) {
421 		struct file *file = lo->lo_backing_file;
422 
423 		if (bio->bi_rw & REQ_FLUSH) {
424 			ret = vfs_fsync(file, 0);
425 			if (unlikely(ret && ret != -EINVAL)) {
426 				ret = -EIO;
427 				goto out;
428 			}
429 		}
430 
431 		/*
432 		 * We use punch hole to reclaim the free space used by the
433 		 * image a.k.a. discard. However we do not support discard if
434 		 * encryption is enabled, because it may give an attacker
435 		 * useful information.
436 		 */
437 		if (bio->bi_rw & REQ_DISCARD) {
438 			struct file *file = lo->lo_backing_file;
439 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
440 
441 			if ((!file->f_op->fallocate) ||
442 			    lo->lo_encrypt_key_size) {
443 				ret = -EOPNOTSUPP;
444 				goto out;
445 			}
446 			ret = file->f_op->fallocate(file, mode, pos,
447 						    bio->bi_size);
448 			if (unlikely(ret && ret != -EINVAL &&
449 				     ret != -EOPNOTSUPP))
450 				ret = -EIO;
451 			goto out;
452 		}
453 
454 		ret = lo_send(lo, bio, pos);
455 
456 		if ((bio->bi_rw & REQ_FUA) && !ret) {
457 			ret = vfs_fsync(file, 0);
458 			if (unlikely(ret && ret != -EINVAL))
459 				ret = -EIO;
460 		}
461 	} else
462 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
463 
464 out:
465 	return ret;
466 }
467 
468 /*
469  * Add bio to back of pending list
470  */
471 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
472 {
473 	lo->lo_bio_count++;
474 	bio_list_add(&lo->lo_bio_list, bio);
475 }
476 
477 /*
478  * Grab first pending buffer
479  */
480 static struct bio *loop_get_bio(struct loop_device *lo)
481 {
482 	lo->lo_bio_count--;
483 	return bio_list_pop(&lo->lo_bio_list);
484 }
485 
486 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
487 {
488 	struct loop_device *lo = q->queuedata;
489 	int rw = bio_rw(old_bio);
490 
491 	if (rw == READA)
492 		rw = READ;
493 
494 	BUG_ON(!lo || (rw != READ && rw != WRITE));
495 
496 	spin_lock_irq(&lo->lo_lock);
497 	if (lo->lo_state != Lo_bound)
498 		goto out;
499 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
500 		goto out;
501 	if (lo->lo_bio_count >= q->nr_congestion_on)
502 		wait_event_lock_irq(lo->lo_req_wait,
503 				    lo->lo_bio_count < q->nr_congestion_off,
504 				    lo->lo_lock);
505 	loop_add_bio(lo, old_bio);
506 	wake_up(&lo->lo_event);
507 	spin_unlock_irq(&lo->lo_lock);
508 	return;
509 
510 out:
511 	spin_unlock_irq(&lo->lo_lock);
512 	bio_io_error(old_bio);
513 }
514 
515 struct switch_request {
516 	struct file *file;
517 	struct completion wait;
518 };
519 
520 static void do_loop_switch(struct loop_device *, struct switch_request *);
521 
522 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
523 {
524 	if (unlikely(!bio->bi_bdev)) {
525 		do_loop_switch(lo, bio->bi_private);
526 		bio_put(bio);
527 	} else {
528 		int ret = do_bio_filebacked(lo, bio);
529 		bio_endio(bio, ret);
530 	}
531 }
532 
533 /*
534  * worker thread that handles reads/writes to file backed loop devices,
535  * to avoid blocking in our make_request_fn. it also does loop decrypting
536  * on reads for block backed loop, as that is too heavy to do from
537  * b_end_io context where irqs may be disabled.
538  *
539  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
540  * calling kthread_stop().  Therefore once kthread_should_stop() is
541  * true, make_request will not place any more requests.  Therefore
542  * once kthread_should_stop() is true and lo_bio is NULL, we are
543  * done with the loop.
544  */
545 static int loop_thread(void *data)
546 {
547 	struct loop_device *lo = data;
548 	struct bio *bio;
549 
550 	set_user_nice(current, -20);
551 
552 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
553 
554 		wait_event_interruptible(lo->lo_event,
555 				!bio_list_empty(&lo->lo_bio_list) ||
556 				kthread_should_stop());
557 
558 		if (bio_list_empty(&lo->lo_bio_list))
559 			continue;
560 		spin_lock_irq(&lo->lo_lock);
561 		bio = loop_get_bio(lo);
562 		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
563 			wake_up(&lo->lo_req_wait);
564 		spin_unlock_irq(&lo->lo_lock);
565 
566 		BUG_ON(!bio);
567 		loop_handle_bio(lo, bio);
568 	}
569 
570 	return 0;
571 }
572 
573 /*
574  * loop_switch performs the hard work of switching a backing store.
575  * First it needs to flush existing IO, it does this by sending a magic
576  * BIO down the pipe. The completion of this BIO does the actual switch.
577  */
578 static int loop_switch(struct loop_device *lo, struct file *file)
579 {
580 	struct switch_request w;
581 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
582 	if (!bio)
583 		return -ENOMEM;
584 	init_completion(&w.wait);
585 	w.file = file;
586 	bio->bi_private = &w;
587 	bio->bi_bdev = NULL;
588 	loop_make_request(lo->lo_queue, bio);
589 	wait_for_completion(&w.wait);
590 	return 0;
591 }
592 
593 /*
594  * Helper to flush the IOs in loop, but keeping loop thread running
595  */
596 static int loop_flush(struct loop_device *lo)
597 {
598 	/* loop not yet configured, no running thread, nothing to flush */
599 	if (!lo->lo_thread)
600 		return 0;
601 
602 	return loop_switch(lo, NULL);
603 }
604 
605 /*
606  * Do the actual switch; called from the BIO completion routine
607  */
608 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
609 {
610 	struct file *file = p->file;
611 	struct file *old_file = lo->lo_backing_file;
612 	struct address_space *mapping;
613 
614 	/* if no new file, only flush of queued bios requested */
615 	if (!file)
616 		goto out;
617 
618 	mapping = file->f_mapping;
619 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
620 	lo->lo_backing_file = file;
621 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
622 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
623 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
624 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
625 out:
626 	complete(&p->wait);
627 }
628 
629 
630 /*
631  * loop_change_fd switched the backing store of a loopback device to
632  * a new file. This is useful for operating system installers to free up
633  * the original file and in High Availability environments to switch to
634  * an alternative location for the content in case of server meltdown.
635  * This can only work if the loop device is used read-only, and if the
636  * new backing store is the same size and type as the old backing store.
637  */
638 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
639 			  unsigned int arg)
640 {
641 	struct file	*file, *old_file;
642 	struct inode	*inode;
643 	int		error;
644 
645 	error = -ENXIO;
646 	if (lo->lo_state != Lo_bound)
647 		goto out;
648 
649 	/* the loop device has to be read-only */
650 	error = -EINVAL;
651 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
652 		goto out;
653 
654 	error = -EBADF;
655 	file = fget(arg);
656 	if (!file)
657 		goto out;
658 
659 	inode = file->f_mapping->host;
660 	old_file = lo->lo_backing_file;
661 
662 	error = -EINVAL;
663 
664 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
665 		goto out_putf;
666 
667 	/* size of the new backing store needs to be the same */
668 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
669 		goto out_putf;
670 
671 	/* and ... switch */
672 	error = loop_switch(lo, file);
673 	if (error)
674 		goto out_putf;
675 
676 	fput(old_file);
677 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
678 		ioctl_by_bdev(bdev, BLKRRPART, 0);
679 	return 0;
680 
681  out_putf:
682 	fput(file);
683  out:
684 	return error;
685 }
686 
687 static inline int is_loop_device(struct file *file)
688 {
689 	struct inode *i = file->f_mapping->host;
690 
691 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
692 }
693 
694 /* loop sysfs attributes */
695 
696 static ssize_t loop_attr_show(struct device *dev, char *page,
697 			      ssize_t (*callback)(struct loop_device *, char *))
698 {
699 	struct gendisk *disk = dev_to_disk(dev);
700 	struct loop_device *lo = disk->private_data;
701 
702 	return callback(lo, page);
703 }
704 
705 #define LOOP_ATTR_RO(_name)						\
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
707 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
708 				struct device_attribute *attr, char *b)	\
709 {									\
710 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
711 }									\
712 static struct device_attribute loop_attr_##_name =			\
713 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
714 
715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
716 {
717 	ssize_t ret;
718 	char *p = NULL;
719 
720 	spin_lock_irq(&lo->lo_lock);
721 	if (lo->lo_backing_file)
722 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
723 	spin_unlock_irq(&lo->lo_lock);
724 
725 	if (IS_ERR_OR_NULL(p))
726 		ret = PTR_ERR(p);
727 	else {
728 		ret = strlen(p);
729 		memmove(buf, p, ret);
730 		buf[ret++] = '\n';
731 		buf[ret] = 0;
732 	}
733 
734 	return ret;
735 }
736 
737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
738 {
739 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
740 }
741 
742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
743 {
744 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
745 }
746 
747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
748 {
749 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
750 
751 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
752 }
753 
754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
755 {
756 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
757 
758 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
759 }
760 
761 LOOP_ATTR_RO(backing_file);
762 LOOP_ATTR_RO(offset);
763 LOOP_ATTR_RO(sizelimit);
764 LOOP_ATTR_RO(autoclear);
765 LOOP_ATTR_RO(partscan);
766 
767 static struct attribute *loop_attrs[] = {
768 	&loop_attr_backing_file.attr,
769 	&loop_attr_offset.attr,
770 	&loop_attr_sizelimit.attr,
771 	&loop_attr_autoclear.attr,
772 	&loop_attr_partscan.attr,
773 	NULL,
774 };
775 
776 static struct attribute_group loop_attribute_group = {
777 	.name = "loop",
778 	.attrs= loop_attrs,
779 };
780 
781 static int loop_sysfs_init(struct loop_device *lo)
782 {
783 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
784 				  &loop_attribute_group);
785 }
786 
787 static void loop_sysfs_exit(struct loop_device *lo)
788 {
789 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
790 			   &loop_attribute_group);
791 }
792 
793 static void loop_config_discard(struct loop_device *lo)
794 {
795 	struct file *file = lo->lo_backing_file;
796 	struct inode *inode = file->f_mapping->host;
797 	struct request_queue *q = lo->lo_queue;
798 
799 	/*
800 	 * We use punch hole to reclaim the free space used by the
801 	 * image a.k.a. discard. However we do support discard if
802 	 * encryption is enabled, because it may give an attacker
803 	 * useful information.
804 	 */
805 	if ((!file->f_op->fallocate) ||
806 	    lo->lo_encrypt_key_size) {
807 		q->limits.discard_granularity = 0;
808 		q->limits.discard_alignment = 0;
809 		q->limits.max_discard_sectors = 0;
810 		q->limits.discard_zeroes_data = 0;
811 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
812 		return;
813 	}
814 
815 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
816 	q->limits.discard_alignment = 0;
817 	q->limits.max_discard_sectors = UINT_MAX >> 9;
818 	q->limits.discard_zeroes_data = 1;
819 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
820 }
821 
822 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
823 		       struct block_device *bdev, unsigned int arg)
824 {
825 	struct file	*file, *f;
826 	struct inode	*inode;
827 	struct address_space *mapping;
828 	unsigned lo_blocksize;
829 	int		lo_flags = 0;
830 	int		error;
831 	loff_t		size;
832 
833 	/* This is safe, since we have a reference from open(). */
834 	__module_get(THIS_MODULE);
835 
836 	error = -EBADF;
837 	file = fget(arg);
838 	if (!file)
839 		goto out;
840 
841 	error = -EBUSY;
842 	if (lo->lo_state != Lo_unbound)
843 		goto out_putf;
844 
845 	/* Avoid recursion */
846 	f = file;
847 	while (is_loop_device(f)) {
848 		struct loop_device *l;
849 
850 		if (f->f_mapping->host->i_bdev == bdev)
851 			goto out_putf;
852 
853 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
854 		if (l->lo_state == Lo_unbound) {
855 			error = -EINVAL;
856 			goto out_putf;
857 		}
858 		f = l->lo_backing_file;
859 	}
860 
861 	mapping = file->f_mapping;
862 	inode = mapping->host;
863 
864 	error = -EINVAL;
865 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
866 		goto out_putf;
867 
868 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
869 	    !file->f_op->write)
870 		lo_flags |= LO_FLAGS_READ_ONLY;
871 
872 	lo_blocksize = S_ISBLK(inode->i_mode) ?
873 		inode->i_bdev->bd_block_size : PAGE_SIZE;
874 
875 	error = -EFBIG;
876 	size = get_loop_size(lo, file);
877 	if ((loff_t)(sector_t)size != size)
878 		goto out_putf;
879 
880 	error = 0;
881 
882 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
883 
884 	lo->lo_blocksize = lo_blocksize;
885 	lo->lo_device = bdev;
886 	lo->lo_flags = lo_flags;
887 	lo->lo_backing_file = file;
888 	lo->transfer = transfer_none;
889 	lo->ioctl = NULL;
890 	lo->lo_sizelimit = 0;
891 	lo->lo_bio_count = 0;
892 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
893 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
894 
895 	bio_list_init(&lo->lo_bio_list);
896 
897 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
898 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
899 
900 	set_capacity(lo->lo_disk, size);
901 	bd_set_size(bdev, size << 9);
902 	loop_sysfs_init(lo);
903 	/* let user-space know about the new size */
904 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
905 
906 	set_blocksize(bdev, lo_blocksize);
907 
908 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
909 						lo->lo_number);
910 	if (IS_ERR(lo->lo_thread)) {
911 		error = PTR_ERR(lo->lo_thread);
912 		goto out_clr;
913 	}
914 	lo->lo_state = Lo_bound;
915 	wake_up_process(lo->lo_thread);
916 	if (part_shift)
917 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
918 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
919 		ioctl_by_bdev(bdev, BLKRRPART, 0);
920 
921 	/* Grab the block_device to prevent its destruction after we
922 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
923 	 */
924 	bdgrab(bdev);
925 	return 0;
926 
927 out_clr:
928 	loop_sysfs_exit(lo);
929 	lo->lo_thread = NULL;
930 	lo->lo_device = NULL;
931 	lo->lo_backing_file = NULL;
932 	lo->lo_flags = 0;
933 	set_capacity(lo->lo_disk, 0);
934 	invalidate_bdev(bdev);
935 	bd_set_size(bdev, 0);
936 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
937 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
938 	lo->lo_state = Lo_unbound;
939  out_putf:
940 	fput(file);
941  out:
942 	/* This is safe: open() is still holding a reference. */
943 	module_put(THIS_MODULE);
944 	return error;
945 }
946 
947 static int
948 loop_release_xfer(struct loop_device *lo)
949 {
950 	int err = 0;
951 	struct loop_func_table *xfer = lo->lo_encryption;
952 
953 	if (xfer) {
954 		if (xfer->release)
955 			err = xfer->release(lo);
956 		lo->transfer = NULL;
957 		lo->lo_encryption = NULL;
958 		module_put(xfer->owner);
959 	}
960 	return err;
961 }
962 
963 static int
964 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
965 	       const struct loop_info64 *i)
966 {
967 	int err = 0;
968 
969 	if (xfer) {
970 		struct module *owner = xfer->owner;
971 
972 		if (!try_module_get(owner))
973 			return -EINVAL;
974 		if (xfer->init)
975 			err = xfer->init(lo, i);
976 		if (err)
977 			module_put(owner);
978 		else
979 			lo->lo_encryption = xfer;
980 	}
981 	return err;
982 }
983 
984 static int loop_clr_fd(struct loop_device *lo)
985 {
986 	struct file *filp = lo->lo_backing_file;
987 	gfp_t gfp = lo->old_gfp_mask;
988 	struct block_device *bdev = lo->lo_device;
989 
990 	if (lo->lo_state != Lo_bound)
991 		return -ENXIO;
992 
993 	/*
994 	 * If we've explicitly asked to tear down the loop device,
995 	 * and it has an elevated reference count, set it for auto-teardown when
996 	 * the last reference goes away. This stops $!~#$@ udev from
997 	 * preventing teardown because it decided that it needs to run blkid on
998 	 * the loopback device whenever they appear. xfstests is notorious for
999 	 * failing tests because blkid via udev races with a losetup
1000 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1001 	 * command to fail with EBUSY.
1002 	 */
1003 	if (lo->lo_refcnt > 1) {
1004 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1005 		mutex_unlock(&lo->lo_ctl_mutex);
1006 		return 0;
1007 	}
1008 
1009 	if (filp == NULL)
1010 		return -EINVAL;
1011 
1012 	spin_lock_irq(&lo->lo_lock);
1013 	lo->lo_state = Lo_rundown;
1014 	spin_unlock_irq(&lo->lo_lock);
1015 
1016 	kthread_stop(lo->lo_thread);
1017 
1018 	spin_lock_irq(&lo->lo_lock);
1019 	lo->lo_backing_file = NULL;
1020 	spin_unlock_irq(&lo->lo_lock);
1021 
1022 	loop_release_xfer(lo);
1023 	lo->transfer = NULL;
1024 	lo->ioctl = NULL;
1025 	lo->lo_device = NULL;
1026 	lo->lo_encryption = NULL;
1027 	lo->lo_offset = 0;
1028 	lo->lo_sizelimit = 0;
1029 	lo->lo_encrypt_key_size = 0;
1030 	lo->lo_thread = NULL;
1031 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1032 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1033 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1034 	if (bdev) {
1035 		bdput(bdev);
1036 		invalidate_bdev(bdev);
1037 	}
1038 	set_capacity(lo->lo_disk, 0);
1039 	loop_sysfs_exit(lo);
1040 	if (bdev) {
1041 		bd_set_size(bdev, 0);
1042 		/* let user-space know about this change */
1043 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1044 	}
1045 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1046 	lo->lo_state = Lo_unbound;
1047 	/* This is safe: open() is still holding a reference. */
1048 	module_put(THIS_MODULE);
1049 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1050 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1051 	lo->lo_flags = 0;
1052 	if (!part_shift)
1053 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1054 	mutex_unlock(&lo->lo_ctl_mutex);
1055 	/*
1056 	 * Need not hold lo_ctl_mutex to fput backing file.
1057 	 * Calling fput holding lo_ctl_mutex triggers a circular
1058 	 * lock dependency possibility warning as fput can take
1059 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1060 	 */
1061 	fput(filp);
1062 	return 0;
1063 }
1064 
1065 static int
1066 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1067 {
1068 	int err;
1069 	struct loop_func_table *xfer;
1070 	kuid_t uid = current_uid();
1071 
1072 	if (lo->lo_encrypt_key_size &&
1073 	    !uid_eq(lo->lo_key_owner, uid) &&
1074 	    !capable(CAP_SYS_ADMIN))
1075 		return -EPERM;
1076 	if (lo->lo_state != Lo_bound)
1077 		return -ENXIO;
1078 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1079 		return -EINVAL;
1080 
1081 	err = loop_release_xfer(lo);
1082 	if (err)
1083 		return err;
1084 
1085 	if (info->lo_encrypt_type) {
1086 		unsigned int type = info->lo_encrypt_type;
1087 
1088 		if (type >= MAX_LO_CRYPT)
1089 			return -EINVAL;
1090 		xfer = xfer_funcs[type];
1091 		if (xfer == NULL)
1092 			return -EINVAL;
1093 	} else
1094 		xfer = NULL;
1095 
1096 	err = loop_init_xfer(lo, xfer, info);
1097 	if (err)
1098 		return err;
1099 
1100 	if (lo->lo_offset != info->lo_offset ||
1101 	    lo->lo_sizelimit != info->lo_sizelimit)
1102 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1103 			return -EFBIG;
1104 
1105 	loop_config_discard(lo);
1106 
1107 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1108 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1109 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1110 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1111 
1112 	if (!xfer)
1113 		xfer = &none_funcs;
1114 	lo->transfer = xfer->transfer;
1115 	lo->ioctl = xfer->ioctl;
1116 
1117 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1118 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1119 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1120 
1121 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1122 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1123 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1124 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1125 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1126 	}
1127 
1128 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1129 	lo->lo_init[0] = info->lo_init[0];
1130 	lo->lo_init[1] = info->lo_init[1];
1131 	if (info->lo_encrypt_key_size) {
1132 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1133 		       info->lo_encrypt_key_size);
1134 		lo->lo_key_owner = uid;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1142 {
1143 	struct file *file = lo->lo_backing_file;
1144 	struct kstat stat;
1145 	int error;
1146 
1147 	if (lo->lo_state != Lo_bound)
1148 		return -ENXIO;
1149 	error = vfs_getattr(&file->f_path, &stat);
1150 	if (error)
1151 		return error;
1152 	memset(info, 0, sizeof(*info));
1153 	info->lo_number = lo->lo_number;
1154 	info->lo_device = huge_encode_dev(stat.dev);
1155 	info->lo_inode = stat.ino;
1156 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1157 	info->lo_offset = lo->lo_offset;
1158 	info->lo_sizelimit = lo->lo_sizelimit;
1159 	info->lo_flags = lo->lo_flags;
1160 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1161 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1162 	info->lo_encrypt_type =
1163 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1164 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1165 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1166 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1167 		       lo->lo_encrypt_key_size);
1168 	}
1169 	return 0;
1170 }
1171 
1172 static void
1173 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1174 {
1175 	memset(info64, 0, sizeof(*info64));
1176 	info64->lo_number = info->lo_number;
1177 	info64->lo_device = info->lo_device;
1178 	info64->lo_inode = info->lo_inode;
1179 	info64->lo_rdevice = info->lo_rdevice;
1180 	info64->lo_offset = info->lo_offset;
1181 	info64->lo_sizelimit = 0;
1182 	info64->lo_encrypt_type = info->lo_encrypt_type;
1183 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1184 	info64->lo_flags = info->lo_flags;
1185 	info64->lo_init[0] = info->lo_init[0];
1186 	info64->lo_init[1] = info->lo_init[1];
1187 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1188 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1189 	else
1190 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1191 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1192 }
1193 
1194 static int
1195 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1196 {
1197 	memset(info, 0, sizeof(*info));
1198 	info->lo_number = info64->lo_number;
1199 	info->lo_device = info64->lo_device;
1200 	info->lo_inode = info64->lo_inode;
1201 	info->lo_rdevice = info64->lo_rdevice;
1202 	info->lo_offset = info64->lo_offset;
1203 	info->lo_encrypt_type = info64->lo_encrypt_type;
1204 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1205 	info->lo_flags = info64->lo_flags;
1206 	info->lo_init[0] = info64->lo_init[0];
1207 	info->lo_init[1] = info64->lo_init[1];
1208 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1209 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1210 	else
1211 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1212 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1213 
1214 	/* error in case values were truncated */
1215 	if (info->lo_device != info64->lo_device ||
1216 	    info->lo_rdevice != info64->lo_rdevice ||
1217 	    info->lo_inode != info64->lo_inode ||
1218 	    info->lo_offset != info64->lo_offset)
1219 		return -EOVERFLOW;
1220 
1221 	return 0;
1222 }
1223 
1224 static int
1225 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1226 {
1227 	struct loop_info info;
1228 	struct loop_info64 info64;
1229 
1230 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1231 		return -EFAULT;
1232 	loop_info64_from_old(&info, &info64);
1233 	return loop_set_status(lo, &info64);
1234 }
1235 
1236 static int
1237 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1238 {
1239 	struct loop_info64 info64;
1240 
1241 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1242 		return -EFAULT;
1243 	return loop_set_status(lo, &info64);
1244 }
1245 
1246 static int
1247 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1248 	struct loop_info info;
1249 	struct loop_info64 info64;
1250 	int err = 0;
1251 
1252 	if (!arg)
1253 		err = -EINVAL;
1254 	if (!err)
1255 		err = loop_get_status(lo, &info64);
1256 	if (!err)
1257 		err = loop_info64_to_old(&info64, &info);
1258 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1259 		err = -EFAULT;
1260 
1261 	return err;
1262 }
1263 
1264 static int
1265 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1266 	struct loop_info64 info64;
1267 	int err = 0;
1268 
1269 	if (!arg)
1270 		err = -EINVAL;
1271 	if (!err)
1272 		err = loop_get_status(lo, &info64);
1273 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1274 		err = -EFAULT;
1275 
1276 	return err;
1277 }
1278 
1279 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1280 {
1281 	if (unlikely(lo->lo_state != Lo_bound))
1282 		return -ENXIO;
1283 
1284 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1285 }
1286 
1287 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1288 	unsigned int cmd, unsigned long arg)
1289 {
1290 	struct loop_device *lo = bdev->bd_disk->private_data;
1291 	int err;
1292 
1293 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1294 	switch (cmd) {
1295 	case LOOP_SET_FD:
1296 		err = loop_set_fd(lo, mode, bdev, arg);
1297 		break;
1298 	case LOOP_CHANGE_FD:
1299 		err = loop_change_fd(lo, bdev, arg);
1300 		break;
1301 	case LOOP_CLR_FD:
1302 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1303 		err = loop_clr_fd(lo);
1304 		if (!err)
1305 			goto out_unlocked;
1306 		break;
1307 	case LOOP_SET_STATUS:
1308 		err = -EPERM;
1309 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1310 			err = loop_set_status_old(lo,
1311 					(struct loop_info __user *)arg);
1312 		break;
1313 	case LOOP_GET_STATUS:
1314 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1315 		break;
1316 	case LOOP_SET_STATUS64:
1317 		err = -EPERM;
1318 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1319 			err = loop_set_status64(lo,
1320 					(struct loop_info64 __user *) arg);
1321 		break;
1322 	case LOOP_GET_STATUS64:
1323 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1324 		break;
1325 	case LOOP_SET_CAPACITY:
1326 		err = -EPERM;
1327 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1328 			err = loop_set_capacity(lo, bdev);
1329 		break;
1330 	default:
1331 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1332 	}
1333 	mutex_unlock(&lo->lo_ctl_mutex);
1334 
1335 out_unlocked:
1336 	return err;
1337 }
1338 
1339 #ifdef CONFIG_COMPAT
1340 struct compat_loop_info {
1341 	compat_int_t	lo_number;      /* ioctl r/o */
1342 	compat_dev_t	lo_device;      /* ioctl r/o */
1343 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1344 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1345 	compat_int_t	lo_offset;
1346 	compat_int_t	lo_encrypt_type;
1347 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1348 	compat_int_t	lo_flags;       /* ioctl r/o */
1349 	char		lo_name[LO_NAME_SIZE];
1350 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1351 	compat_ulong_t	lo_init[2];
1352 	char		reserved[4];
1353 };
1354 
1355 /*
1356  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1357  * - noinlined to reduce stack space usage in main part of driver
1358  */
1359 static noinline int
1360 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1361 			struct loop_info64 *info64)
1362 {
1363 	struct compat_loop_info info;
1364 
1365 	if (copy_from_user(&info, arg, sizeof(info)))
1366 		return -EFAULT;
1367 
1368 	memset(info64, 0, sizeof(*info64));
1369 	info64->lo_number = info.lo_number;
1370 	info64->lo_device = info.lo_device;
1371 	info64->lo_inode = info.lo_inode;
1372 	info64->lo_rdevice = info.lo_rdevice;
1373 	info64->lo_offset = info.lo_offset;
1374 	info64->lo_sizelimit = 0;
1375 	info64->lo_encrypt_type = info.lo_encrypt_type;
1376 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1377 	info64->lo_flags = info.lo_flags;
1378 	info64->lo_init[0] = info.lo_init[0];
1379 	info64->lo_init[1] = info.lo_init[1];
1380 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1381 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1382 	else
1383 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1384 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1390  * - noinlined to reduce stack space usage in main part of driver
1391  */
1392 static noinline int
1393 loop_info64_to_compat(const struct loop_info64 *info64,
1394 		      struct compat_loop_info __user *arg)
1395 {
1396 	struct compat_loop_info info;
1397 
1398 	memset(&info, 0, sizeof(info));
1399 	info.lo_number = info64->lo_number;
1400 	info.lo_device = info64->lo_device;
1401 	info.lo_inode = info64->lo_inode;
1402 	info.lo_rdevice = info64->lo_rdevice;
1403 	info.lo_offset = info64->lo_offset;
1404 	info.lo_encrypt_type = info64->lo_encrypt_type;
1405 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1406 	info.lo_flags = info64->lo_flags;
1407 	info.lo_init[0] = info64->lo_init[0];
1408 	info.lo_init[1] = info64->lo_init[1];
1409 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1410 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1411 	else
1412 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1413 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1414 
1415 	/* error in case values were truncated */
1416 	if (info.lo_device != info64->lo_device ||
1417 	    info.lo_rdevice != info64->lo_rdevice ||
1418 	    info.lo_inode != info64->lo_inode ||
1419 	    info.lo_offset != info64->lo_offset ||
1420 	    info.lo_init[0] != info64->lo_init[0] ||
1421 	    info.lo_init[1] != info64->lo_init[1])
1422 		return -EOVERFLOW;
1423 
1424 	if (copy_to_user(arg, &info, sizeof(info)))
1425 		return -EFAULT;
1426 	return 0;
1427 }
1428 
1429 static int
1430 loop_set_status_compat(struct loop_device *lo,
1431 		       const struct compat_loop_info __user *arg)
1432 {
1433 	struct loop_info64 info64;
1434 	int ret;
1435 
1436 	ret = loop_info64_from_compat(arg, &info64);
1437 	if (ret < 0)
1438 		return ret;
1439 	return loop_set_status(lo, &info64);
1440 }
1441 
1442 static int
1443 loop_get_status_compat(struct loop_device *lo,
1444 		       struct compat_loop_info __user *arg)
1445 {
1446 	struct loop_info64 info64;
1447 	int err = 0;
1448 
1449 	if (!arg)
1450 		err = -EINVAL;
1451 	if (!err)
1452 		err = loop_get_status(lo, &info64);
1453 	if (!err)
1454 		err = loop_info64_to_compat(&info64, arg);
1455 	return err;
1456 }
1457 
1458 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1459 			   unsigned int cmd, unsigned long arg)
1460 {
1461 	struct loop_device *lo = bdev->bd_disk->private_data;
1462 	int err;
1463 
1464 	switch(cmd) {
1465 	case LOOP_SET_STATUS:
1466 		mutex_lock(&lo->lo_ctl_mutex);
1467 		err = loop_set_status_compat(
1468 			lo, (const struct compat_loop_info __user *) arg);
1469 		mutex_unlock(&lo->lo_ctl_mutex);
1470 		break;
1471 	case LOOP_GET_STATUS:
1472 		mutex_lock(&lo->lo_ctl_mutex);
1473 		err = loop_get_status_compat(
1474 			lo, (struct compat_loop_info __user *) arg);
1475 		mutex_unlock(&lo->lo_ctl_mutex);
1476 		break;
1477 	case LOOP_SET_CAPACITY:
1478 	case LOOP_CLR_FD:
1479 	case LOOP_GET_STATUS64:
1480 	case LOOP_SET_STATUS64:
1481 		arg = (unsigned long) compat_ptr(arg);
1482 	case LOOP_SET_FD:
1483 	case LOOP_CHANGE_FD:
1484 		err = lo_ioctl(bdev, mode, cmd, arg);
1485 		break;
1486 	default:
1487 		err = -ENOIOCTLCMD;
1488 		break;
1489 	}
1490 	return err;
1491 }
1492 #endif
1493 
1494 static int lo_open(struct block_device *bdev, fmode_t mode)
1495 {
1496 	struct loop_device *lo;
1497 	int err = 0;
1498 
1499 	mutex_lock(&loop_index_mutex);
1500 	lo = bdev->bd_disk->private_data;
1501 	if (!lo) {
1502 		err = -ENXIO;
1503 		goto out;
1504 	}
1505 
1506 	mutex_lock(&lo->lo_ctl_mutex);
1507 	lo->lo_refcnt++;
1508 	mutex_unlock(&lo->lo_ctl_mutex);
1509 out:
1510 	mutex_unlock(&loop_index_mutex);
1511 	return err;
1512 }
1513 
1514 static void lo_release(struct gendisk *disk, fmode_t mode)
1515 {
1516 	struct loop_device *lo = disk->private_data;
1517 	int err;
1518 
1519 	mutex_lock(&lo->lo_ctl_mutex);
1520 
1521 	if (--lo->lo_refcnt)
1522 		goto out;
1523 
1524 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1525 		/*
1526 		 * In autoclear mode, stop the loop thread
1527 		 * and remove configuration after last close.
1528 		 */
1529 		err = loop_clr_fd(lo);
1530 		if (!err)
1531 			return;
1532 	} else {
1533 		/*
1534 		 * Otherwise keep thread (if running) and config,
1535 		 * but flush possible ongoing bios in thread.
1536 		 */
1537 		loop_flush(lo);
1538 	}
1539 
1540 out:
1541 	mutex_unlock(&lo->lo_ctl_mutex);
1542 }
1543 
1544 static const struct block_device_operations lo_fops = {
1545 	.owner =	THIS_MODULE,
1546 	.open =		lo_open,
1547 	.release =	lo_release,
1548 	.ioctl =	lo_ioctl,
1549 #ifdef CONFIG_COMPAT
1550 	.compat_ioctl =	lo_compat_ioctl,
1551 #endif
1552 };
1553 
1554 /*
1555  * And now the modules code and kernel interface.
1556  */
1557 static int max_loop;
1558 module_param(max_loop, int, S_IRUGO);
1559 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1560 module_param(max_part, int, S_IRUGO);
1561 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1562 MODULE_LICENSE("GPL");
1563 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1564 
1565 int loop_register_transfer(struct loop_func_table *funcs)
1566 {
1567 	unsigned int n = funcs->number;
1568 
1569 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1570 		return -EINVAL;
1571 	xfer_funcs[n] = funcs;
1572 	return 0;
1573 }
1574 
1575 static int unregister_transfer_cb(int id, void *ptr, void *data)
1576 {
1577 	struct loop_device *lo = ptr;
1578 	struct loop_func_table *xfer = data;
1579 
1580 	mutex_lock(&lo->lo_ctl_mutex);
1581 	if (lo->lo_encryption == xfer)
1582 		loop_release_xfer(lo);
1583 	mutex_unlock(&lo->lo_ctl_mutex);
1584 	return 0;
1585 }
1586 
1587 int loop_unregister_transfer(int number)
1588 {
1589 	unsigned int n = number;
1590 	struct loop_func_table *xfer;
1591 
1592 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1593 		return -EINVAL;
1594 
1595 	xfer_funcs[n] = NULL;
1596 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1597 	return 0;
1598 }
1599 
1600 EXPORT_SYMBOL(loop_register_transfer);
1601 EXPORT_SYMBOL(loop_unregister_transfer);
1602 
1603 static int loop_add(struct loop_device **l, int i)
1604 {
1605 	struct loop_device *lo;
1606 	struct gendisk *disk;
1607 	int err;
1608 
1609 	err = -ENOMEM;
1610 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1611 	if (!lo)
1612 		goto out;
1613 
1614 	lo->lo_state = Lo_unbound;
1615 
1616 	/* allocate id, if @id >= 0, we're requesting that specific id */
1617 	if (i >= 0) {
1618 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1619 		if (err == -ENOSPC)
1620 			err = -EEXIST;
1621 	} else {
1622 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1623 	}
1624 	if (err < 0)
1625 		goto out_free_dev;
1626 	i = err;
1627 
1628 	err = -ENOMEM;
1629 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1630 	if (!lo->lo_queue)
1631 		goto out_free_idr;
1632 
1633 	/*
1634 	 * set queue make_request_fn
1635 	 */
1636 	blk_queue_make_request(lo->lo_queue, loop_make_request);
1637 	lo->lo_queue->queuedata = lo;
1638 
1639 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1640 	if (!disk)
1641 		goto out_free_queue;
1642 
1643 	/*
1644 	 * Disable partition scanning by default. The in-kernel partition
1645 	 * scanning can be requested individually per-device during its
1646 	 * setup. Userspace can always add and remove partitions from all
1647 	 * devices. The needed partition minors are allocated from the
1648 	 * extended minor space, the main loop device numbers will continue
1649 	 * to match the loop minors, regardless of the number of partitions
1650 	 * used.
1651 	 *
1652 	 * If max_part is given, partition scanning is globally enabled for
1653 	 * all loop devices. The minors for the main loop devices will be
1654 	 * multiples of max_part.
1655 	 *
1656 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1657 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1658 	 * complicated, are too static, inflexible and may surprise
1659 	 * userspace tools. Parameters like this in general should be avoided.
1660 	 */
1661 	if (!part_shift)
1662 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1663 	disk->flags |= GENHD_FL_EXT_DEVT;
1664 	mutex_init(&lo->lo_ctl_mutex);
1665 	lo->lo_number		= i;
1666 	lo->lo_thread		= NULL;
1667 	init_waitqueue_head(&lo->lo_event);
1668 	init_waitqueue_head(&lo->lo_req_wait);
1669 	spin_lock_init(&lo->lo_lock);
1670 	disk->major		= LOOP_MAJOR;
1671 	disk->first_minor	= i << part_shift;
1672 	disk->fops		= &lo_fops;
1673 	disk->private_data	= lo;
1674 	disk->queue		= lo->lo_queue;
1675 	sprintf(disk->disk_name, "loop%d", i);
1676 	add_disk(disk);
1677 	*l = lo;
1678 	return lo->lo_number;
1679 
1680 out_free_queue:
1681 	blk_cleanup_queue(lo->lo_queue);
1682 out_free_idr:
1683 	idr_remove(&loop_index_idr, i);
1684 out_free_dev:
1685 	kfree(lo);
1686 out:
1687 	return err;
1688 }
1689 
1690 static void loop_remove(struct loop_device *lo)
1691 {
1692 	del_gendisk(lo->lo_disk);
1693 	blk_cleanup_queue(lo->lo_queue);
1694 	put_disk(lo->lo_disk);
1695 	kfree(lo);
1696 }
1697 
1698 static int find_free_cb(int id, void *ptr, void *data)
1699 {
1700 	struct loop_device *lo = ptr;
1701 	struct loop_device **l = data;
1702 
1703 	if (lo->lo_state == Lo_unbound) {
1704 		*l = lo;
1705 		return 1;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static int loop_lookup(struct loop_device **l, int i)
1711 {
1712 	struct loop_device *lo;
1713 	int ret = -ENODEV;
1714 
1715 	if (i < 0) {
1716 		int err;
1717 
1718 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1719 		if (err == 1) {
1720 			*l = lo;
1721 			ret = lo->lo_number;
1722 		}
1723 		goto out;
1724 	}
1725 
1726 	/* lookup and return a specific i */
1727 	lo = idr_find(&loop_index_idr, i);
1728 	if (lo) {
1729 		*l = lo;
1730 		ret = lo->lo_number;
1731 	}
1732 out:
1733 	return ret;
1734 }
1735 
1736 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1737 {
1738 	struct loop_device *lo;
1739 	struct kobject *kobj;
1740 	int err;
1741 
1742 	mutex_lock(&loop_index_mutex);
1743 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1744 	if (err < 0)
1745 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1746 	if (err < 0)
1747 		kobj = NULL;
1748 	else
1749 		kobj = get_disk(lo->lo_disk);
1750 	mutex_unlock(&loop_index_mutex);
1751 
1752 	*part = 0;
1753 	return kobj;
1754 }
1755 
1756 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1757 			       unsigned long parm)
1758 {
1759 	struct loop_device *lo;
1760 	int ret = -ENOSYS;
1761 
1762 	mutex_lock(&loop_index_mutex);
1763 	switch (cmd) {
1764 	case LOOP_CTL_ADD:
1765 		ret = loop_lookup(&lo, parm);
1766 		if (ret >= 0) {
1767 			ret = -EEXIST;
1768 			break;
1769 		}
1770 		ret = loop_add(&lo, parm);
1771 		break;
1772 	case LOOP_CTL_REMOVE:
1773 		ret = loop_lookup(&lo, parm);
1774 		if (ret < 0)
1775 			break;
1776 		mutex_lock(&lo->lo_ctl_mutex);
1777 		if (lo->lo_state != Lo_unbound) {
1778 			ret = -EBUSY;
1779 			mutex_unlock(&lo->lo_ctl_mutex);
1780 			break;
1781 		}
1782 		if (lo->lo_refcnt > 0) {
1783 			ret = -EBUSY;
1784 			mutex_unlock(&lo->lo_ctl_mutex);
1785 			break;
1786 		}
1787 		lo->lo_disk->private_data = NULL;
1788 		mutex_unlock(&lo->lo_ctl_mutex);
1789 		idr_remove(&loop_index_idr, lo->lo_number);
1790 		loop_remove(lo);
1791 		break;
1792 	case LOOP_CTL_GET_FREE:
1793 		ret = loop_lookup(&lo, -1);
1794 		if (ret >= 0)
1795 			break;
1796 		ret = loop_add(&lo, -1);
1797 	}
1798 	mutex_unlock(&loop_index_mutex);
1799 
1800 	return ret;
1801 }
1802 
1803 static const struct file_operations loop_ctl_fops = {
1804 	.open		= nonseekable_open,
1805 	.unlocked_ioctl	= loop_control_ioctl,
1806 	.compat_ioctl	= loop_control_ioctl,
1807 	.owner		= THIS_MODULE,
1808 	.llseek		= noop_llseek,
1809 };
1810 
1811 static struct miscdevice loop_misc = {
1812 	.minor		= LOOP_CTRL_MINOR,
1813 	.name		= "loop-control",
1814 	.fops		= &loop_ctl_fops,
1815 };
1816 
1817 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1818 MODULE_ALIAS("devname:loop-control");
1819 
1820 static int __init loop_init(void)
1821 {
1822 	int i, nr;
1823 	unsigned long range;
1824 	struct loop_device *lo;
1825 	int err;
1826 
1827 	err = misc_register(&loop_misc);
1828 	if (err < 0)
1829 		return err;
1830 
1831 	part_shift = 0;
1832 	if (max_part > 0) {
1833 		part_shift = fls(max_part);
1834 
1835 		/*
1836 		 * Adjust max_part according to part_shift as it is exported
1837 		 * to user space so that user can decide correct minor number
1838 		 * if [s]he want to create more devices.
1839 		 *
1840 		 * Note that -1 is required because partition 0 is reserved
1841 		 * for the whole disk.
1842 		 */
1843 		max_part = (1UL << part_shift) - 1;
1844 	}
1845 
1846 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1847 		err = -EINVAL;
1848 		goto misc_out;
1849 	}
1850 
1851 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1852 		err = -EINVAL;
1853 		goto misc_out;
1854 	}
1855 
1856 	/*
1857 	 * If max_loop is specified, create that many devices upfront.
1858 	 * This also becomes a hard limit. If max_loop is not specified,
1859 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1860 	 * init time. Loop devices can be requested on-demand with the
1861 	 * /dev/loop-control interface, or be instantiated by accessing
1862 	 * a 'dead' device node.
1863 	 */
1864 	if (max_loop) {
1865 		nr = max_loop;
1866 		range = max_loop << part_shift;
1867 	} else {
1868 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1869 		range = 1UL << MINORBITS;
1870 	}
1871 
1872 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1873 		err = -EIO;
1874 		goto misc_out;
1875 	}
1876 
1877 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1878 				  THIS_MODULE, loop_probe, NULL, NULL);
1879 
1880 	/* pre-create number of devices given by config or max_loop */
1881 	mutex_lock(&loop_index_mutex);
1882 	for (i = 0; i < nr; i++)
1883 		loop_add(&lo, i);
1884 	mutex_unlock(&loop_index_mutex);
1885 
1886 	printk(KERN_INFO "loop: module loaded\n");
1887 	return 0;
1888 
1889 misc_out:
1890 	misc_deregister(&loop_misc);
1891 	return err;
1892 }
1893 
1894 static int loop_exit_cb(int id, void *ptr, void *data)
1895 {
1896 	struct loop_device *lo = ptr;
1897 
1898 	loop_remove(lo);
1899 	return 0;
1900 }
1901 
1902 static void __exit loop_exit(void)
1903 {
1904 	unsigned long range;
1905 
1906 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1907 
1908 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1909 	idr_destroy(&loop_index_idr);
1910 
1911 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1912 	unregister_blkdev(LOOP_MAJOR, "loop");
1913 
1914 	misc_deregister(&loop_misc);
1915 }
1916 
1917 module_init(loop_init);
1918 module_exit(loop_exit);
1919 
1920 #ifndef MODULE
1921 static int __init max_loop_setup(char *str)
1922 {
1923 	max_loop = simple_strtol(str, NULL, 0);
1924 	return 1;
1925 }
1926 
1927 __setup("max_loop=", max_loop_setup);
1928 #endif
1929