xref: /linux/drivers/ata/sata_mv.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
72 
73 #define DRV_NAME	"sata_mv"
74 #define DRV_VERSION	"1.28"
75 
76 /*
77  * module options
78  */
79 
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
85 
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 		 "IRQ coalescing I/O count threshold (0..255)");
90 
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 		 "IRQ coalescing time threshold in usecs");
95 
96 enum {
97 	/* BAR's are enumerated in terms of pci_resource_start() terms */
98 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
99 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
100 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
101 
102 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
103 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
104 
105 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
107 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
108 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
109 
110 	MV_PCI_REG_BASE		= 0,
111 
112 	/*
113 	 * Per-chip ("all ports") interrupt coalescing feature.
114 	 * This is only for GEN_II / GEN_IIE hardware.
115 	 *
116 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
118 	 */
119 	COAL_REG_BASE		= 0x18000,
120 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
121 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
122 
123 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
124 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
125 
126 	/*
127 	 * Registers for the (unused here) transaction coalescing feature:
128 	 */
129 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
130 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
131 
132 	SATAHC0_REG_BASE	= 0x20000,
133 	FLASH_CTL		= 0x1046c,
134 	GPIO_PORT_CTL		= 0x104f0,
135 	RESET_CFG		= 0x180d8,
136 
137 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
138 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
139 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
140 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
141 
142 	MV_MAX_Q_DEPTH		= 32,
143 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
144 
145 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 	 * CRPB needs alignment on a 256B boundary. Size == 256B
147 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
148 	 */
149 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
150 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
151 	MV_MAX_SG_CT		= 256,
152 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
153 
154 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 	MV_PORT_HC_SHIFT	= 2,
156 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
157 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
159 
160 	/* Host Flags */
161 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
162 
163 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
164 				  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
165 
166 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
167 
168 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
169 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
170 
171 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
172 
173 	CRQB_FLAG_READ		= (1 << 0),
174 	CRQB_TAG_SHIFT		= 1,
175 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
176 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
177 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
178 	CRQB_CMD_ADDR_SHIFT	= 8,
179 	CRQB_CMD_CS		= (0x2 << 11),
180 	CRQB_CMD_LAST		= (1 << 15),
181 
182 	CRPB_FLAG_STATUS_SHIFT	= 8,
183 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
184 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
185 
186 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
187 
188 	/* PCI interface registers */
189 
190 	MV_PCI_COMMAND		= 0xc00,
191 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
192 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
193 
194 	PCI_MAIN_CMD_STS	= 0xd30,
195 	STOP_PCI_MASTER		= (1 << 2),
196 	PCI_MASTER_EMPTY	= (1 << 3),
197 	GLOB_SFT_RST		= (1 << 4),
198 
199 	MV_PCI_MODE		= 0xd00,
200 	MV_PCI_MODE_MASK	= 0x30,
201 
202 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
203 	MV_PCI_DISC_TIMER	= 0xd04,
204 	MV_PCI_MSI_TRIGGER	= 0xc38,
205 	MV_PCI_SERR_MASK	= 0xc28,
206 	MV_PCI_XBAR_TMOUT	= 0x1d04,
207 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
208 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
209 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
210 	MV_PCI_ERR_COMMAND	= 0x1d50,
211 
212 	PCI_IRQ_CAUSE		= 0x1d58,
213 	PCI_IRQ_MASK		= 0x1d5c,
214 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
215 
216 	PCIE_IRQ_CAUSE		= 0x1900,
217 	PCIE_IRQ_MASK		= 0x1910,
218 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
219 
220 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
221 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
222 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
223 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
224 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
225 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
226 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
227 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
228 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
229 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
230 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
231 	PCI_ERR			= (1 << 18),
232 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
233 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
234 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
235 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
236 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
237 	GPIO_INT		= (1 << 22),
238 	SELF_INT		= (1 << 23),
239 	TWSI_INT		= (1 << 24),
240 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
241 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
242 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
243 
244 	/* SATAHC registers */
245 	HC_CFG			= 0x00,
246 
247 	HC_IRQ_CAUSE		= 0x14,
248 	DMA_IRQ			= (1 << 0),	/* shift by port # */
249 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
250 	DEV_IRQ			= (1 << 8),	/* shift by port # */
251 
252 	/*
253 	 * Per-HC (Host-Controller) interrupt coalescing feature.
254 	 * This is present on all chip generations.
255 	 *
256 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
257 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
258 	 */
259 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
260 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
261 
262 	SOC_LED_CTRL		= 0x2c,
263 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
264 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
265 						/*  with dev activity LED */
266 
267 	/* Shadow block registers */
268 	SHD_BLK			= 0x100,
269 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
270 
271 	/* SATA registers */
272 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
273 	SATA_ACTIVE		= 0x350,
274 	FIS_IRQ_CAUSE		= 0x364,
275 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
276 
277 	LTMODE			= 0x30c,	/* requires read-after-write */
278 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
279 
280 	PHY_MODE2		= 0x330,
281 	PHY_MODE3		= 0x310,
282 
283 	PHY_MODE4		= 0x314,	/* requires read-after-write */
284 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
285 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
286 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
287 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
288 
289 	SATA_IFCTL		= 0x344,
290 	SATA_TESTCTL		= 0x348,
291 	SATA_IFSTAT		= 0x34c,
292 	VENDOR_UNIQUE_FIS	= 0x35c,
293 
294 	FISCFG			= 0x360,
295 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
296 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
297 
298 	PHY_MODE9_GEN2		= 0x398,
299 	PHY_MODE9_GEN1		= 0x39c,
300 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
301 
302 	MV5_PHY_MODE		= 0x74,
303 	MV5_LTMODE		= 0x30,
304 	MV5_PHY_CTL		= 0x0C,
305 	SATA_IFCFG		= 0x050,
306 
307 	MV_M2_PREAMP_MASK	= 0x7e0,
308 
309 	/* Port registers */
310 	EDMA_CFG		= 0,
311 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
312 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
313 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
314 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
315 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
316 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
317 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
318 
319 	EDMA_ERR_IRQ_CAUSE	= 0x8,
320 	EDMA_ERR_IRQ_MASK	= 0xc,
321 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
322 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
323 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
324 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
325 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
326 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
327 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
328 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
329 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
330 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
331 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
332 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
333 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
334 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
335 
336 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
337 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
338 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
339 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
340 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
341 
342 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
343 
344 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
345 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
346 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
347 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
348 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
349 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
350 
351 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
352 
353 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
354 	EDMA_ERR_OVERRUN_5	= (1 << 5),
355 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
356 
357 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
358 				  EDMA_ERR_LNK_CTRL_RX_1 |
359 				  EDMA_ERR_LNK_CTRL_RX_3 |
360 				  EDMA_ERR_LNK_CTRL_TX,
361 
362 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
363 				  EDMA_ERR_PRD_PAR |
364 				  EDMA_ERR_DEV_DCON |
365 				  EDMA_ERR_DEV_CON |
366 				  EDMA_ERR_SERR |
367 				  EDMA_ERR_SELF_DIS |
368 				  EDMA_ERR_CRQB_PAR |
369 				  EDMA_ERR_CRPB_PAR |
370 				  EDMA_ERR_INTRL_PAR |
371 				  EDMA_ERR_IORDY |
372 				  EDMA_ERR_LNK_CTRL_RX_2 |
373 				  EDMA_ERR_LNK_DATA_RX |
374 				  EDMA_ERR_LNK_DATA_TX |
375 				  EDMA_ERR_TRANS_PROTO,
376 
377 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
378 				  EDMA_ERR_PRD_PAR |
379 				  EDMA_ERR_DEV_DCON |
380 				  EDMA_ERR_DEV_CON |
381 				  EDMA_ERR_OVERRUN_5 |
382 				  EDMA_ERR_UNDERRUN_5 |
383 				  EDMA_ERR_SELF_DIS_5 |
384 				  EDMA_ERR_CRQB_PAR |
385 				  EDMA_ERR_CRPB_PAR |
386 				  EDMA_ERR_INTRL_PAR |
387 				  EDMA_ERR_IORDY,
388 
389 	EDMA_REQ_Q_BASE_HI	= 0x10,
390 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
391 
392 	EDMA_REQ_Q_OUT_PTR	= 0x18,
393 	EDMA_REQ_Q_PTR_SHIFT	= 5,
394 
395 	EDMA_RSP_Q_BASE_HI	= 0x1c,
396 	EDMA_RSP_Q_IN_PTR	= 0x20,
397 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
398 	EDMA_RSP_Q_PTR_SHIFT	= 3,
399 
400 	EDMA_CMD		= 0x28,		/* EDMA command register */
401 	EDMA_EN			= (1 << 0),	/* enable EDMA */
402 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
403 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
404 
405 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
406 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
407 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
408 
409 	EDMA_IORDY_TMOUT	= 0x34,
410 	EDMA_ARB_CFG		= 0x38,
411 
412 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
413 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
414 
415 	BMDMA_CMD		= 0x224,	/* bmdma command register */
416 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
417 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
418 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
419 
420 	/* Host private flags (hp_flags) */
421 	MV_HP_FLAG_MSI		= (1 << 0),
422 	MV_HP_ERRATA_50XXB0	= (1 << 1),
423 	MV_HP_ERRATA_50XXB2	= (1 << 2),
424 	MV_HP_ERRATA_60X1B2	= (1 << 3),
425 	MV_HP_ERRATA_60X1C0	= (1 << 4),
426 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
427 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
428 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
429 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
430 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
431 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
432 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
433 
434 	/* Port private flags (pp_flags) */
435 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
436 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
437 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
438 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
439 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
440 };
441 
442 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
443 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
444 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
445 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
446 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
447 
448 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
449 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
450 
451 enum {
452 	/* DMA boundary 0xffff is required by the s/g splitting
453 	 * we need on /length/ in mv_fill-sg().
454 	 */
455 	MV_DMA_BOUNDARY		= 0xffffU,
456 
457 	/* mask of register bits containing lower 32 bits
458 	 * of EDMA request queue DMA address
459 	 */
460 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
461 
462 	/* ditto, for response queue */
463 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
464 };
465 
466 enum chip_type {
467 	chip_504x,
468 	chip_508x,
469 	chip_5080,
470 	chip_604x,
471 	chip_608x,
472 	chip_6042,
473 	chip_7042,
474 	chip_soc,
475 };
476 
477 /* Command ReQuest Block: 32B */
478 struct mv_crqb {
479 	__le32			sg_addr;
480 	__le32			sg_addr_hi;
481 	__le16			ctrl_flags;
482 	__le16			ata_cmd[11];
483 };
484 
485 struct mv_crqb_iie {
486 	__le32			addr;
487 	__le32			addr_hi;
488 	__le32			flags;
489 	__le32			len;
490 	__le32			ata_cmd[4];
491 };
492 
493 /* Command ResPonse Block: 8B */
494 struct mv_crpb {
495 	__le16			id;
496 	__le16			flags;
497 	__le32			tmstmp;
498 };
499 
500 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
501 struct mv_sg {
502 	__le32			addr;
503 	__le32			flags_size;
504 	__le32			addr_hi;
505 	__le32			reserved;
506 };
507 
508 /*
509  * We keep a local cache of a few frequently accessed port
510  * registers here, to avoid having to read them (very slow)
511  * when switching between EDMA and non-EDMA modes.
512  */
513 struct mv_cached_regs {
514 	u32			fiscfg;
515 	u32			ltmode;
516 	u32			haltcond;
517 	u32			unknown_rsvd;
518 };
519 
520 struct mv_port_priv {
521 	struct mv_crqb		*crqb;
522 	dma_addr_t		crqb_dma;
523 	struct mv_crpb		*crpb;
524 	dma_addr_t		crpb_dma;
525 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
526 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
527 
528 	unsigned int		req_idx;
529 	unsigned int		resp_idx;
530 
531 	u32			pp_flags;
532 	struct mv_cached_regs	cached;
533 	unsigned int		delayed_eh_pmp_map;
534 };
535 
536 struct mv_port_signal {
537 	u32			amps;
538 	u32			pre;
539 };
540 
541 struct mv_host_priv {
542 	u32			hp_flags;
543 	unsigned int 		board_idx;
544 	u32			main_irq_mask;
545 	struct mv_port_signal	signal[8];
546 	const struct mv_hw_ops	*ops;
547 	int			n_ports;
548 	void __iomem		*base;
549 	void __iomem		*main_irq_cause_addr;
550 	void __iomem		*main_irq_mask_addr;
551 	u32			irq_cause_offset;
552 	u32			irq_mask_offset;
553 	u32			unmask_all_irqs;
554 
555 #if defined(CONFIG_HAVE_CLK)
556 	struct clk		*clk;
557 #endif
558 	/*
559 	 * These consistent DMA memory pools give us guaranteed
560 	 * alignment for hardware-accessed data structures,
561 	 * and less memory waste in accomplishing the alignment.
562 	 */
563 	struct dma_pool		*crqb_pool;
564 	struct dma_pool		*crpb_pool;
565 	struct dma_pool		*sg_tbl_pool;
566 };
567 
568 struct mv_hw_ops {
569 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
570 			   unsigned int port);
571 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
572 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
573 			   void __iomem *mmio);
574 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
575 			unsigned int n_hc);
576 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
577 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
578 };
579 
580 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
582 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv_port_start(struct ata_port *ap);
585 static void mv_port_stop(struct ata_port *ap);
586 static int mv_qc_defer(struct ata_queued_cmd *qc);
587 static void mv_qc_prep(struct ata_queued_cmd *qc);
588 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
590 static int mv_hardreset(struct ata_link *link, unsigned int *class,
591 			unsigned long deadline);
592 static void mv_eh_freeze(struct ata_port *ap);
593 static void mv_eh_thaw(struct ata_port *ap);
594 static void mv6_dev_config(struct ata_device *dev);
595 
596 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
597 			   unsigned int port);
598 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
599 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
600 			   void __iomem *mmio);
601 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
602 			unsigned int n_hc);
603 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
604 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
605 
606 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
607 			   unsigned int port);
608 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
609 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
610 			   void __iomem *mmio);
611 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
612 			unsigned int n_hc);
613 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
614 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
615 				      void __iomem *mmio);
616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
617 				      void __iomem *mmio);
618 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
619 				  void __iomem *mmio, unsigned int n_hc);
620 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
621 				      void __iomem *mmio);
622 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
623 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
624 				  void __iomem *mmio, unsigned int port);
625 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
626 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
627 			     unsigned int port_no);
628 static int mv_stop_edma(struct ata_port *ap);
629 static int mv_stop_edma_engine(void __iomem *port_mmio);
630 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
631 
632 static void mv_pmp_select(struct ata_port *ap, int pmp);
633 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
634 				unsigned long deadline);
635 static int  mv_softreset(struct ata_link *link, unsigned int *class,
636 				unsigned long deadline);
637 static void mv_pmp_error_handler(struct ata_port *ap);
638 static void mv_process_crpb_entries(struct ata_port *ap,
639 					struct mv_port_priv *pp);
640 
641 static void mv_sff_irq_clear(struct ata_port *ap);
642 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
643 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
644 static void mv_bmdma_start(struct ata_queued_cmd *qc);
645 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
646 static u8   mv_bmdma_status(struct ata_port *ap);
647 static u8 mv_sff_check_status(struct ata_port *ap);
648 
649 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
650  * because we have to allow room for worst case splitting of
651  * PRDs for 64K boundaries in mv_fill_sg().
652  */
653 static struct scsi_host_template mv5_sht = {
654 	ATA_BASE_SHT(DRV_NAME),
655 	.sg_tablesize		= MV_MAX_SG_CT / 2,
656 	.dma_boundary		= MV_DMA_BOUNDARY,
657 };
658 
659 static struct scsi_host_template mv6_sht = {
660 	ATA_NCQ_SHT(DRV_NAME),
661 	.can_queue		= MV_MAX_Q_DEPTH - 1,
662 	.sg_tablesize		= MV_MAX_SG_CT / 2,
663 	.dma_boundary		= MV_DMA_BOUNDARY,
664 };
665 
666 static struct ata_port_operations mv5_ops = {
667 	.inherits		= &ata_sff_port_ops,
668 
669 	.lost_interrupt		= ATA_OP_NULL,
670 
671 	.qc_defer		= mv_qc_defer,
672 	.qc_prep		= mv_qc_prep,
673 	.qc_issue		= mv_qc_issue,
674 
675 	.freeze			= mv_eh_freeze,
676 	.thaw			= mv_eh_thaw,
677 	.hardreset		= mv_hardreset,
678 
679 	.scr_read		= mv5_scr_read,
680 	.scr_write		= mv5_scr_write,
681 
682 	.port_start		= mv_port_start,
683 	.port_stop		= mv_port_stop,
684 };
685 
686 static struct ata_port_operations mv6_ops = {
687 	.inherits		= &ata_bmdma_port_ops,
688 
689 	.lost_interrupt		= ATA_OP_NULL,
690 
691 	.qc_defer		= mv_qc_defer,
692 	.qc_prep		= mv_qc_prep,
693 	.qc_issue		= mv_qc_issue,
694 
695 	.dev_config             = mv6_dev_config,
696 
697 	.freeze			= mv_eh_freeze,
698 	.thaw			= mv_eh_thaw,
699 	.hardreset		= mv_hardreset,
700 	.softreset		= mv_softreset,
701 	.pmp_hardreset		= mv_pmp_hardreset,
702 	.pmp_softreset		= mv_softreset,
703 	.error_handler		= mv_pmp_error_handler,
704 
705 	.scr_read		= mv_scr_read,
706 	.scr_write		= mv_scr_write,
707 
708 	.sff_check_status	= mv_sff_check_status,
709 	.sff_irq_clear		= mv_sff_irq_clear,
710 	.check_atapi_dma	= mv_check_atapi_dma,
711 	.bmdma_setup		= mv_bmdma_setup,
712 	.bmdma_start		= mv_bmdma_start,
713 	.bmdma_stop		= mv_bmdma_stop,
714 	.bmdma_status		= mv_bmdma_status,
715 
716 	.port_start		= mv_port_start,
717 	.port_stop		= mv_port_stop,
718 };
719 
720 static struct ata_port_operations mv_iie_ops = {
721 	.inherits		= &mv6_ops,
722 	.dev_config		= ATA_OP_NULL,
723 	.qc_prep		= mv_qc_prep_iie,
724 };
725 
726 static const struct ata_port_info mv_port_info[] = {
727 	{  /* chip_504x */
728 		.flags		= MV_GEN_I_FLAGS,
729 		.pio_mask	= ATA_PIO4,
730 		.udma_mask	= ATA_UDMA6,
731 		.port_ops	= &mv5_ops,
732 	},
733 	{  /* chip_508x */
734 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
735 		.pio_mask	= ATA_PIO4,
736 		.udma_mask	= ATA_UDMA6,
737 		.port_ops	= &mv5_ops,
738 	},
739 	{  /* chip_5080 */
740 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
741 		.pio_mask	= ATA_PIO4,
742 		.udma_mask	= ATA_UDMA6,
743 		.port_ops	= &mv5_ops,
744 	},
745 	{  /* chip_604x */
746 		.flags		= MV_GEN_II_FLAGS,
747 		.pio_mask	= ATA_PIO4,
748 		.udma_mask	= ATA_UDMA6,
749 		.port_ops	= &mv6_ops,
750 	},
751 	{  /* chip_608x */
752 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
753 		.pio_mask	= ATA_PIO4,
754 		.udma_mask	= ATA_UDMA6,
755 		.port_ops	= &mv6_ops,
756 	},
757 	{  /* chip_6042 */
758 		.flags		= MV_GEN_IIE_FLAGS,
759 		.pio_mask	= ATA_PIO4,
760 		.udma_mask	= ATA_UDMA6,
761 		.port_ops	= &mv_iie_ops,
762 	},
763 	{  /* chip_7042 */
764 		.flags		= MV_GEN_IIE_FLAGS,
765 		.pio_mask	= ATA_PIO4,
766 		.udma_mask	= ATA_UDMA6,
767 		.port_ops	= &mv_iie_ops,
768 	},
769 	{  /* chip_soc */
770 		.flags		= MV_GEN_IIE_FLAGS,
771 		.pio_mask	= ATA_PIO4,
772 		.udma_mask	= ATA_UDMA6,
773 		.port_ops	= &mv_iie_ops,
774 	},
775 };
776 
777 static const struct pci_device_id mv_pci_tbl[] = {
778 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
779 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
780 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
781 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
782 	/* RocketRAID 1720/174x have different identifiers */
783 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
784 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
785 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
786 
787 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
788 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
789 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
790 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
791 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
792 
793 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
794 
795 	/* Adaptec 1430SA */
796 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
797 
798 	/* Marvell 7042 support */
799 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
800 
801 	/* Highpoint RocketRAID PCIe series */
802 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
803 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
804 
805 	{ }			/* terminate list */
806 };
807 
808 static const struct mv_hw_ops mv5xxx_ops = {
809 	.phy_errata		= mv5_phy_errata,
810 	.enable_leds		= mv5_enable_leds,
811 	.read_preamp		= mv5_read_preamp,
812 	.reset_hc		= mv5_reset_hc,
813 	.reset_flash		= mv5_reset_flash,
814 	.reset_bus		= mv5_reset_bus,
815 };
816 
817 static const struct mv_hw_ops mv6xxx_ops = {
818 	.phy_errata		= mv6_phy_errata,
819 	.enable_leds		= mv6_enable_leds,
820 	.read_preamp		= mv6_read_preamp,
821 	.reset_hc		= mv6_reset_hc,
822 	.reset_flash		= mv6_reset_flash,
823 	.reset_bus		= mv_reset_pci_bus,
824 };
825 
826 static const struct mv_hw_ops mv_soc_ops = {
827 	.phy_errata		= mv6_phy_errata,
828 	.enable_leds		= mv_soc_enable_leds,
829 	.read_preamp		= mv_soc_read_preamp,
830 	.reset_hc		= mv_soc_reset_hc,
831 	.reset_flash		= mv_soc_reset_flash,
832 	.reset_bus		= mv_soc_reset_bus,
833 };
834 
835 static const struct mv_hw_ops mv_soc_65n_ops = {
836 	.phy_errata		= mv_soc_65n_phy_errata,
837 	.enable_leds		= mv_soc_enable_leds,
838 	.reset_hc		= mv_soc_reset_hc,
839 	.reset_flash		= mv_soc_reset_flash,
840 	.reset_bus		= mv_soc_reset_bus,
841 };
842 
843 /*
844  * Functions
845  */
846 
847 static inline void writelfl(unsigned long data, void __iomem *addr)
848 {
849 	writel(data, addr);
850 	(void) readl(addr);	/* flush to avoid PCI posted write */
851 }
852 
853 static inline unsigned int mv_hc_from_port(unsigned int port)
854 {
855 	return port >> MV_PORT_HC_SHIFT;
856 }
857 
858 static inline unsigned int mv_hardport_from_port(unsigned int port)
859 {
860 	return port & MV_PORT_MASK;
861 }
862 
863 /*
864  * Consolidate some rather tricky bit shift calculations.
865  * This is hot-path stuff, so not a function.
866  * Simple code, with two return values, so macro rather than inline.
867  *
868  * port is the sole input, in range 0..7.
869  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
870  * hardport is the other output, in range 0..3.
871  *
872  * Note that port and hardport may be the same variable in some cases.
873  */
874 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
875 {								\
876 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
877 	hardport = mv_hardport_from_port(port);			\
878 	shift   += hardport * 2;				\
879 }
880 
881 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
882 {
883 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
884 }
885 
886 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
887 						 unsigned int port)
888 {
889 	return mv_hc_base(base, mv_hc_from_port(port));
890 }
891 
892 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
893 {
894 	return  mv_hc_base_from_port(base, port) +
895 		MV_SATAHC_ARBTR_REG_SZ +
896 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
897 }
898 
899 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
900 {
901 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
902 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
903 
904 	return hc_mmio + ofs;
905 }
906 
907 static inline void __iomem *mv_host_base(struct ata_host *host)
908 {
909 	struct mv_host_priv *hpriv = host->private_data;
910 	return hpriv->base;
911 }
912 
913 static inline void __iomem *mv_ap_base(struct ata_port *ap)
914 {
915 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
916 }
917 
918 static inline int mv_get_hc_count(unsigned long port_flags)
919 {
920 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
921 }
922 
923 /**
924  *      mv_save_cached_regs - (re-)initialize cached port registers
925  *      @ap: the port whose registers we are caching
926  *
927  *	Initialize the local cache of port registers,
928  *	so that reading them over and over again can
929  *	be avoided on the hotter paths of this driver.
930  *	This saves a few microseconds each time we switch
931  *	to/from EDMA mode to perform (eg.) a drive cache flush.
932  */
933 static void mv_save_cached_regs(struct ata_port *ap)
934 {
935 	void __iomem *port_mmio = mv_ap_base(ap);
936 	struct mv_port_priv *pp = ap->private_data;
937 
938 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
939 	pp->cached.ltmode = readl(port_mmio + LTMODE);
940 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
941 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
942 }
943 
944 /**
945  *      mv_write_cached_reg - write to a cached port register
946  *      @addr: hardware address of the register
947  *      @old: pointer to cached value of the register
948  *      @new: new value for the register
949  *
950  *	Write a new value to a cached register,
951  *	but only if the value is different from before.
952  */
953 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
954 {
955 	if (new != *old) {
956 		unsigned long laddr;
957 		*old = new;
958 		/*
959 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
960 		 * Read-after-write is needed to prevent generating 64-bit
961 		 * write cycles on the PCI bus for SATA interface registers
962 		 * at offsets ending in 0x4 or 0xc.
963 		 *
964 		 * Looks like a lot of fuss, but it avoids an unnecessary
965 		 * +1 usec read-after-write delay for unaffected registers.
966 		 */
967 		laddr = (long)addr & 0xffff;
968 		if (laddr >= 0x300 && laddr <= 0x33c) {
969 			laddr &= 0x000f;
970 			if (laddr == 0x4 || laddr == 0xc) {
971 				writelfl(new, addr); /* read after write */
972 				return;
973 			}
974 		}
975 		writel(new, addr); /* unaffected by the errata */
976 	}
977 }
978 
979 static void mv_set_edma_ptrs(void __iomem *port_mmio,
980 			     struct mv_host_priv *hpriv,
981 			     struct mv_port_priv *pp)
982 {
983 	u32 index;
984 
985 	/*
986 	 * initialize request queue
987 	 */
988 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
989 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
990 
991 	WARN_ON(pp->crqb_dma & 0x3ff);
992 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
993 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
994 		 port_mmio + EDMA_REQ_Q_IN_PTR);
995 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
996 
997 	/*
998 	 * initialize response queue
999 	 */
1000 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1001 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1002 
1003 	WARN_ON(pp->crpb_dma & 0xff);
1004 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1005 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1006 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1007 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1008 }
1009 
1010 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1011 {
1012 	/*
1013 	 * When writing to the main_irq_mask in hardware,
1014 	 * we must ensure exclusivity between the interrupt coalescing bits
1015 	 * and the corresponding individual port DONE_IRQ bits.
1016 	 *
1017 	 * Note that this register is really an "IRQ enable" register,
1018 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1019 	 */
1020 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1021 		mask &= ~DONE_IRQ_0_3;
1022 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1023 		mask &= ~DONE_IRQ_4_7;
1024 	writelfl(mask, hpriv->main_irq_mask_addr);
1025 }
1026 
1027 static void mv_set_main_irq_mask(struct ata_host *host,
1028 				 u32 disable_bits, u32 enable_bits)
1029 {
1030 	struct mv_host_priv *hpriv = host->private_data;
1031 	u32 old_mask, new_mask;
1032 
1033 	old_mask = hpriv->main_irq_mask;
1034 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1035 	if (new_mask != old_mask) {
1036 		hpriv->main_irq_mask = new_mask;
1037 		mv_write_main_irq_mask(new_mask, hpriv);
1038 	}
1039 }
1040 
1041 static void mv_enable_port_irqs(struct ata_port *ap,
1042 				     unsigned int port_bits)
1043 {
1044 	unsigned int shift, hardport, port = ap->port_no;
1045 	u32 disable_bits, enable_bits;
1046 
1047 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1048 
1049 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1050 	enable_bits  = port_bits << shift;
1051 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1052 }
1053 
1054 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1055 					  void __iomem *port_mmio,
1056 					  unsigned int port_irqs)
1057 {
1058 	struct mv_host_priv *hpriv = ap->host->private_data;
1059 	int hardport = mv_hardport_from_port(ap->port_no);
1060 	void __iomem *hc_mmio = mv_hc_base_from_port(
1061 				mv_host_base(ap->host), ap->port_no);
1062 	u32 hc_irq_cause;
1063 
1064 	/* clear EDMA event indicators, if any */
1065 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1066 
1067 	/* clear pending irq events */
1068 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1069 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1070 
1071 	/* clear FIS IRQ Cause */
1072 	if (IS_GEN_IIE(hpriv))
1073 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1074 
1075 	mv_enable_port_irqs(ap, port_irqs);
1076 }
1077 
1078 static void mv_set_irq_coalescing(struct ata_host *host,
1079 				  unsigned int count, unsigned int usecs)
1080 {
1081 	struct mv_host_priv *hpriv = host->private_data;
1082 	void __iomem *mmio = hpriv->base, *hc_mmio;
1083 	u32 coal_enable = 0;
1084 	unsigned long flags;
1085 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1086 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1087 							ALL_PORTS_COAL_DONE;
1088 
1089 	/* Disable IRQ coalescing if either threshold is zero */
1090 	if (!usecs || !count) {
1091 		clks = count = 0;
1092 	} else {
1093 		/* Respect maximum limits of the hardware */
1094 		clks = usecs * COAL_CLOCKS_PER_USEC;
1095 		if (clks > MAX_COAL_TIME_THRESHOLD)
1096 			clks = MAX_COAL_TIME_THRESHOLD;
1097 		if (count > MAX_COAL_IO_COUNT)
1098 			count = MAX_COAL_IO_COUNT;
1099 	}
1100 
1101 	spin_lock_irqsave(&host->lock, flags);
1102 	mv_set_main_irq_mask(host, coal_disable, 0);
1103 
1104 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1105 		/*
1106 		 * GEN_II/GEN_IIE with dual host controllers:
1107 		 * one set of global thresholds for the entire chip.
1108 		 */
1109 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1110 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1111 		/* clear leftover coal IRQ bit */
1112 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1113 		if (count)
1114 			coal_enable = ALL_PORTS_COAL_DONE;
1115 		clks = count = 0; /* force clearing of regular regs below */
1116 	}
1117 
1118 	/*
1119 	 * All chips: independent thresholds for each HC on the chip.
1120 	 */
1121 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1122 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1123 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1124 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1125 	if (count)
1126 		coal_enable |= PORTS_0_3_COAL_DONE;
1127 	if (is_dual_hc) {
1128 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1129 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1130 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1131 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1132 		if (count)
1133 			coal_enable |= PORTS_4_7_COAL_DONE;
1134 	}
1135 
1136 	mv_set_main_irq_mask(host, 0, coal_enable);
1137 	spin_unlock_irqrestore(&host->lock, flags);
1138 }
1139 
1140 /**
1141  *      mv_start_edma - Enable eDMA engine
1142  *      @base: port base address
1143  *      @pp: port private data
1144  *
1145  *      Verify the local cache of the eDMA state is accurate with a
1146  *      WARN_ON.
1147  *
1148  *      LOCKING:
1149  *      Inherited from caller.
1150  */
1151 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1152 			 struct mv_port_priv *pp, u8 protocol)
1153 {
1154 	int want_ncq = (protocol == ATA_PROT_NCQ);
1155 
1156 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1157 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1158 		if (want_ncq != using_ncq)
1159 			mv_stop_edma(ap);
1160 	}
1161 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1162 		struct mv_host_priv *hpriv = ap->host->private_data;
1163 
1164 		mv_edma_cfg(ap, want_ncq, 1);
1165 
1166 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1167 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1168 
1169 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1170 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1171 	}
1172 }
1173 
1174 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1175 {
1176 	void __iomem *port_mmio = mv_ap_base(ap);
1177 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1178 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1179 	int i;
1180 
1181 	/*
1182 	 * Wait for the EDMA engine to finish transactions in progress.
1183 	 * No idea what a good "timeout" value might be, but measurements
1184 	 * indicate that it often requires hundreds of microseconds
1185 	 * with two drives in-use.  So we use the 15msec value above
1186 	 * as a rough guess at what even more drives might require.
1187 	 */
1188 	for (i = 0; i < timeout; ++i) {
1189 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1190 		if ((edma_stat & empty_idle) == empty_idle)
1191 			break;
1192 		udelay(per_loop);
1193 	}
1194 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1195 }
1196 
1197 /**
1198  *      mv_stop_edma_engine - Disable eDMA engine
1199  *      @port_mmio: io base address
1200  *
1201  *      LOCKING:
1202  *      Inherited from caller.
1203  */
1204 static int mv_stop_edma_engine(void __iomem *port_mmio)
1205 {
1206 	int i;
1207 
1208 	/* Disable eDMA.  The disable bit auto clears. */
1209 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1210 
1211 	/* Wait for the chip to confirm eDMA is off. */
1212 	for (i = 10000; i > 0; i--) {
1213 		u32 reg = readl(port_mmio + EDMA_CMD);
1214 		if (!(reg & EDMA_EN))
1215 			return 0;
1216 		udelay(10);
1217 	}
1218 	return -EIO;
1219 }
1220 
1221 static int mv_stop_edma(struct ata_port *ap)
1222 {
1223 	void __iomem *port_mmio = mv_ap_base(ap);
1224 	struct mv_port_priv *pp = ap->private_data;
1225 	int err = 0;
1226 
1227 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1228 		return 0;
1229 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1230 	mv_wait_for_edma_empty_idle(ap);
1231 	if (mv_stop_edma_engine(port_mmio)) {
1232 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1233 		err = -EIO;
1234 	}
1235 	mv_edma_cfg(ap, 0, 0);
1236 	return err;
1237 }
1238 
1239 #ifdef ATA_DEBUG
1240 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1241 {
1242 	int b, w;
1243 	for (b = 0; b < bytes; ) {
1244 		DPRINTK("%p: ", start + b);
1245 		for (w = 0; b < bytes && w < 4; w++) {
1246 			printk("%08x ", readl(start + b));
1247 			b += sizeof(u32);
1248 		}
1249 		printk("\n");
1250 	}
1251 }
1252 #endif
1253 
1254 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1255 {
1256 #ifdef ATA_DEBUG
1257 	int b, w;
1258 	u32 dw;
1259 	for (b = 0; b < bytes; ) {
1260 		DPRINTK("%02x: ", b);
1261 		for (w = 0; b < bytes && w < 4; w++) {
1262 			(void) pci_read_config_dword(pdev, b, &dw);
1263 			printk("%08x ", dw);
1264 			b += sizeof(u32);
1265 		}
1266 		printk("\n");
1267 	}
1268 #endif
1269 }
1270 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1271 			     struct pci_dev *pdev)
1272 {
1273 #ifdef ATA_DEBUG
1274 	void __iomem *hc_base = mv_hc_base(mmio_base,
1275 					   port >> MV_PORT_HC_SHIFT);
1276 	void __iomem *port_base;
1277 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1278 
1279 	if (0 > port) {
1280 		start_hc = start_port = 0;
1281 		num_ports = 8;		/* shld be benign for 4 port devs */
1282 		num_hcs = 2;
1283 	} else {
1284 		start_hc = port >> MV_PORT_HC_SHIFT;
1285 		start_port = port;
1286 		num_ports = num_hcs = 1;
1287 	}
1288 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1289 		num_ports > 1 ? num_ports - 1 : start_port);
1290 
1291 	if (NULL != pdev) {
1292 		DPRINTK("PCI config space regs:\n");
1293 		mv_dump_pci_cfg(pdev, 0x68);
1294 	}
1295 	DPRINTK("PCI regs:\n");
1296 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1297 	mv_dump_mem(mmio_base+0xd00, 0x34);
1298 	mv_dump_mem(mmio_base+0xf00, 0x4);
1299 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1300 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1301 		hc_base = mv_hc_base(mmio_base, hc);
1302 		DPRINTK("HC regs (HC %i):\n", hc);
1303 		mv_dump_mem(hc_base, 0x1c);
1304 	}
1305 	for (p = start_port; p < start_port + num_ports; p++) {
1306 		port_base = mv_port_base(mmio_base, p);
1307 		DPRINTK("EDMA regs (port %i):\n", p);
1308 		mv_dump_mem(port_base, 0x54);
1309 		DPRINTK("SATA regs (port %i):\n", p);
1310 		mv_dump_mem(port_base+0x300, 0x60);
1311 	}
1312 #endif
1313 }
1314 
1315 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1316 {
1317 	unsigned int ofs;
1318 
1319 	switch (sc_reg_in) {
1320 	case SCR_STATUS:
1321 	case SCR_CONTROL:
1322 	case SCR_ERROR:
1323 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1324 		break;
1325 	case SCR_ACTIVE:
1326 		ofs = SATA_ACTIVE;   /* active is not with the others */
1327 		break;
1328 	default:
1329 		ofs = 0xffffffffU;
1330 		break;
1331 	}
1332 	return ofs;
1333 }
1334 
1335 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1336 {
1337 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1338 
1339 	if (ofs != 0xffffffffU) {
1340 		*val = readl(mv_ap_base(link->ap) + ofs);
1341 		return 0;
1342 	} else
1343 		return -EINVAL;
1344 }
1345 
1346 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1347 {
1348 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1349 
1350 	if (ofs != 0xffffffffU) {
1351 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1352 		if (sc_reg_in == SCR_CONTROL) {
1353 			/*
1354 			 * Workaround for 88SX60x1 FEr SATA#26:
1355 			 *
1356 			 * COMRESETs have to take care not to accidently
1357 			 * put the drive to sleep when writing SCR_CONTROL.
1358 			 * Setting bits 12..15 prevents this problem.
1359 			 *
1360 			 * So if we see an outbound COMMRESET, set those bits.
1361 			 * Ditto for the followup write that clears the reset.
1362 			 *
1363 			 * The proprietary driver does this for
1364 			 * all chip versions, and so do we.
1365 			 */
1366 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1367 				val |= 0xf000;
1368 		}
1369 		writelfl(val, addr);
1370 		return 0;
1371 	} else
1372 		return -EINVAL;
1373 }
1374 
1375 static void mv6_dev_config(struct ata_device *adev)
1376 {
1377 	/*
1378 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1379 	 *
1380 	 * Gen-II does not support NCQ over a port multiplier
1381 	 *  (no FIS-based switching).
1382 	 */
1383 	if (adev->flags & ATA_DFLAG_NCQ) {
1384 		if (sata_pmp_attached(adev->link->ap)) {
1385 			adev->flags &= ~ATA_DFLAG_NCQ;
1386 			ata_dev_printk(adev, KERN_INFO,
1387 				"NCQ disabled for command-based switching\n");
1388 		}
1389 	}
1390 }
1391 
1392 static int mv_qc_defer(struct ata_queued_cmd *qc)
1393 {
1394 	struct ata_link *link = qc->dev->link;
1395 	struct ata_port *ap = link->ap;
1396 	struct mv_port_priv *pp = ap->private_data;
1397 
1398 	/*
1399 	 * Don't allow new commands if we're in a delayed EH state
1400 	 * for NCQ and/or FIS-based switching.
1401 	 */
1402 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1403 		return ATA_DEFER_PORT;
1404 
1405 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1406 	 * can run concurrently.
1407 	 * set excl_link when we want to send a PIO command in DMA mode
1408 	 * or a non-NCQ command in NCQ mode.
1409 	 * When we receive a command from that link, and there are no
1410 	 * outstanding commands, mark a flag to clear excl_link and let
1411 	 * the command go through.
1412 	 */
1413 	if (unlikely(ap->excl_link)) {
1414 		if (link == ap->excl_link) {
1415 			if (ap->nr_active_links)
1416 				return ATA_DEFER_PORT;
1417 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1418 			return 0;
1419 		} else
1420 			return ATA_DEFER_PORT;
1421 	}
1422 
1423 	/*
1424 	 * If the port is completely idle, then allow the new qc.
1425 	 */
1426 	if (ap->nr_active_links == 0)
1427 		return 0;
1428 
1429 	/*
1430 	 * The port is operating in host queuing mode (EDMA) with NCQ
1431 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1432 	 * queueing multiple DMA commands but libata core currently
1433 	 * doesn't allow it.
1434 	 */
1435 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1436 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1437 		if (ata_is_ncq(qc->tf.protocol))
1438 			return 0;
1439 		else {
1440 			ap->excl_link = link;
1441 			return ATA_DEFER_PORT;
1442 		}
1443 	}
1444 
1445 	return ATA_DEFER_PORT;
1446 }
1447 
1448 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1449 {
1450 	struct mv_port_priv *pp = ap->private_data;
1451 	void __iomem *port_mmio;
1452 
1453 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1454 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1455 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1456 
1457 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1458 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1459 
1460 	if (want_fbs) {
1461 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1462 		ltmode = *old_ltmode | LTMODE_BIT8;
1463 		if (want_ncq)
1464 			haltcond &= ~EDMA_ERR_DEV;
1465 		else
1466 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1467 	} else {
1468 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1469 	}
1470 
1471 	port_mmio = mv_ap_base(ap);
1472 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1473 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1474 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1475 }
1476 
1477 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1478 {
1479 	struct mv_host_priv *hpriv = ap->host->private_data;
1480 	u32 old, new;
1481 
1482 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1483 	old = readl(hpriv->base + GPIO_PORT_CTL);
1484 	if (want_ncq)
1485 		new = old | (1 << 22);
1486 	else
1487 		new = old & ~(1 << 22);
1488 	if (new != old)
1489 		writel(new, hpriv->base + GPIO_PORT_CTL);
1490 }
1491 
1492 /**
1493  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1494  *	@ap: Port being initialized
1495  *
1496  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1497  *
1498  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1499  *	of basic DMA on the GEN_IIE versions of the chips.
1500  *
1501  *	This bit survives EDMA resets, and must be set for basic DMA
1502  *	to function, and should be cleared when EDMA is active.
1503  */
1504 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1505 {
1506 	struct mv_port_priv *pp = ap->private_data;
1507 	u32 new, *old = &pp->cached.unknown_rsvd;
1508 
1509 	if (enable_bmdma)
1510 		new = *old | 1;
1511 	else
1512 		new = *old & ~1;
1513 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1514 }
1515 
1516 /*
1517  * SOC chips have an issue whereby the HDD LEDs don't always blink
1518  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1519  * of the SOC takes care of it, generating a steady blink rate when
1520  * any drive on the chip is active.
1521  *
1522  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1523  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1524  *
1525  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1526  * LED operation works then, and provides better (more accurate) feedback.
1527  *
1528  * Note that this code assumes that an SOC never has more than one HC onboard.
1529  */
1530 static void mv_soc_led_blink_enable(struct ata_port *ap)
1531 {
1532 	struct ata_host *host = ap->host;
1533 	struct mv_host_priv *hpriv = host->private_data;
1534 	void __iomem *hc_mmio;
1535 	u32 led_ctrl;
1536 
1537 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1538 		return;
1539 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1540 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1541 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1542 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1543 }
1544 
1545 static void mv_soc_led_blink_disable(struct ata_port *ap)
1546 {
1547 	struct ata_host *host = ap->host;
1548 	struct mv_host_priv *hpriv = host->private_data;
1549 	void __iomem *hc_mmio;
1550 	u32 led_ctrl;
1551 	unsigned int port;
1552 
1553 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1554 		return;
1555 
1556 	/* disable led-blink only if no ports are using NCQ */
1557 	for (port = 0; port < hpriv->n_ports; port++) {
1558 		struct ata_port *this_ap = host->ports[port];
1559 		struct mv_port_priv *pp = this_ap->private_data;
1560 
1561 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1562 			return;
1563 	}
1564 
1565 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1566 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569 }
1570 
1571 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1572 {
1573 	u32 cfg;
1574 	struct mv_port_priv *pp    = ap->private_data;
1575 	struct mv_host_priv *hpriv = ap->host->private_data;
1576 	void __iomem *port_mmio    = mv_ap_base(ap);
1577 
1578 	/* set up non-NCQ EDMA configuration */
1579 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1580 	pp->pp_flags &=
1581 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1582 
1583 	if (IS_GEN_I(hpriv))
1584 		cfg |= (1 << 8);	/* enab config burst size mask */
1585 
1586 	else if (IS_GEN_II(hpriv)) {
1587 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1588 		mv_60x1_errata_sata25(ap, want_ncq);
1589 
1590 	} else if (IS_GEN_IIE(hpriv)) {
1591 		int want_fbs = sata_pmp_attached(ap);
1592 		/*
1593 		 * Possible future enhancement:
1594 		 *
1595 		 * The chip can use FBS with non-NCQ, if we allow it,
1596 		 * But first we need to have the error handling in place
1597 		 * for this mode (datasheet section 7.3.15.4.2.3).
1598 		 * So disallow non-NCQ FBS for now.
1599 		 */
1600 		want_fbs &= want_ncq;
1601 
1602 		mv_config_fbs(ap, want_ncq, want_fbs);
1603 
1604 		if (want_fbs) {
1605 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1606 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1607 		}
1608 
1609 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1610 		if (want_edma) {
1611 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1612 			if (!IS_SOC(hpriv))
1613 				cfg |= (1 << 18); /* enab early completion */
1614 		}
1615 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1616 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1617 		mv_bmdma_enable_iie(ap, !want_edma);
1618 
1619 		if (IS_SOC(hpriv)) {
1620 			if (want_ncq)
1621 				mv_soc_led_blink_enable(ap);
1622 			else
1623 				mv_soc_led_blink_disable(ap);
1624 		}
1625 	}
1626 
1627 	if (want_ncq) {
1628 		cfg |= EDMA_CFG_NCQ;
1629 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1630 	}
1631 
1632 	writelfl(cfg, port_mmio + EDMA_CFG);
1633 }
1634 
1635 static void mv_port_free_dma_mem(struct ata_port *ap)
1636 {
1637 	struct mv_host_priv *hpriv = ap->host->private_data;
1638 	struct mv_port_priv *pp = ap->private_data;
1639 	int tag;
1640 
1641 	if (pp->crqb) {
1642 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1643 		pp->crqb = NULL;
1644 	}
1645 	if (pp->crpb) {
1646 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1647 		pp->crpb = NULL;
1648 	}
1649 	/*
1650 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1651 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1652 	 */
1653 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1654 		if (pp->sg_tbl[tag]) {
1655 			if (tag == 0 || !IS_GEN_I(hpriv))
1656 				dma_pool_free(hpriv->sg_tbl_pool,
1657 					      pp->sg_tbl[tag],
1658 					      pp->sg_tbl_dma[tag]);
1659 			pp->sg_tbl[tag] = NULL;
1660 		}
1661 	}
1662 }
1663 
1664 /**
1665  *      mv_port_start - Port specific init/start routine.
1666  *      @ap: ATA channel to manipulate
1667  *
1668  *      Allocate and point to DMA memory, init port private memory,
1669  *      zero indices.
1670  *
1671  *      LOCKING:
1672  *      Inherited from caller.
1673  */
1674 static int mv_port_start(struct ata_port *ap)
1675 {
1676 	struct device *dev = ap->host->dev;
1677 	struct mv_host_priv *hpriv = ap->host->private_data;
1678 	struct mv_port_priv *pp;
1679 	unsigned long flags;
1680 	int tag;
1681 
1682 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1683 	if (!pp)
1684 		return -ENOMEM;
1685 	ap->private_data = pp;
1686 
1687 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1688 	if (!pp->crqb)
1689 		return -ENOMEM;
1690 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1691 
1692 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1693 	if (!pp->crpb)
1694 		goto out_port_free_dma_mem;
1695 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1696 
1697 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1698 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1699 		ap->flags |= ATA_FLAG_AN;
1700 	/*
1701 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1702 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1703 	 */
1704 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1705 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1706 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1707 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1708 			if (!pp->sg_tbl[tag])
1709 				goto out_port_free_dma_mem;
1710 		} else {
1711 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1712 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1713 		}
1714 	}
1715 
1716 	spin_lock_irqsave(ap->lock, flags);
1717 	mv_save_cached_regs(ap);
1718 	mv_edma_cfg(ap, 0, 0);
1719 	spin_unlock_irqrestore(ap->lock, flags);
1720 
1721 	return 0;
1722 
1723 out_port_free_dma_mem:
1724 	mv_port_free_dma_mem(ap);
1725 	return -ENOMEM;
1726 }
1727 
1728 /**
1729  *      mv_port_stop - Port specific cleanup/stop routine.
1730  *      @ap: ATA channel to manipulate
1731  *
1732  *      Stop DMA, cleanup port memory.
1733  *
1734  *      LOCKING:
1735  *      This routine uses the host lock to protect the DMA stop.
1736  */
1737 static void mv_port_stop(struct ata_port *ap)
1738 {
1739 	unsigned long flags;
1740 
1741 	spin_lock_irqsave(ap->lock, flags);
1742 	mv_stop_edma(ap);
1743 	mv_enable_port_irqs(ap, 0);
1744 	spin_unlock_irqrestore(ap->lock, flags);
1745 	mv_port_free_dma_mem(ap);
1746 }
1747 
1748 /**
1749  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1750  *      @qc: queued command whose SG list to source from
1751  *
1752  *      Populate the SG list and mark the last entry.
1753  *
1754  *      LOCKING:
1755  *      Inherited from caller.
1756  */
1757 static void mv_fill_sg(struct ata_queued_cmd *qc)
1758 {
1759 	struct mv_port_priv *pp = qc->ap->private_data;
1760 	struct scatterlist *sg;
1761 	struct mv_sg *mv_sg, *last_sg = NULL;
1762 	unsigned int si;
1763 
1764 	mv_sg = pp->sg_tbl[qc->tag];
1765 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1766 		dma_addr_t addr = sg_dma_address(sg);
1767 		u32 sg_len = sg_dma_len(sg);
1768 
1769 		while (sg_len) {
1770 			u32 offset = addr & 0xffff;
1771 			u32 len = sg_len;
1772 
1773 			if (offset + len > 0x10000)
1774 				len = 0x10000 - offset;
1775 
1776 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1777 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1778 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1779 			mv_sg->reserved = 0;
1780 
1781 			sg_len -= len;
1782 			addr += len;
1783 
1784 			last_sg = mv_sg;
1785 			mv_sg++;
1786 		}
1787 	}
1788 
1789 	if (likely(last_sg))
1790 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1791 	mb(); /* ensure data structure is visible to the chipset */
1792 }
1793 
1794 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1795 {
1796 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1797 		(last ? CRQB_CMD_LAST : 0);
1798 	*cmdw = cpu_to_le16(tmp);
1799 }
1800 
1801 /**
1802  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1803  *	@ap: Port associated with this ATA transaction.
1804  *
1805  *	We need this only for ATAPI bmdma transactions,
1806  *	as otherwise we experience spurious interrupts
1807  *	after libata-sff handles the bmdma interrupts.
1808  */
1809 static void mv_sff_irq_clear(struct ata_port *ap)
1810 {
1811 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1812 }
1813 
1814 /**
1815  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1816  *	@qc: queued command to check for chipset/DMA compatibility.
1817  *
1818  *	The bmdma engines cannot handle speculative data sizes
1819  *	(bytecount under/over flow).  So only allow DMA for
1820  *	data transfer commands with known data sizes.
1821  *
1822  *	LOCKING:
1823  *	Inherited from caller.
1824  */
1825 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1826 {
1827 	struct scsi_cmnd *scmd = qc->scsicmd;
1828 
1829 	if (scmd) {
1830 		switch (scmd->cmnd[0]) {
1831 		case READ_6:
1832 		case READ_10:
1833 		case READ_12:
1834 		case WRITE_6:
1835 		case WRITE_10:
1836 		case WRITE_12:
1837 		case GPCMD_READ_CD:
1838 		case GPCMD_SEND_DVD_STRUCTURE:
1839 		case GPCMD_SEND_CUE_SHEET:
1840 			return 0; /* DMA is safe */
1841 		}
1842 	}
1843 	return -EOPNOTSUPP; /* use PIO instead */
1844 }
1845 
1846 /**
1847  *	mv_bmdma_setup - Set up BMDMA transaction
1848  *	@qc: queued command to prepare DMA for.
1849  *
1850  *	LOCKING:
1851  *	Inherited from caller.
1852  */
1853 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1854 {
1855 	struct ata_port *ap = qc->ap;
1856 	void __iomem *port_mmio = mv_ap_base(ap);
1857 	struct mv_port_priv *pp = ap->private_data;
1858 
1859 	mv_fill_sg(qc);
1860 
1861 	/* clear all DMA cmd bits */
1862 	writel(0, port_mmio + BMDMA_CMD);
1863 
1864 	/* load PRD table addr. */
1865 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1866 		port_mmio + BMDMA_PRD_HIGH);
1867 	writelfl(pp->sg_tbl_dma[qc->tag],
1868 		port_mmio + BMDMA_PRD_LOW);
1869 
1870 	/* issue r/w command */
1871 	ap->ops->sff_exec_command(ap, &qc->tf);
1872 }
1873 
1874 /**
1875  *	mv_bmdma_start - Start a BMDMA transaction
1876  *	@qc: queued command to start DMA on.
1877  *
1878  *	LOCKING:
1879  *	Inherited from caller.
1880  */
1881 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1882 {
1883 	struct ata_port *ap = qc->ap;
1884 	void __iomem *port_mmio = mv_ap_base(ap);
1885 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1886 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1887 
1888 	/* start host DMA transaction */
1889 	writelfl(cmd, port_mmio + BMDMA_CMD);
1890 }
1891 
1892 /**
1893  *	mv_bmdma_stop - Stop BMDMA transfer
1894  *	@qc: queued command to stop DMA on.
1895  *
1896  *	Clears the ATA_DMA_START flag in the bmdma control register
1897  *
1898  *	LOCKING:
1899  *	Inherited from caller.
1900  */
1901 static void mv_bmdma_stop_ap(struct ata_port *ap)
1902 {
1903 	void __iomem *port_mmio = mv_ap_base(ap);
1904 	u32 cmd;
1905 
1906 	/* clear start/stop bit */
1907 	cmd = readl(port_mmio + BMDMA_CMD);
1908 	if (cmd & ATA_DMA_START) {
1909 		cmd &= ~ATA_DMA_START;
1910 		writelfl(cmd, port_mmio + BMDMA_CMD);
1911 
1912 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1913 		ata_sff_dma_pause(ap);
1914 	}
1915 }
1916 
1917 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1918 {
1919 	mv_bmdma_stop_ap(qc->ap);
1920 }
1921 
1922 /**
1923  *	mv_bmdma_status - Read BMDMA status
1924  *	@ap: port for which to retrieve DMA status.
1925  *
1926  *	Read and return equivalent of the sff BMDMA status register.
1927  *
1928  *	LOCKING:
1929  *	Inherited from caller.
1930  */
1931 static u8 mv_bmdma_status(struct ata_port *ap)
1932 {
1933 	void __iomem *port_mmio = mv_ap_base(ap);
1934 	u32 reg, status;
1935 
1936 	/*
1937 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1938 	 * and the ATA_DMA_INTR bit doesn't exist.
1939 	 */
1940 	reg = readl(port_mmio + BMDMA_STATUS);
1941 	if (reg & ATA_DMA_ACTIVE)
1942 		status = ATA_DMA_ACTIVE;
1943 	else if (reg & ATA_DMA_ERR)
1944 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1945 	else {
1946 		/*
1947 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1948 		 * this does _not_ mean the device is "done".
1949 		 * So we should not yet be signalling ATA_DMA_INTR
1950 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1951 		 */
1952 		mv_bmdma_stop_ap(ap);
1953 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1954 			status = 0;
1955 		else
1956 			status = ATA_DMA_INTR;
1957 	}
1958 	return status;
1959 }
1960 
1961 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1962 {
1963 	struct ata_taskfile *tf = &qc->tf;
1964 	/*
1965 	 * Workaround for 88SX60x1 FEr SATA#24.
1966 	 *
1967 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1968 	 * Note that READs are unaffected.
1969 	 *
1970 	 * It's not clear if this errata really means "4K bytes",
1971 	 * or if it always happens for multi_count > 7
1972 	 * regardless of device sector_size.
1973 	 *
1974 	 * So, for safety, any write with multi_count > 7
1975 	 * gets converted here into a regular PIO write instead:
1976 	 */
1977 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1978 		if (qc->dev->multi_count > 7) {
1979 			switch (tf->command) {
1980 			case ATA_CMD_WRITE_MULTI:
1981 				tf->command = ATA_CMD_PIO_WRITE;
1982 				break;
1983 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1984 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1985 				/* fall through */
1986 			case ATA_CMD_WRITE_MULTI_EXT:
1987 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1988 				break;
1989 			}
1990 		}
1991 	}
1992 }
1993 
1994 /**
1995  *      mv_qc_prep - Host specific command preparation.
1996  *      @qc: queued command to prepare
1997  *
1998  *      This routine simply redirects to the general purpose routine
1999  *      if command is not DMA.  Else, it handles prep of the CRQB
2000  *      (command request block), does some sanity checking, and calls
2001  *      the SG load routine.
2002  *
2003  *      LOCKING:
2004  *      Inherited from caller.
2005  */
2006 static void mv_qc_prep(struct ata_queued_cmd *qc)
2007 {
2008 	struct ata_port *ap = qc->ap;
2009 	struct mv_port_priv *pp = ap->private_data;
2010 	__le16 *cw;
2011 	struct ata_taskfile *tf = &qc->tf;
2012 	u16 flags = 0;
2013 	unsigned in_index;
2014 
2015 	switch (tf->protocol) {
2016 	case ATA_PROT_DMA:
2017 		if (tf->command == ATA_CMD_DSM)
2018 			return;
2019 		/* fall-thru */
2020 	case ATA_PROT_NCQ:
2021 		break;	/* continue below */
2022 	case ATA_PROT_PIO:
2023 		mv_rw_multi_errata_sata24(qc);
2024 		return;
2025 	default:
2026 		return;
2027 	}
2028 
2029 	/* Fill in command request block
2030 	 */
2031 	if (!(tf->flags & ATA_TFLAG_WRITE))
2032 		flags |= CRQB_FLAG_READ;
2033 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2034 	flags |= qc->tag << CRQB_TAG_SHIFT;
2035 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2036 
2037 	/* get current queue index from software */
2038 	in_index = pp->req_idx;
2039 
2040 	pp->crqb[in_index].sg_addr =
2041 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2042 	pp->crqb[in_index].sg_addr_hi =
2043 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2044 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2045 
2046 	cw = &pp->crqb[in_index].ata_cmd[0];
2047 
2048 	/* Sadly, the CRQB cannot accomodate all registers--there are
2049 	 * only 11 bytes...so we must pick and choose required
2050 	 * registers based on the command.  So, we drop feature and
2051 	 * hob_feature for [RW] DMA commands, but they are needed for
2052 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2053 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2054 	 */
2055 	switch (tf->command) {
2056 	case ATA_CMD_READ:
2057 	case ATA_CMD_READ_EXT:
2058 	case ATA_CMD_WRITE:
2059 	case ATA_CMD_WRITE_EXT:
2060 	case ATA_CMD_WRITE_FUA_EXT:
2061 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2062 		break;
2063 	case ATA_CMD_FPDMA_READ:
2064 	case ATA_CMD_FPDMA_WRITE:
2065 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2066 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2067 		break;
2068 	default:
2069 		/* The only other commands EDMA supports in non-queued and
2070 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2071 		 * of which are defined/used by Linux.  If we get here, this
2072 		 * driver needs work.
2073 		 *
2074 		 * FIXME: modify libata to give qc_prep a return value and
2075 		 * return error here.
2076 		 */
2077 		BUG_ON(tf->command);
2078 		break;
2079 	}
2080 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2081 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2082 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2083 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2084 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2085 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2086 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2087 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2088 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2089 
2090 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2091 		return;
2092 	mv_fill_sg(qc);
2093 }
2094 
2095 /**
2096  *      mv_qc_prep_iie - Host specific command preparation.
2097  *      @qc: queued command to prepare
2098  *
2099  *      This routine simply redirects to the general purpose routine
2100  *      if command is not DMA.  Else, it handles prep of the CRQB
2101  *      (command request block), does some sanity checking, and calls
2102  *      the SG load routine.
2103  *
2104  *      LOCKING:
2105  *      Inherited from caller.
2106  */
2107 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2108 {
2109 	struct ata_port *ap = qc->ap;
2110 	struct mv_port_priv *pp = ap->private_data;
2111 	struct mv_crqb_iie *crqb;
2112 	struct ata_taskfile *tf = &qc->tf;
2113 	unsigned in_index;
2114 	u32 flags = 0;
2115 
2116 	if ((tf->protocol != ATA_PROT_DMA) &&
2117 	    (tf->protocol != ATA_PROT_NCQ))
2118 		return;
2119 	if (tf->command == ATA_CMD_DSM)
2120 		return;  /* use bmdma for this */
2121 
2122 	/* Fill in Gen IIE command request block */
2123 	if (!(tf->flags & ATA_TFLAG_WRITE))
2124 		flags |= CRQB_FLAG_READ;
2125 
2126 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2127 	flags |= qc->tag << CRQB_TAG_SHIFT;
2128 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2129 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2130 
2131 	/* get current queue index from software */
2132 	in_index = pp->req_idx;
2133 
2134 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2135 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2136 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2137 	crqb->flags = cpu_to_le32(flags);
2138 
2139 	crqb->ata_cmd[0] = cpu_to_le32(
2140 			(tf->command << 16) |
2141 			(tf->feature << 24)
2142 		);
2143 	crqb->ata_cmd[1] = cpu_to_le32(
2144 			(tf->lbal << 0) |
2145 			(tf->lbam << 8) |
2146 			(tf->lbah << 16) |
2147 			(tf->device << 24)
2148 		);
2149 	crqb->ata_cmd[2] = cpu_to_le32(
2150 			(tf->hob_lbal << 0) |
2151 			(tf->hob_lbam << 8) |
2152 			(tf->hob_lbah << 16) |
2153 			(tf->hob_feature << 24)
2154 		);
2155 	crqb->ata_cmd[3] = cpu_to_le32(
2156 			(tf->nsect << 0) |
2157 			(tf->hob_nsect << 8)
2158 		);
2159 
2160 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2161 		return;
2162 	mv_fill_sg(qc);
2163 }
2164 
2165 /**
2166  *	mv_sff_check_status - fetch device status, if valid
2167  *	@ap: ATA port to fetch status from
2168  *
2169  *	When using command issue via mv_qc_issue_fis(),
2170  *	the initial ATA_BUSY state does not show up in the
2171  *	ATA status (shadow) register.  This can confuse libata!
2172  *
2173  *	So we have a hook here to fake ATA_BUSY for that situation,
2174  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2175  *
2176  *	The rest of the time, it simply returns the ATA status register.
2177  */
2178 static u8 mv_sff_check_status(struct ata_port *ap)
2179 {
2180 	u8 stat = ioread8(ap->ioaddr.status_addr);
2181 	struct mv_port_priv *pp = ap->private_data;
2182 
2183 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2184 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2185 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2186 		else
2187 			stat = ATA_BUSY;
2188 	}
2189 	return stat;
2190 }
2191 
2192 /**
2193  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2194  *	@fis: fis to be sent
2195  *	@nwords: number of 32-bit words in the fis
2196  */
2197 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2198 {
2199 	void __iomem *port_mmio = mv_ap_base(ap);
2200 	u32 ifctl, old_ifctl, ifstat;
2201 	int i, timeout = 200, final_word = nwords - 1;
2202 
2203 	/* Initiate FIS transmission mode */
2204 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2205 	ifctl = 0x100 | (old_ifctl & 0xf);
2206 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2207 
2208 	/* Send all words of the FIS except for the final word */
2209 	for (i = 0; i < final_word; ++i)
2210 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2211 
2212 	/* Flag end-of-transmission, and then send the final word */
2213 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2214 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2215 
2216 	/*
2217 	 * Wait for FIS transmission to complete.
2218 	 * This typically takes just a single iteration.
2219 	 */
2220 	do {
2221 		ifstat = readl(port_mmio + SATA_IFSTAT);
2222 	} while (!(ifstat & 0x1000) && --timeout);
2223 
2224 	/* Restore original port configuration */
2225 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2226 
2227 	/* See if it worked */
2228 	if ((ifstat & 0x3000) != 0x1000) {
2229 		ata_port_printk(ap, KERN_WARNING,
2230 				"%s transmission error, ifstat=%08x\n",
2231 				__func__, ifstat);
2232 		return AC_ERR_OTHER;
2233 	}
2234 	return 0;
2235 }
2236 
2237 /**
2238  *	mv_qc_issue_fis - Issue a command directly as a FIS
2239  *	@qc: queued command to start
2240  *
2241  *	Note that the ATA shadow registers are not updated
2242  *	after command issue, so the device will appear "READY"
2243  *	if polled, even while it is BUSY processing the command.
2244  *
2245  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2246  *
2247  *	Note: we don't get updated shadow regs on *completion*
2248  *	of non-data commands. So avoid sending them via this function,
2249  *	as they will appear to have completed immediately.
2250  *
2251  *	GEN_IIE has special registers that we could get the result tf from,
2252  *	but earlier chipsets do not.  For now, we ignore those registers.
2253  */
2254 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2255 {
2256 	struct ata_port *ap = qc->ap;
2257 	struct mv_port_priv *pp = ap->private_data;
2258 	struct ata_link *link = qc->dev->link;
2259 	u32 fis[5];
2260 	int err = 0;
2261 
2262 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2263 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2264 	if (err)
2265 		return err;
2266 
2267 	switch (qc->tf.protocol) {
2268 	case ATAPI_PROT_PIO:
2269 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2270 		/* fall through */
2271 	case ATAPI_PROT_NODATA:
2272 		ap->hsm_task_state = HSM_ST_FIRST;
2273 		break;
2274 	case ATA_PROT_PIO:
2275 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2276 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2277 			ap->hsm_task_state = HSM_ST_FIRST;
2278 		else
2279 			ap->hsm_task_state = HSM_ST;
2280 		break;
2281 	default:
2282 		ap->hsm_task_state = HSM_ST_LAST;
2283 		break;
2284 	}
2285 
2286 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2287 		ata_sff_queue_pio_task(link, 0);
2288 	return 0;
2289 }
2290 
2291 /**
2292  *      mv_qc_issue - Initiate a command to the host
2293  *      @qc: queued command to start
2294  *
2295  *      This routine simply redirects to the general purpose routine
2296  *      if command is not DMA.  Else, it sanity checks our local
2297  *      caches of the request producer/consumer indices then enables
2298  *      DMA and bumps the request producer index.
2299  *
2300  *      LOCKING:
2301  *      Inherited from caller.
2302  */
2303 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2304 {
2305 	static int limit_warnings = 10;
2306 	struct ata_port *ap = qc->ap;
2307 	void __iomem *port_mmio = mv_ap_base(ap);
2308 	struct mv_port_priv *pp = ap->private_data;
2309 	u32 in_index;
2310 	unsigned int port_irqs;
2311 
2312 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2313 
2314 	switch (qc->tf.protocol) {
2315 	case ATA_PROT_DMA:
2316 		if (qc->tf.command == ATA_CMD_DSM) {
2317 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2318 				return AC_ERR_OTHER;
2319 			break;  /* use bmdma for this */
2320 		}
2321 		/* fall thru */
2322 	case ATA_PROT_NCQ:
2323 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2324 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2325 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2326 
2327 		/* Write the request in pointer to kick the EDMA to life */
2328 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2329 					port_mmio + EDMA_REQ_Q_IN_PTR);
2330 		return 0;
2331 
2332 	case ATA_PROT_PIO:
2333 		/*
2334 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2335 		 *
2336 		 * Someday, we might implement special polling workarounds
2337 		 * for these, but it all seems rather unnecessary since we
2338 		 * normally use only DMA for commands which transfer more
2339 		 * than a single block of data.
2340 		 *
2341 		 * Much of the time, this could just work regardless.
2342 		 * So for now, just log the incident, and allow the attempt.
2343 		 */
2344 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2345 			--limit_warnings;
2346 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2347 					": attempting PIO w/multiple DRQ: "
2348 					"this may fail due to h/w errata\n");
2349 		}
2350 		/* drop through */
2351 	case ATA_PROT_NODATA:
2352 	case ATAPI_PROT_PIO:
2353 	case ATAPI_PROT_NODATA:
2354 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2355 			qc->tf.flags |= ATA_TFLAG_POLLING;
2356 		break;
2357 	}
2358 
2359 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2360 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2361 	else
2362 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2363 
2364 	/*
2365 	 * We're about to send a non-EDMA capable command to the
2366 	 * port.  Turn off EDMA so there won't be problems accessing
2367 	 * shadow block, etc registers.
2368 	 */
2369 	mv_stop_edma(ap);
2370 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2371 	mv_pmp_select(ap, qc->dev->link->pmp);
2372 
2373 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2374 		struct mv_host_priv *hpriv = ap->host->private_data;
2375 		/*
2376 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2377 		 *
2378 		 * After any NCQ error, the READ_LOG_EXT command
2379 		 * from libata-eh *must* use mv_qc_issue_fis().
2380 		 * Otherwise it might fail, due to chip errata.
2381 		 *
2382 		 * Rather than special-case it, we'll just *always*
2383 		 * use this method here for READ_LOG_EXT, making for
2384 		 * easier testing.
2385 		 */
2386 		if (IS_GEN_II(hpriv))
2387 			return mv_qc_issue_fis(qc);
2388 	}
2389 	return ata_bmdma_qc_issue(qc);
2390 }
2391 
2392 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2393 {
2394 	struct mv_port_priv *pp = ap->private_data;
2395 	struct ata_queued_cmd *qc;
2396 
2397 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2398 		return NULL;
2399 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2400 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2401 		return qc;
2402 	return NULL;
2403 }
2404 
2405 static void mv_pmp_error_handler(struct ata_port *ap)
2406 {
2407 	unsigned int pmp, pmp_map;
2408 	struct mv_port_priv *pp = ap->private_data;
2409 
2410 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2411 		/*
2412 		 * Perform NCQ error analysis on failed PMPs
2413 		 * before we freeze the port entirely.
2414 		 *
2415 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2416 		 */
2417 		pmp_map = pp->delayed_eh_pmp_map;
2418 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2419 		for (pmp = 0; pmp_map != 0; pmp++) {
2420 			unsigned int this_pmp = (1 << pmp);
2421 			if (pmp_map & this_pmp) {
2422 				struct ata_link *link = &ap->pmp_link[pmp];
2423 				pmp_map &= ~this_pmp;
2424 				ata_eh_analyze_ncq_error(link);
2425 			}
2426 		}
2427 		ata_port_freeze(ap);
2428 	}
2429 	sata_pmp_error_handler(ap);
2430 }
2431 
2432 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2433 {
2434 	void __iomem *port_mmio = mv_ap_base(ap);
2435 
2436 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2437 }
2438 
2439 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2440 {
2441 	struct ata_eh_info *ehi;
2442 	unsigned int pmp;
2443 
2444 	/*
2445 	 * Initialize EH info for PMPs which saw device errors
2446 	 */
2447 	ehi = &ap->link.eh_info;
2448 	for (pmp = 0; pmp_map != 0; pmp++) {
2449 		unsigned int this_pmp = (1 << pmp);
2450 		if (pmp_map & this_pmp) {
2451 			struct ata_link *link = &ap->pmp_link[pmp];
2452 
2453 			pmp_map &= ~this_pmp;
2454 			ehi = &link->eh_info;
2455 			ata_ehi_clear_desc(ehi);
2456 			ata_ehi_push_desc(ehi, "dev err");
2457 			ehi->err_mask |= AC_ERR_DEV;
2458 			ehi->action |= ATA_EH_RESET;
2459 			ata_link_abort(link);
2460 		}
2461 	}
2462 }
2463 
2464 static int mv_req_q_empty(struct ata_port *ap)
2465 {
2466 	void __iomem *port_mmio = mv_ap_base(ap);
2467 	u32 in_ptr, out_ptr;
2468 
2469 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2470 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2471 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2472 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2473 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2474 }
2475 
2476 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2477 {
2478 	struct mv_port_priv *pp = ap->private_data;
2479 	int failed_links;
2480 	unsigned int old_map, new_map;
2481 
2482 	/*
2483 	 * Device error during FBS+NCQ operation:
2484 	 *
2485 	 * Set a port flag to prevent further I/O being enqueued.
2486 	 * Leave the EDMA running to drain outstanding commands from this port.
2487 	 * Perform the post-mortem/EH only when all responses are complete.
2488 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2489 	 */
2490 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2491 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2492 		pp->delayed_eh_pmp_map = 0;
2493 	}
2494 	old_map = pp->delayed_eh_pmp_map;
2495 	new_map = old_map | mv_get_err_pmp_map(ap);
2496 
2497 	if (old_map != new_map) {
2498 		pp->delayed_eh_pmp_map = new_map;
2499 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2500 	}
2501 	failed_links = hweight16(new_map);
2502 
2503 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2504 			"failed_links=%d nr_active_links=%d\n",
2505 			__func__, pp->delayed_eh_pmp_map,
2506 			ap->qc_active, failed_links,
2507 			ap->nr_active_links);
2508 
2509 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2510 		mv_process_crpb_entries(ap, pp);
2511 		mv_stop_edma(ap);
2512 		mv_eh_freeze(ap);
2513 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2514 		return 1;	/* handled */
2515 	}
2516 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2517 	return 1;	/* handled */
2518 }
2519 
2520 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2521 {
2522 	/*
2523 	 * Possible future enhancement:
2524 	 *
2525 	 * FBS+non-NCQ operation is not yet implemented.
2526 	 * See related notes in mv_edma_cfg().
2527 	 *
2528 	 * Device error during FBS+non-NCQ operation:
2529 	 *
2530 	 * We need to snapshot the shadow registers for each failed command.
2531 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2532 	 */
2533 	return 0;	/* not handled */
2534 }
2535 
2536 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2537 {
2538 	struct mv_port_priv *pp = ap->private_data;
2539 
2540 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2541 		return 0;	/* EDMA was not active: not handled */
2542 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2543 		return 0;	/* FBS was not active: not handled */
2544 
2545 	if (!(edma_err_cause & EDMA_ERR_DEV))
2546 		return 0;	/* non DEV error: not handled */
2547 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2548 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2549 		return 0;	/* other problems: not handled */
2550 
2551 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2552 		/*
2553 		 * EDMA should NOT have self-disabled for this case.
2554 		 * If it did, then something is wrong elsewhere,
2555 		 * and we cannot handle it here.
2556 		 */
2557 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2558 			ata_port_printk(ap, KERN_WARNING,
2559 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2560 				__func__, edma_err_cause, pp->pp_flags);
2561 			return 0; /* not handled */
2562 		}
2563 		return mv_handle_fbs_ncq_dev_err(ap);
2564 	} else {
2565 		/*
2566 		 * EDMA should have self-disabled for this case.
2567 		 * If it did not, then something is wrong elsewhere,
2568 		 * and we cannot handle it here.
2569 		 */
2570 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2571 			ata_port_printk(ap, KERN_WARNING,
2572 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2573 				__func__, edma_err_cause, pp->pp_flags);
2574 			return 0; /* not handled */
2575 		}
2576 		return mv_handle_fbs_non_ncq_dev_err(ap);
2577 	}
2578 	return 0;	/* not handled */
2579 }
2580 
2581 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2582 {
2583 	struct ata_eh_info *ehi = &ap->link.eh_info;
2584 	char *when = "idle";
2585 
2586 	ata_ehi_clear_desc(ehi);
2587 	if (edma_was_enabled) {
2588 		when = "EDMA enabled";
2589 	} else {
2590 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2591 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2592 			when = "polling";
2593 	}
2594 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2595 	ehi->err_mask |= AC_ERR_OTHER;
2596 	ehi->action   |= ATA_EH_RESET;
2597 	ata_port_freeze(ap);
2598 }
2599 
2600 /**
2601  *      mv_err_intr - Handle error interrupts on the port
2602  *      @ap: ATA channel to manipulate
2603  *
2604  *      Most cases require a full reset of the chip's state machine,
2605  *      which also performs a COMRESET.
2606  *      Also, if the port disabled DMA, update our cached copy to match.
2607  *
2608  *      LOCKING:
2609  *      Inherited from caller.
2610  */
2611 static void mv_err_intr(struct ata_port *ap)
2612 {
2613 	void __iomem *port_mmio = mv_ap_base(ap);
2614 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2615 	u32 fis_cause = 0;
2616 	struct mv_port_priv *pp = ap->private_data;
2617 	struct mv_host_priv *hpriv = ap->host->private_data;
2618 	unsigned int action = 0, err_mask = 0;
2619 	struct ata_eh_info *ehi = &ap->link.eh_info;
2620 	struct ata_queued_cmd *qc;
2621 	int abort = 0;
2622 
2623 	/*
2624 	 * Read and clear the SError and err_cause bits.
2625 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2626 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2627 	 */
2628 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2629 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2630 
2631 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2632 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2633 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2634 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2635 	}
2636 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2637 
2638 	if (edma_err_cause & EDMA_ERR_DEV) {
2639 		/*
2640 		 * Device errors during FIS-based switching operation
2641 		 * require special handling.
2642 		 */
2643 		if (mv_handle_dev_err(ap, edma_err_cause))
2644 			return;
2645 	}
2646 
2647 	qc = mv_get_active_qc(ap);
2648 	ata_ehi_clear_desc(ehi);
2649 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2650 			  edma_err_cause, pp->pp_flags);
2651 
2652 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2653 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2654 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2655 			u32 ec = edma_err_cause &
2656 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2657 			sata_async_notification(ap);
2658 			if (!ec)
2659 				return; /* Just an AN; no need for the nukes */
2660 			ata_ehi_push_desc(ehi, "SDB notify");
2661 		}
2662 	}
2663 	/*
2664 	 * All generations share these EDMA error cause bits:
2665 	 */
2666 	if (edma_err_cause & EDMA_ERR_DEV) {
2667 		err_mask |= AC_ERR_DEV;
2668 		action |= ATA_EH_RESET;
2669 		ata_ehi_push_desc(ehi, "dev error");
2670 	}
2671 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2672 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2673 			EDMA_ERR_INTRL_PAR)) {
2674 		err_mask |= AC_ERR_ATA_BUS;
2675 		action |= ATA_EH_RESET;
2676 		ata_ehi_push_desc(ehi, "parity error");
2677 	}
2678 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2679 		ata_ehi_hotplugged(ehi);
2680 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2681 			"dev disconnect" : "dev connect");
2682 		action |= ATA_EH_RESET;
2683 	}
2684 
2685 	/*
2686 	 * Gen-I has a different SELF_DIS bit,
2687 	 * different FREEZE bits, and no SERR bit:
2688 	 */
2689 	if (IS_GEN_I(hpriv)) {
2690 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2691 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2692 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2693 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2694 		}
2695 	} else {
2696 		eh_freeze_mask = EDMA_EH_FREEZE;
2697 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2698 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2699 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2700 		}
2701 		if (edma_err_cause & EDMA_ERR_SERR) {
2702 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2703 			err_mask |= AC_ERR_ATA_BUS;
2704 			action |= ATA_EH_RESET;
2705 		}
2706 	}
2707 
2708 	if (!err_mask) {
2709 		err_mask = AC_ERR_OTHER;
2710 		action |= ATA_EH_RESET;
2711 	}
2712 
2713 	ehi->serror |= serr;
2714 	ehi->action |= action;
2715 
2716 	if (qc)
2717 		qc->err_mask |= err_mask;
2718 	else
2719 		ehi->err_mask |= err_mask;
2720 
2721 	if (err_mask == AC_ERR_DEV) {
2722 		/*
2723 		 * Cannot do ata_port_freeze() here,
2724 		 * because it would kill PIO access,
2725 		 * which is needed for further diagnosis.
2726 		 */
2727 		mv_eh_freeze(ap);
2728 		abort = 1;
2729 	} else if (edma_err_cause & eh_freeze_mask) {
2730 		/*
2731 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2732 		 */
2733 		ata_port_freeze(ap);
2734 	} else {
2735 		abort = 1;
2736 	}
2737 
2738 	if (abort) {
2739 		if (qc)
2740 			ata_link_abort(qc->dev->link);
2741 		else
2742 			ata_port_abort(ap);
2743 	}
2744 }
2745 
2746 static void mv_process_crpb_response(struct ata_port *ap,
2747 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2748 {
2749 	u8 ata_status;
2750 	u16 edma_status = le16_to_cpu(response->flags);
2751 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2752 
2753 	if (unlikely(!qc)) {
2754 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2755 				__func__, tag);
2756 		return;
2757 	}
2758 
2759 	/*
2760 	 * edma_status from a response queue entry:
2761 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2762 	 *   MSB is saved ATA status from command completion.
2763 	 */
2764 	if (!ncq_enabled) {
2765 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2766 		if (err_cause) {
2767 			/*
2768 			 * Error will be seen/handled by
2769 			 * mv_err_intr().  So do nothing at all here.
2770 			 */
2771 			return;
2772 		}
2773 	}
2774 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2775 	if (!ac_err_mask(ata_status))
2776 		ata_qc_complete(qc);
2777 	/* else: leave it for mv_err_intr() */
2778 }
2779 
2780 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2781 {
2782 	void __iomem *port_mmio = mv_ap_base(ap);
2783 	struct mv_host_priv *hpriv = ap->host->private_data;
2784 	u32 in_index;
2785 	bool work_done = false;
2786 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2787 
2788 	/* Get the hardware queue position index */
2789 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2790 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2791 
2792 	/* Process new responses from since the last time we looked */
2793 	while (in_index != pp->resp_idx) {
2794 		unsigned int tag;
2795 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2796 
2797 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2798 
2799 		if (IS_GEN_I(hpriv)) {
2800 			/* 50xx: no NCQ, only one command active at a time */
2801 			tag = ap->link.active_tag;
2802 		} else {
2803 			/* Gen II/IIE: get command tag from CRPB entry */
2804 			tag = le16_to_cpu(response->id) & 0x1f;
2805 		}
2806 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2807 		work_done = true;
2808 	}
2809 
2810 	/* Update the software queue position index in hardware */
2811 	if (work_done)
2812 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2813 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2814 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2815 }
2816 
2817 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2818 {
2819 	struct mv_port_priv *pp;
2820 	int edma_was_enabled;
2821 
2822 	/*
2823 	 * Grab a snapshot of the EDMA_EN flag setting,
2824 	 * so that we have a consistent view for this port,
2825 	 * even if something we call of our routines changes it.
2826 	 */
2827 	pp = ap->private_data;
2828 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2829 	/*
2830 	 * Process completed CRPB response(s) before other events.
2831 	 */
2832 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2833 		mv_process_crpb_entries(ap, pp);
2834 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2835 			mv_handle_fbs_ncq_dev_err(ap);
2836 	}
2837 	/*
2838 	 * Handle chip-reported errors, or continue on to handle PIO.
2839 	 */
2840 	if (unlikely(port_cause & ERR_IRQ)) {
2841 		mv_err_intr(ap);
2842 	} else if (!edma_was_enabled) {
2843 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2844 		if (qc)
2845 			ata_bmdma_port_intr(ap, qc);
2846 		else
2847 			mv_unexpected_intr(ap, edma_was_enabled);
2848 	}
2849 }
2850 
2851 /**
2852  *      mv_host_intr - Handle all interrupts on the given host controller
2853  *      @host: host specific structure
2854  *      @main_irq_cause: Main interrupt cause register for the chip.
2855  *
2856  *      LOCKING:
2857  *      Inherited from caller.
2858  */
2859 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2860 {
2861 	struct mv_host_priv *hpriv = host->private_data;
2862 	void __iomem *mmio = hpriv->base, *hc_mmio;
2863 	unsigned int handled = 0, port;
2864 
2865 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2866 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2867 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2868 
2869 	for (port = 0; port < hpriv->n_ports; port++) {
2870 		struct ata_port *ap = host->ports[port];
2871 		unsigned int p, shift, hardport, port_cause;
2872 
2873 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2874 		/*
2875 		 * Each hc within the host has its own hc_irq_cause register,
2876 		 * where the interrupting ports bits get ack'd.
2877 		 */
2878 		if (hardport == 0) {	/* first port on this hc ? */
2879 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2880 			u32 port_mask, ack_irqs;
2881 			/*
2882 			 * Skip this entire hc if nothing pending for any ports
2883 			 */
2884 			if (!hc_cause) {
2885 				port += MV_PORTS_PER_HC - 1;
2886 				continue;
2887 			}
2888 			/*
2889 			 * We don't need/want to read the hc_irq_cause register,
2890 			 * because doing so hurts performance, and
2891 			 * main_irq_cause already gives us everything we need.
2892 			 *
2893 			 * But we do have to *write* to the hc_irq_cause to ack
2894 			 * the ports that we are handling this time through.
2895 			 *
2896 			 * This requires that we create a bitmap for those
2897 			 * ports which interrupted us, and use that bitmap
2898 			 * to ack (only) those ports via hc_irq_cause.
2899 			 */
2900 			ack_irqs = 0;
2901 			if (hc_cause & PORTS_0_3_COAL_DONE)
2902 				ack_irqs = HC_COAL_IRQ;
2903 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2904 				if ((port + p) >= hpriv->n_ports)
2905 					break;
2906 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2907 				if (hc_cause & port_mask)
2908 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2909 			}
2910 			hc_mmio = mv_hc_base_from_port(mmio, port);
2911 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2912 			handled = 1;
2913 		}
2914 		/*
2915 		 * Handle interrupts signalled for this port:
2916 		 */
2917 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2918 		if (port_cause)
2919 			mv_port_intr(ap, port_cause);
2920 	}
2921 	return handled;
2922 }
2923 
2924 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2925 {
2926 	struct mv_host_priv *hpriv = host->private_data;
2927 	struct ata_port *ap;
2928 	struct ata_queued_cmd *qc;
2929 	struct ata_eh_info *ehi;
2930 	unsigned int i, err_mask, printed = 0;
2931 	u32 err_cause;
2932 
2933 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2934 
2935 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2936 		   err_cause);
2937 
2938 	DPRINTK("All regs @ PCI error\n");
2939 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2940 
2941 	writelfl(0, mmio + hpriv->irq_cause_offset);
2942 
2943 	for (i = 0; i < host->n_ports; i++) {
2944 		ap = host->ports[i];
2945 		if (!ata_link_offline(&ap->link)) {
2946 			ehi = &ap->link.eh_info;
2947 			ata_ehi_clear_desc(ehi);
2948 			if (!printed++)
2949 				ata_ehi_push_desc(ehi,
2950 					"PCI err cause 0x%08x", err_cause);
2951 			err_mask = AC_ERR_HOST_BUS;
2952 			ehi->action = ATA_EH_RESET;
2953 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2954 			if (qc)
2955 				qc->err_mask |= err_mask;
2956 			else
2957 				ehi->err_mask |= err_mask;
2958 
2959 			ata_port_freeze(ap);
2960 		}
2961 	}
2962 	return 1;	/* handled */
2963 }
2964 
2965 /**
2966  *      mv_interrupt - Main interrupt event handler
2967  *      @irq: unused
2968  *      @dev_instance: private data; in this case the host structure
2969  *
2970  *      Read the read only register to determine if any host
2971  *      controllers have pending interrupts.  If so, call lower level
2972  *      routine to handle.  Also check for PCI errors which are only
2973  *      reported here.
2974  *
2975  *      LOCKING:
2976  *      This routine holds the host lock while processing pending
2977  *      interrupts.
2978  */
2979 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2980 {
2981 	struct ata_host *host = dev_instance;
2982 	struct mv_host_priv *hpriv = host->private_data;
2983 	unsigned int handled = 0;
2984 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2985 	u32 main_irq_cause, pending_irqs;
2986 
2987 	spin_lock(&host->lock);
2988 
2989 	/* for MSI:  block new interrupts while in here */
2990 	if (using_msi)
2991 		mv_write_main_irq_mask(0, hpriv);
2992 
2993 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2994 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2995 	/*
2996 	 * Deal with cases where we either have nothing pending, or have read
2997 	 * a bogus register value which can indicate HW removal or PCI fault.
2998 	 */
2999 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3000 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3001 			handled = mv_pci_error(host, hpriv->base);
3002 		else
3003 			handled = mv_host_intr(host, pending_irqs);
3004 	}
3005 
3006 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3007 	if (using_msi)
3008 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3009 
3010 	spin_unlock(&host->lock);
3011 
3012 	return IRQ_RETVAL(handled);
3013 }
3014 
3015 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3016 {
3017 	unsigned int ofs;
3018 
3019 	switch (sc_reg_in) {
3020 	case SCR_STATUS:
3021 	case SCR_ERROR:
3022 	case SCR_CONTROL:
3023 		ofs = sc_reg_in * sizeof(u32);
3024 		break;
3025 	default:
3026 		ofs = 0xffffffffU;
3027 		break;
3028 	}
3029 	return ofs;
3030 }
3031 
3032 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3033 {
3034 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3035 	void __iomem *mmio = hpriv->base;
3036 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3037 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3038 
3039 	if (ofs != 0xffffffffU) {
3040 		*val = readl(addr + ofs);
3041 		return 0;
3042 	} else
3043 		return -EINVAL;
3044 }
3045 
3046 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3047 {
3048 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3049 	void __iomem *mmio = hpriv->base;
3050 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3051 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3052 
3053 	if (ofs != 0xffffffffU) {
3054 		writelfl(val, addr + ofs);
3055 		return 0;
3056 	} else
3057 		return -EINVAL;
3058 }
3059 
3060 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3061 {
3062 	struct pci_dev *pdev = to_pci_dev(host->dev);
3063 	int early_5080;
3064 
3065 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3066 
3067 	if (!early_5080) {
3068 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3069 		tmp |= (1 << 0);
3070 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3071 	}
3072 
3073 	mv_reset_pci_bus(host, mmio);
3074 }
3075 
3076 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3077 {
3078 	writel(0x0fcfffff, mmio + FLASH_CTL);
3079 }
3080 
3081 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3082 			   void __iomem *mmio)
3083 {
3084 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3085 	u32 tmp;
3086 
3087 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3088 
3089 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3090 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3091 }
3092 
3093 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3094 {
3095 	u32 tmp;
3096 
3097 	writel(0, mmio + GPIO_PORT_CTL);
3098 
3099 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3100 
3101 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3102 	tmp |= ~(1 << 0);
3103 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3104 }
3105 
3106 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3107 			   unsigned int port)
3108 {
3109 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3110 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3111 	u32 tmp;
3112 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3113 
3114 	if (fix_apm_sq) {
3115 		tmp = readl(phy_mmio + MV5_LTMODE);
3116 		tmp |= (1 << 19);
3117 		writel(tmp, phy_mmio + MV5_LTMODE);
3118 
3119 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3120 		tmp &= ~0x3;
3121 		tmp |= 0x1;
3122 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3123 	}
3124 
3125 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3126 	tmp &= ~mask;
3127 	tmp |= hpriv->signal[port].pre;
3128 	tmp |= hpriv->signal[port].amps;
3129 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3130 }
3131 
3132 
3133 #undef ZERO
3134 #define ZERO(reg) writel(0, port_mmio + (reg))
3135 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3136 			     unsigned int port)
3137 {
3138 	void __iomem *port_mmio = mv_port_base(mmio, port);
3139 
3140 	mv_reset_channel(hpriv, mmio, port);
3141 
3142 	ZERO(0x028);	/* command */
3143 	writel(0x11f, port_mmio + EDMA_CFG);
3144 	ZERO(0x004);	/* timer */
3145 	ZERO(0x008);	/* irq err cause */
3146 	ZERO(0x00c);	/* irq err mask */
3147 	ZERO(0x010);	/* rq bah */
3148 	ZERO(0x014);	/* rq inp */
3149 	ZERO(0x018);	/* rq outp */
3150 	ZERO(0x01c);	/* respq bah */
3151 	ZERO(0x024);	/* respq outp */
3152 	ZERO(0x020);	/* respq inp */
3153 	ZERO(0x02c);	/* test control */
3154 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3155 }
3156 #undef ZERO
3157 
3158 #define ZERO(reg) writel(0, hc_mmio + (reg))
3159 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3160 			unsigned int hc)
3161 {
3162 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3163 	u32 tmp;
3164 
3165 	ZERO(0x00c);
3166 	ZERO(0x010);
3167 	ZERO(0x014);
3168 	ZERO(0x018);
3169 
3170 	tmp = readl(hc_mmio + 0x20);
3171 	tmp &= 0x1c1c1c1c;
3172 	tmp |= 0x03030303;
3173 	writel(tmp, hc_mmio + 0x20);
3174 }
3175 #undef ZERO
3176 
3177 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3178 			unsigned int n_hc)
3179 {
3180 	unsigned int hc, port;
3181 
3182 	for (hc = 0; hc < n_hc; hc++) {
3183 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3184 			mv5_reset_hc_port(hpriv, mmio,
3185 					  (hc * MV_PORTS_PER_HC) + port);
3186 
3187 		mv5_reset_one_hc(hpriv, mmio, hc);
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 #undef ZERO
3194 #define ZERO(reg) writel(0, mmio + (reg))
3195 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3196 {
3197 	struct mv_host_priv *hpriv = host->private_data;
3198 	u32 tmp;
3199 
3200 	tmp = readl(mmio + MV_PCI_MODE);
3201 	tmp &= 0xff00ffff;
3202 	writel(tmp, mmio + MV_PCI_MODE);
3203 
3204 	ZERO(MV_PCI_DISC_TIMER);
3205 	ZERO(MV_PCI_MSI_TRIGGER);
3206 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3207 	ZERO(MV_PCI_SERR_MASK);
3208 	ZERO(hpriv->irq_cause_offset);
3209 	ZERO(hpriv->irq_mask_offset);
3210 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3211 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3212 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3213 	ZERO(MV_PCI_ERR_COMMAND);
3214 }
3215 #undef ZERO
3216 
3217 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3218 {
3219 	u32 tmp;
3220 
3221 	mv5_reset_flash(hpriv, mmio);
3222 
3223 	tmp = readl(mmio + GPIO_PORT_CTL);
3224 	tmp &= 0x3;
3225 	tmp |= (1 << 5) | (1 << 6);
3226 	writel(tmp, mmio + GPIO_PORT_CTL);
3227 }
3228 
3229 /**
3230  *      mv6_reset_hc - Perform the 6xxx global soft reset
3231  *      @mmio: base address of the HBA
3232  *
3233  *      This routine only applies to 6xxx parts.
3234  *
3235  *      LOCKING:
3236  *      Inherited from caller.
3237  */
3238 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3239 			unsigned int n_hc)
3240 {
3241 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3242 	int i, rc = 0;
3243 	u32 t;
3244 
3245 	/* Following procedure defined in PCI "main command and status
3246 	 * register" table.
3247 	 */
3248 	t = readl(reg);
3249 	writel(t | STOP_PCI_MASTER, reg);
3250 
3251 	for (i = 0; i < 1000; i++) {
3252 		udelay(1);
3253 		t = readl(reg);
3254 		if (PCI_MASTER_EMPTY & t)
3255 			break;
3256 	}
3257 	if (!(PCI_MASTER_EMPTY & t)) {
3258 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3259 		rc = 1;
3260 		goto done;
3261 	}
3262 
3263 	/* set reset */
3264 	i = 5;
3265 	do {
3266 		writel(t | GLOB_SFT_RST, reg);
3267 		t = readl(reg);
3268 		udelay(1);
3269 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3270 
3271 	if (!(GLOB_SFT_RST & t)) {
3272 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3273 		rc = 1;
3274 		goto done;
3275 	}
3276 
3277 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3278 	i = 5;
3279 	do {
3280 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3281 		t = readl(reg);
3282 		udelay(1);
3283 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3284 
3285 	if (GLOB_SFT_RST & t) {
3286 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3287 		rc = 1;
3288 	}
3289 done:
3290 	return rc;
3291 }
3292 
3293 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3294 			   void __iomem *mmio)
3295 {
3296 	void __iomem *port_mmio;
3297 	u32 tmp;
3298 
3299 	tmp = readl(mmio + RESET_CFG);
3300 	if ((tmp & (1 << 0)) == 0) {
3301 		hpriv->signal[idx].amps = 0x7 << 8;
3302 		hpriv->signal[idx].pre = 0x1 << 5;
3303 		return;
3304 	}
3305 
3306 	port_mmio = mv_port_base(mmio, idx);
3307 	tmp = readl(port_mmio + PHY_MODE2);
3308 
3309 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3310 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3311 }
3312 
3313 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3314 {
3315 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3316 }
3317 
3318 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3319 			   unsigned int port)
3320 {
3321 	void __iomem *port_mmio = mv_port_base(mmio, port);
3322 
3323 	u32 hp_flags = hpriv->hp_flags;
3324 	int fix_phy_mode2 =
3325 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3326 	int fix_phy_mode4 =
3327 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3328 	u32 m2, m3;
3329 
3330 	if (fix_phy_mode2) {
3331 		m2 = readl(port_mmio + PHY_MODE2);
3332 		m2 &= ~(1 << 16);
3333 		m2 |= (1 << 31);
3334 		writel(m2, port_mmio + PHY_MODE2);
3335 
3336 		udelay(200);
3337 
3338 		m2 = readl(port_mmio + PHY_MODE2);
3339 		m2 &= ~((1 << 16) | (1 << 31));
3340 		writel(m2, port_mmio + PHY_MODE2);
3341 
3342 		udelay(200);
3343 	}
3344 
3345 	/*
3346 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3347 	 * Achieves better receiver noise performance than the h/w default:
3348 	 */
3349 	m3 = readl(port_mmio + PHY_MODE3);
3350 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3351 
3352 	/* Guideline 88F5182 (GL# SATA-S11) */
3353 	if (IS_SOC(hpriv))
3354 		m3 &= ~0x1c;
3355 
3356 	if (fix_phy_mode4) {
3357 		u32 m4 = readl(port_mmio + PHY_MODE4);
3358 		/*
3359 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3360 		 * For earlier chipsets, force only the internal config field
3361 		 *  (workaround for errata FEr SATA#10 part 1).
3362 		 */
3363 		if (IS_GEN_IIE(hpriv))
3364 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3365 		else
3366 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3367 		writel(m4, port_mmio + PHY_MODE4);
3368 	}
3369 	/*
3370 	 * Workaround for 60x1-B2 errata SATA#13:
3371 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3372 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3373 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3374 	 */
3375 	writel(m3, port_mmio + PHY_MODE3);
3376 
3377 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3378 	m2 = readl(port_mmio + PHY_MODE2);
3379 
3380 	m2 &= ~MV_M2_PREAMP_MASK;
3381 	m2 |= hpriv->signal[port].amps;
3382 	m2 |= hpriv->signal[port].pre;
3383 	m2 &= ~(1 << 16);
3384 
3385 	/* according to mvSata 3.6.1, some IIE values are fixed */
3386 	if (IS_GEN_IIE(hpriv)) {
3387 		m2 &= ~0xC30FF01F;
3388 		m2 |= 0x0000900F;
3389 	}
3390 
3391 	writel(m2, port_mmio + PHY_MODE2);
3392 }
3393 
3394 /* TODO: use the generic LED interface to configure the SATA Presence */
3395 /* & Acitivy LEDs on the board */
3396 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3397 				      void __iomem *mmio)
3398 {
3399 	return;
3400 }
3401 
3402 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3403 			   void __iomem *mmio)
3404 {
3405 	void __iomem *port_mmio;
3406 	u32 tmp;
3407 
3408 	port_mmio = mv_port_base(mmio, idx);
3409 	tmp = readl(port_mmio + PHY_MODE2);
3410 
3411 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3412 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3413 }
3414 
3415 #undef ZERO
3416 #define ZERO(reg) writel(0, port_mmio + (reg))
3417 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3418 					void __iomem *mmio, unsigned int port)
3419 {
3420 	void __iomem *port_mmio = mv_port_base(mmio, port);
3421 
3422 	mv_reset_channel(hpriv, mmio, port);
3423 
3424 	ZERO(0x028);		/* command */
3425 	writel(0x101f, port_mmio + EDMA_CFG);
3426 	ZERO(0x004);		/* timer */
3427 	ZERO(0x008);		/* irq err cause */
3428 	ZERO(0x00c);		/* irq err mask */
3429 	ZERO(0x010);		/* rq bah */
3430 	ZERO(0x014);		/* rq inp */
3431 	ZERO(0x018);		/* rq outp */
3432 	ZERO(0x01c);		/* respq bah */
3433 	ZERO(0x024);		/* respq outp */
3434 	ZERO(0x020);		/* respq inp */
3435 	ZERO(0x02c);		/* test control */
3436 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3437 }
3438 
3439 #undef ZERO
3440 
3441 #define ZERO(reg) writel(0, hc_mmio + (reg))
3442 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3443 				       void __iomem *mmio)
3444 {
3445 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3446 
3447 	ZERO(0x00c);
3448 	ZERO(0x010);
3449 	ZERO(0x014);
3450 
3451 }
3452 
3453 #undef ZERO
3454 
3455 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3456 				  void __iomem *mmio, unsigned int n_hc)
3457 {
3458 	unsigned int port;
3459 
3460 	for (port = 0; port < hpriv->n_ports; port++)
3461 		mv_soc_reset_hc_port(hpriv, mmio, port);
3462 
3463 	mv_soc_reset_one_hc(hpriv, mmio);
3464 
3465 	return 0;
3466 }
3467 
3468 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3469 				      void __iomem *mmio)
3470 {
3471 	return;
3472 }
3473 
3474 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3475 {
3476 	return;
3477 }
3478 
3479 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3480 				  void __iomem *mmio, unsigned int port)
3481 {
3482 	void __iomem *port_mmio = mv_port_base(mmio, port);
3483 	u32	reg;
3484 
3485 	reg = readl(port_mmio + PHY_MODE3);
3486 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3487 	reg |= (0x1 << 27);
3488 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3489 	reg |= (0x1 << 29);
3490 	writel(reg, port_mmio + PHY_MODE3);
3491 
3492 	reg = readl(port_mmio + PHY_MODE4);
3493 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3494 	reg |= (0x1 << 16);
3495 	writel(reg, port_mmio + PHY_MODE4);
3496 
3497 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3498 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3499 	reg |= 0x8;
3500 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3501 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3502 
3503 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3504 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3505 	reg |= 0x8;
3506 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3507 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3508 }
3509 
3510 /**
3511  *	soc_is_65 - check if the soc is 65 nano device
3512  *
3513  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3514  *	register, this register should contain non-zero value and it exists only
3515  *	in the 65 nano devices, when reading it from older devices we get 0.
3516  */
3517 static bool soc_is_65n(struct mv_host_priv *hpriv)
3518 {
3519 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3520 
3521 	if (readl(port0_mmio + PHYCFG_OFS))
3522 		return true;
3523 	return false;
3524 }
3525 
3526 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3527 {
3528 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3529 
3530 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3531 	if (want_gen2i)
3532 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3533 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3534 }
3535 
3536 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3537 			     unsigned int port_no)
3538 {
3539 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3540 
3541 	/*
3542 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3543 	 * (but doesn't say what the problem might be).  So we first try
3544 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3545 	 */
3546 	mv_stop_edma_engine(port_mmio);
3547 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3548 
3549 	if (!IS_GEN_I(hpriv)) {
3550 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3551 		mv_setup_ifcfg(port_mmio, 1);
3552 	}
3553 	/*
3554 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3555 	 * link, and physical layers.  It resets all SATA interface registers
3556 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3557 	 */
3558 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3559 	udelay(25);	/* allow reset propagation */
3560 	writelfl(0, port_mmio + EDMA_CMD);
3561 
3562 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3563 
3564 	if (IS_GEN_I(hpriv))
3565 		mdelay(1);
3566 }
3567 
3568 static void mv_pmp_select(struct ata_port *ap, int pmp)
3569 {
3570 	if (sata_pmp_supported(ap)) {
3571 		void __iomem *port_mmio = mv_ap_base(ap);
3572 		u32 reg = readl(port_mmio + SATA_IFCTL);
3573 		int old = reg & 0xf;
3574 
3575 		if (old != pmp) {
3576 			reg = (reg & ~0xf) | pmp;
3577 			writelfl(reg, port_mmio + SATA_IFCTL);
3578 		}
3579 	}
3580 }
3581 
3582 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3583 				unsigned long deadline)
3584 {
3585 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3586 	return sata_std_hardreset(link, class, deadline);
3587 }
3588 
3589 static int mv_softreset(struct ata_link *link, unsigned int *class,
3590 				unsigned long deadline)
3591 {
3592 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3593 	return ata_sff_softreset(link, class, deadline);
3594 }
3595 
3596 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3597 			unsigned long deadline)
3598 {
3599 	struct ata_port *ap = link->ap;
3600 	struct mv_host_priv *hpriv = ap->host->private_data;
3601 	struct mv_port_priv *pp = ap->private_data;
3602 	void __iomem *mmio = hpriv->base;
3603 	int rc, attempts = 0, extra = 0;
3604 	u32 sstatus;
3605 	bool online;
3606 
3607 	mv_reset_channel(hpriv, mmio, ap->port_no);
3608 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3609 	pp->pp_flags &=
3610 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3611 
3612 	/* Workaround for errata FEr SATA#10 (part 2) */
3613 	do {
3614 		const unsigned long *timing =
3615 				sata_ehc_deb_timing(&link->eh_context);
3616 
3617 		rc = sata_link_hardreset(link, timing, deadline + extra,
3618 					 &online, NULL);
3619 		rc = online ? -EAGAIN : rc;
3620 		if (rc)
3621 			return rc;
3622 		sata_scr_read(link, SCR_STATUS, &sstatus);
3623 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3624 			/* Force 1.5gb/s link speed and try again */
3625 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3626 			if (time_after(jiffies + HZ, deadline))
3627 				extra = HZ; /* only extend it once, max */
3628 		}
3629 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3630 	mv_save_cached_regs(ap);
3631 	mv_edma_cfg(ap, 0, 0);
3632 
3633 	return rc;
3634 }
3635 
3636 static void mv_eh_freeze(struct ata_port *ap)
3637 {
3638 	mv_stop_edma(ap);
3639 	mv_enable_port_irqs(ap, 0);
3640 }
3641 
3642 static void mv_eh_thaw(struct ata_port *ap)
3643 {
3644 	struct mv_host_priv *hpriv = ap->host->private_data;
3645 	unsigned int port = ap->port_no;
3646 	unsigned int hardport = mv_hardport_from_port(port);
3647 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3648 	void __iomem *port_mmio = mv_ap_base(ap);
3649 	u32 hc_irq_cause;
3650 
3651 	/* clear EDMA errors on this port */
3652 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3653 
3654 	/* clear pending irq events */
3655 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3656 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3657 
3658 	mv_enable_port_irqs(ap, ERR_IRQ);
3659 }
3660 
3661 /**
3662  *      mv_port_init - Perform some early initialization on a single port.
3663  *      @port: libata data structure storing shadow register addresses
3664  *      @port_mmio: base address of the port
3665  *
3666  *      Initialize shadow register mmio addresses, clear outstanding
3667  *      interrupts on the port, and unmask interrupts for the future
3668  *      start of the port.
3669  *
3670  *      LOCKING:
3671  *      Inherited from caller.
3672  */
3673 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3674 {
3675 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3676 
3677 	/* PIO related setup
3678 	 */
3679 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3680 	port->error_addr =
3681 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3682 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3683 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3684 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3685 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3686 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3687 	port->status_addr =
3688 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3689 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3690 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3691 
3692 	/* Clear any currently outstanding port interrupt conditions */
3693 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3694 	writelfl(readl(serr), serr);
3695 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3696 
3697 	/* unmask all non-transient EDMA error interrupts */
3698 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3699 
3700 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3701 		readl(port_mmio + EDMA_CFG),
3702 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3703 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3704 }
3705 
3706 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3707 {
3708 	struct mv_host_priv *hpriv = host->private_data;
3709 	void __iomem *mmio = hpriv->base;
3710 	u32 reg;
3711 
3712 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3713 		return 0;	/* not PCI-X capable */
3714 	reg = readl(mmio + MV_PCI_MODE);
3715 	if ((reg & MV_PCI_MODE_MASK) == 0)
3716 		return 0;	/* conventional PCI mode */
3717 	return 1;	/* chip is in PCI-X mode */
3718 }
3719 
3720 static int mv_pci_cut_through_okay(struct ata_host *host)
3721 {
3722 	struct mv_host_priv *hpriv = host->private_data;
3723 	void __iomem *mmio = hpriv->base;
3724 	u32 reg;
3725 
3726 	if (!mv_in_pcix_mode(host)) {
3727 		reg = readl(mmio + MV_PCI_COMMAND);
3728 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3729 			return 0; /* not okay */
3730 	}
3731 	return 1; /* okay */
3732 }
3733 
3734 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3735 {
3736 	struct mv_host_priv *hpriv = host->private_data;
3737 	void __iomem *mmio = hpriv->base;
3738 
3739 	/* workaround for 60x1-B2 errata PCI#7 */
3740 	if (mv_in_pcix_mode(host)) {
3741 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3742 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3743 	}
3744 }
3745 
3746 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3747 {
3748 	struct pci_dev *pdev = to_pci_dev(host->dev);
3749 	struct mv_host_priv *hpriv = host->private_data;
3750 	u32 hp_flags = hpriv->hp_flags;
3751 
3752 	switch (board_idx) {
3753 	case chip_5080:
3754 		hpriv->ops = &mv5xxx_ops;
3755 		hp_flags |= MV_HP_GEN_I;
3756 
3757 		switch (pdev->revision) {
3758 		case 0x1:
3759 			hp_flags |= MV_HP_ERRATA_50XXB0;
3760 			break;
3761 		case 0x3:
3762 			hp_flags |= MV_HP_ERRATA_50XXB2;
3763 			break;
3764 		default:
3765 			dev_printk(KERN_WARNING, &pdev->dev,
3766 			   "Applying 50XXB2 workarounds to unknown rev\n");
3767 			hp_flags |= MV_HP_ERRATA_50XXB2;
3768 			break;
3769 		}
3770 		break;
3771 
3772 	case chip_504x:
3773 	case chip_508x:
3774 		hpriv->ops = &mv5xxx_ops;
3775 		hp_flags |= MV_HP_GEN_I;
3776 
3777 		switch (pdev->revision) {
3778 		case 0x0:
3779 			hp_flags |= MV_HP_ERRATA_50XXB0;
3780 			break;
3781 		case 0x3:
3782 			hp_flags |= MV_HP_ERRATA_50XXB2;
3783 			break;
3784 		default:
3785 			dev_printk(KERN_WARNING, &pdev->dev,
3786 			   "Applying B2 workarounds to unknown rev\n");
3787 			hp_flags |= MV_HP_ERRATA_50XXB2;
3788 			break;
3789 		}
3790 		break;
3791 
3792 	case chip_604x:
3793 	case chip_608x:
3794 		hpriv->ops = &mv6xxx_ops;
3795 		hp_flags |= MV_HP_GEN_II;
3796 
3797 		switch (pdev->revision) {
3798 		case 0x7:
3799 			mv_60x1b2_errata_pci7(host);
3800 			hp_flags |= MV_HP_ERRATA_60X1B2;
3801 			break;
3802 		case 0x9:
3803 			hp_flags |= MV_HP_ERRATA_60X1C0;
3804 			break;
3805 		default:
3806 			dev_printk(KERN_WARNING, &pdev->dev,
3807 				   "Applying B2 workarounds to unknown rev\n");
3808 			hp_flags |= MV_HP_ERRATA_60X1B2;
3809 			break;
3810 		}
3811 		break;
3812 
3813 	case chip_7042:
3814 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3815 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3816 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3817 		{
3818 			/*
3819 			 * Highpoint RocketRAID PCIe 23xx series cards:
3820 			 *
3821 			 * Unconfigured drives are treated as "Legacy"
3822 			 * by the BIOS, and it overwrites sector 8 with
3823 			 * a "Lgcy" metadata block prior to Linux boot.
3824 			 *
3825 			 * Configured drives (RAID or JBOD) leave sector 8
3826 			 * alone, but instead overwrite a high numbered
3827 			 * sector for the RAID metadata.  This sector can
3828 			 * be determined exactly, by truncating the physical
3829 			 * drive capacity to a nice even GB value.
3830 			 *
3831 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3832 			 *
3833 			 * Warn the user, lest they think we're just buggy.
3834 			 */
3835 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3836 				" BIOS CORRUPTS DATA on all attached drives,"
3837 				" regardless of if/how they are configured."
3838 				" BEWARE!\n");
3839 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3840 				" use sectors 8-9 on \"Legacy\" drives,"
3841 				" and avoid the final two gigabytes on"
3842 				" all RocketRAID BIOS initialized drives.\n");
3843 		}
3844 		/* drop through */
3845 	case chip_6042:
3846 		hpriv->ops = &mv6xxx_ops;
3847 		hp_flags |= MV_HP_GEN_IIE;
3848 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3849 			hp_flags |= MV_HP_CUT_THROUGH;
3850 
3851 		switch (pdev->revision) {
3852 		case 0x2: /* Rev.B0: the first/only public release */
3853 			hp_flags |= MV_HP_ERRATA_60X1C0;
3854 			break;
3855 		default:
3856 			dev_printk(KERN_WARNING, &pdev->dev,
3857 			   "Applying 60X1C0 workarounds to unknown rev\n");
3858 			hp_flags |= MV_HP_ERRATA_60X1C0;
3859 			break;
3860 		}
3861 		break;
3862 	case chip_soc:
3863 		if (soc_is_65n(hpriv))
3864 			hpriv->ops = &mv_soc_65n_ops;
3865 		else
3866 			hpriv->ops = &mv_soc_ops;
3867 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3868 			MV_HP_ERRATA_60X1C0;
3869 		break;
3870 
3871 	default:
3872 		dev_printk(KERN_ERR, host->dev,
3873 			   "BUG: invalid board index %u\n", board_idx);
3874 		return 1;
3875 	}
3876 
3877 	hpriv->hp_flags = hp_flags;
3878 	if (hp_flags & MV_HP_PCIE) {
3879 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3880 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3881 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3882 	} else {
3883 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3884 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3885 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3886 	}
3887 
3888 	return 0;
3889 }
3890 
3891 /**
3892  *      mv_init_host - Perform some early initialization of the host.
3893  *	@host: ATA host to initialize
3894  *
3895  *      If possible, do an early global reset of the host.  Then do
3896  *      our port init and clear/unmask all/relevant host interrupts.
3897  *
3898  *      LOCKING:
3899  *      Inherited from caller.
3900  */
3901 static int mv_init_host(struct ata_host *host)
3902 {
3903 	int rc = 0, n_hc, port, hc;
3904 	struct mv_host_priv *hpriv = host->private_data;
3905 	void __iomem *mmio = hpriv->base;
3906 
3907 	rc = mv_chip_id(host, hpriv->board_idx);
3908 	if (rc)
3909 		goto done;
3910 
3911 	if (IS_SOC(hpriv)) {
3912 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3913 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3914 	} else {
3915 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3916 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3917 	}
3918 
3919 	/* initialize shadow irq mask with register's value */
3920 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3921 
3922 	/* global interrupt mask: 0 == mask everything */
3923 	mv_set_main_irq_mask(host, ~0, 0);
3924 
3925 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3926 
3927 	for (port = 0; port < host->n_ports; port++)
3928 		if (hpriv->ops->read_preamp)
3929 			hpriv->ops->read_preamp(hpriv, port, mmio);
3930 
3931 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3932 	if (rc)
3933 		goto done;
3934 
3935 	hpriv->ops->reset_flash(hpriv, mmio);
3936 	hpriv->ops->reset_bus(host, mmio);
3937 	hpriv->ops->enable_leds(hpriv, mmio);
3938 
3939 	for (port = 0; port < host->n_ports; port++) {
3940 		struct ata_port *ap = host->ports[port];
3941 		void __iomem *port_mmio = mv_port_base(mmio, port);
3942 
3943 		mv_port_init(&ap->ioaddr, port_mmio);
3944 	}
3945 
3946 	for (hc = 0; hc < n_hc; hc++) {
3947 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3948 
3949 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3950 			"(before clear)=0x%08x\n", hc,
3951 			readl(hc_mmio + HC_CFG),
3952 			readl(hc_mmio + HC_IRQ_CAUSE));
3953 
3954 		/* Clear any currently outstanding hc interrupt conditions */
3955 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3956 	}
3957 
3958 	if (!IS_SOC(hpriv)) {
3959 		/* Clear any currently outstanding host interrupt conditions */
3960 		writelfl(0, mmio + hpriv->irq_cause_offset);
3961 
3962 		/* and unmask interrupt generation for host regs */
3963 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3964 	}
3965 
3966 	/*
3967 	 * enable only global host interrupts for now.
3968 	 * The per-port interrupts get done later as ports are set up.
3969 	 */
3970 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3971 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3972 				    irq_coalescing_usecs);
3973 done:
3974 	return rc;
3975 }
3976 
3977 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3978 {
3979 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3980 							     MV_CRQB_Q_SZ, 0);
3981 	if (!hpriv->crqb_pool)
3982 		return -ENOMEM;
3983 
3984 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3985 							     MV_CRPB_Q_SZ, 0);
3986 	if (!hpriv->crpb_pool)
3987 		return -ENOMEM;
3988 
3989 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3990 							     MV_SG_TBL_SZ, 0);
3991 	if (!hpriv->sg_tbl_pool)
3992 		return -ENOMEM;
3993 
3994 	return 0;
3995 }
3996 
3997 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3998 				 struct mbus_dram_target_info *dram)
3999 {
4000 	int i;
4001 
4002 	for (i = 0; i < 4; i++) {
4003 		writel(0, hpriv->base + WINDOW_CTRL(i));
4004 		writel(0, hpriv->base + WINDOW_BASE(i));
4005 	}
4006 
4007 	for (i = 0; i < dram->num_cs; i++) {
4008 		struct mbus_dram_window *cs = dram->cs + i;
4009 
4010 		writel(((cs->size - 1) & 0xffff0000) |
4011 			(cs->mbus_attr << 8) |
4012 			(dram->mbus_dram_target_id << 4) | 1,
4013 			hpriv->base + WINDOW_CTRL(i));
4014 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4015 	}
4016 }
4017 
4018 /**
4019  *      mv_platform_probe - handle a positive probe of an soc Marvell
4020  *      host
4021  *      @pdev: platform device found
4022  *
4023  *      LOCKING:
4024  *      Inherited from caller.
4025  */
4026 static int mv_platform_probe(struct platform_device *pdev)
4027 {
4028 	static int printed_version;
4029 	const struct mv_sata_platform_data *mv_platform_data;
4030 	const struct ata_port_info *ppi[] =
4031 	    { &mv_port_info[chip_soc], NULL };
4032 	struct ata_host *host;
4033 	struct mv_host_priv *hpriv;
4034 	struct resource *res;
4035 	int n_ports, rc;
4036 
4037 	if (!printed_version++)
4038 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4039 
4040 	/*
4041 	 * Simple resource validation ..
4042 	 */
4043 	if (unlikely(pdev->num_resources != 2)) {
4044 		dev_err(&pdev->dev, "invalid number of resources\n");
4045 		return -EINVAL;
4046 	}
4047 
4048 	/*
4049 	 * Get the register base first
4050 	 */
4051 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4052 	if (res == NULL)
4053 		return -EINVAL;
4054 
4055 	/* allocate host */
4056 	mv_platform_data = pdev->dev.platform_data;
4057 	n_ports = mv_platform_data->n_ports;
4058 
4059 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4060 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4061 
4062 	if (!host || !hpriv)
4063 		return -ENOMEM;
4064 	host->private_data = hpriv;
4065 	hpriv->n_ports = n_ports;
4066 	hpriv->board_idx = chip_soc;
4067 
4068 	host->iomap = NULL;
4069 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4070 				   resource_size(res));
4071 	hpriv->base -= SATAHC0_REG_BASE;
4072 
4073 #if defined(CONFIG_HAVE_CLK)
4074 	hpriv->clk = clk_get(&pdev->dev, NULL);
4075 	if (IS_ERR(hpriv->clk))
4076 		dev_notice(&pdev->dev, "cannot get clkdev\n");
4077 	else
4078 		clk_enable(hpriv->clk);
4079 #endif
4080 
4081 	/*
4082 	 * (Re-)program MBUS remapping windows if we are asked to.
4083 	 */
4084 	if (mv_platform_data->dram != NULL)
4085 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4086 
4087 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4088 	if (rc)
4089 		goto err;
4090 
4091 	/* initialize adapter */
4092 	rc = mv_init_host(host);
4093 	if (rc)
4094 		goto err;
4095 
4096 	dev_printk(KERN_INFO, &pdev->dev,
4097 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4098 		   host->n_ports);
4099 
4100 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4101 				 IRQF_SHARED, &mv6_sht);
4102 err:
4103 #if defined(CONFIG_HAVE_CLK)
4104 	if (!IS_ERR(hpriv->clk)) {
4105 		clk_disable(hpriv->clk);
4106 		clk_put(hpriv->clk);
4107 	}
4108 #endif
4109 
4110 	return rc;
4111 }
4112 
4113 /*
4114  *
4115  *      mv_platform_remove    -       unplug a platform interface
4116  *      @pdev: platform device
4117  *
4118  *      A platform bus SATA device has been unplugged. Perform the needed
4119  *      cleanup. Also called on module unload for any active devices.
4120  */
4121 static int __devexit mv_platform_remove(struct platform_device *pdev)
4122 {
4123 	struct device *dev = &pdev->dev;
4124 	struct ata_host *host = dev_get_drvdata(dev);
4125 #if defined(CONFIG_HAVE_CLK)
4126 	struct mv_host_priv *hpriv = host->private_data;
4127 #endif
4128 	ata_host_detach(host);
4129 
4130 #if defined(CONFIG_HAVE_CLK)
4131 	if (!IS_ERR(hpriv->clk)) {
4132 		clk_disable(hpriv->clk);
4133 		clk_put(hpriv->clk);
4134 	}
4135 #endif
4136 	return 0;
4137 }
4138 
4139 #ifdef CONFIG_PM
4140 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4141 {
4142 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4143 	if (host)
4144 		return ata_host_suspend(host, state);
4145 	else
4146 		return 0;
4147 }
4148 
4149 static int mv_platform_resume(struct platform_device *pdev)
4150 {
4151 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4152 	int ret;
4153 
4154 	if (host) {
4155 		struct mv_host_priv *hpriv = host->private_data;
4156 		const struct mv_sata_platform_data *mv_platform_data = \
4157 			pdev->dev.platform_data;
4158 		/*
4159 		 * (Re-)program MBUS remapping windows if we are asked to.
4160 		 */
4161 		if (mv_platform_data->dram != NULL)
4162 			mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4163 
4164 		/* initialize adapter */
4165 		ret = mv_init_host(host);
4166 		if (ret) {
4167 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4168 			return ret;
4169 		}
4170 		ata_host_resume(host);
4171 	}
4172 
4173 	return 0;
4174 }
4175 #else
4176 #define mv_platform_suspend NULL
4177 #define mv_platform_resume NULL
4178 #endif
4179 
4180 static struct platform_driver mv_platform_driver = {
4181 	.probe			= mv_platform_probe,
4182 	.remove			= __devexit_p(mv_platform_remove),
4183 	.suspend		= mv_platform_suspend,
4184 	.resume			= mv_platform_resume,
4185 	.driver			= {
4186 				   .name = DRV_NAME,
4187 				   .owner = THIS_MODULE,
4188 				  },
4189 };
4190 
4191 
4192 #ifdef CONFIG_PCI
4193 static int mv_pci_init_one(struct pci_dev *pdev,
4194 			   const struct pci_device_id *ent);
4195 #ifdef CONFIG_PM
4196 static int mv_pci_device_resume(struct pci_dev *pdev);
4197 #endif
4198 
4199 
4200 static struct pci_driver mv_pci_driver = {
4201 	.name			= DRV_NAME,
4202 	.id_table		= mv_pci_tbl,
4203 	.probe			= mv_pci_init_one,
4204 	.remove			= ata_pci_remove_one,
4205 #ifdef CONFIG_PM
4206 	.suspend		= ata_pci_device_suspend,
4207 	.resume			= mv_pci_device_resume,
4208 #endif
4209 
4210 };
4211 
4212 /* move to PCI layer or libata core? */
4213 static int pci_go_64(struct pci_dev *pdev)
4214 {
4215 	int rc;
4216 
4217 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4218 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4219 		if (rc) {
4220 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4221 			if (rc) {
4222 				dev_printk(KERN_ERR, &pdev->dev,
4223 					   "64-bit DMA enable failed\n");
4224 				return rc;
4225 			}
4226 		}
4227 	} else {
4228 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4229 		if (rc) {
4230 			dev_printk(KERN_ERR, &pdev->dev,
4231 				   "32-bit DMA enable failed\n");
4232 			return rc;
4233 		}
4234 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4235 		if (rc) {
4236 			dev_printk(KERN_ERR, &pdev->dev,
4237 				   "32-bit consistent DMA enable failed\n");
4238 			return rc;
4239 		}
4240 	}
4241 
4242 	return rc;
4243 }
4244 
4245 /**
4246  *      mv_print_info - Dump key info to kernel log for perusal.
4247  *      @host: ATA host to print info about
4248  *
4249  *      FIXME: complete this.
4250  *
4251  *      LOCKING:
4252  *      Inherited from caller.
4253  */
4254 static void mv_print_info(struct ata_host *host)
4255 {
4256 	struct pci_dev *pdev = to_pci_dev(host->dev);
4257 	struct mv_host_priv *hpriv = host->private_data;
4258 	u8 scc;
4259 	const char *scc_s, *gen;
4260 
4261 	/* Use this to determine the HW stepping of the chip so we know
4262 	 * what errata to workaround
4263 	 */
4264 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4265 	if (scc == 0)
4266 		scc_s = "SCSI";
4267 	else if (scc == 0x01)
4268 		scc_s = "RAID";
4269 	else
4270 		scc_s = "?";
4271 
4272 	if (IS_GEN_I(hpriv))
4273 		gen = "I";
4274 	else if (IS_GEN_II(hpriv))
4275 		gen = "II";
4276 	else if (IS_GEN_IIE(hpriv))
4277 		gen = "IIE";
4278 	else
4279 		gen = "?";
4280 
4281 	dev_printk(KERN_INFO, &pdev->dev,
4282 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4283 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4284 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4285 }
4286 
4287 /**
4288  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4289  *      @pdev: PCI device found
4290  *      @ent: PCI device ID entry for the matched host
4291  *
4292  *      LOCKING:
4293  *      Inherited from caller.
4294  */
4295 static int mv_pci_init_one(struct pci_dev *pdev,
4296 			   const struct pci_device_id *ent)
4297 {
4298 	static int printed_version;
4299 	unsigned int board_idx = (unsigned int)ent->driver_data;
4300 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4301 	struct ata_host *host;
4302 	struct mv_host_priv *hpriv;
4303 	int n_ports, port, rc;
4304 
4305 	if (!printed_version++)
4306 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4307 
4308 	/* allocate host */
4309 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4310 
4311 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4312 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4313 	if (!host || !hpriv)
4314 		return -ENOMEM;
4315 	host->private_data = hpriv;
4316 	hpriv->n_ports = n_ports;
4317 	hpriv->board_idx = board_idx;
4318 
4319 	/* acquire resources */
4320 	rc = pcim_enable_device(pdev);
4321 	if (rc)
4322 		return rc;
4323 
4324 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4325 	if (rc == -EBUSY)
4326 		pcim_pin_device(pdev);
4327 	if (rc)
4328 		return rc;
4329 	host->iomap = pcim_iomap_table(pdev);
4330 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4331 
4332 	rc = pci_go_64(pdev);
4333 	if (rc)
4334 		return rc;
4335 
4336 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4337 	if (rc)
4338 		return rc;
4339 
4340 	for (port = 0; port < host->n_ports; port++) {
4341 		struct ata_port *ap = host->ports[port];
4342 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4343 		unsigned int offset = port_mmio - hpriv->base;
4344 
4345 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4346 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4347 	}
4348 
4349 	/* initialize adapter */
4350 	rc = mv_init_host(host);
4351 	if (rc)
4352 		return rc;
4353 
4354 	/* Enable message-switched interrupts, if requested */
4355 	if (msi && pci_enable_msi(pdev) == 0)
4356 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4357 
4358 	mv_dump_pci_cfg(pdev, 0x68);
4359 	mv_print_info(host);
4360 
4361 	pci_set_master(pdev);
4362 	pci_try_set_mwi(pdev);
4363 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4364 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4365 }
4366 
4367 #ifdef CONFIG_PM
4368 static int mv_pci_device_resume(struct pci_dev *pdev)
4369 {
4370 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
4371 	int rc;
4372 
4373 	rc = ata_pci_device_do_resume(pdev);
4374 	if (rc)
4375 		return rc;
4376 
4377 	/* initialize adapter */
4378 	rc = mv_init_host(host);
4379 	if (rc)
4380 		return rc;
4381 
4382 	ata_host_resume(host);
4383 
4384 	return 0;
4385 }
4386 #endif
4387 #endif
4388 
4389 static int mv_platform_probe(struct platform_device *pdev);
4390 static int __devexit mv_platform_remove(struct platform_device *pdev);
4391 
4392 static int __init mv_init(void)
4393 {
4394 	int rc = -ENODEV;
4395 #ifdef CONFIG_PCI
4396 	rc = pci_register_driver(&mv_pci_driver);
4397 	if (rc < 0)
4398 		return rc;
4399 #endif
4400 	rc = platform_driver_register(&mv_platform_driver);
4401 
4402 #ifdef CONFIG_PCI
4403 	if (rc < 0)
4404 		pci_unregister_driver(&mv_pci_driver);
4405 #endif
4406 	return rc;
4407 }
4408 
4409 static void __exit mv_exit(void)
4410 {
4411 #ifdef CONFIG_PCI
4412 	pci_unregister_driver(&mv_pci_driver);
4413 #endif
4414 	platform_driver_unregister(&mv_platform_driver);
4415 }
4416 
4417 MODULE_AUTHOR("Brett Russ");
4418 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4419 MODULE_LICENSE("GPL");
4420 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4421 MODULE_VERSION(DRV_VERSION);
4422 MODULE_ALIAS("platform:" DRV_NAME);
4423 
4424 module_init(mv_init);
4425 module_exit(mv_exit);
4426