xref: /linux/drivers/acpi/processor_idle.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
52 module_param(max_cstate, uint, 0000);
53 static unsigned int nocst __read_mostly;
54 module_param(nocst, uint, 0000);
55 static int bm_check_disable __read_mostly;
56 module_param(bm_check_disable, uint, 0000);
57 
58 static unsigned int latency_factor __read_mostly = 2;
59 module_param(latency_factor, uint, 0644);
60 
61 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
62 
63 struct cpuidle_driver acpi_idle_driver = {
64 	.name =		"acpi_idle",
65 	.owner =	THIS_MODULE,
66 };
67 
68 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
69 static
70 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
71 
72 static int disabled_by_idle_boot_param(void)
73 {
74 	return boot_option_idle_override == IDLE_POLL ||
75 		boot_option_idle_override == IDLE_HALT;
76 }
77 
78 /*
79  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80  * For now disable this. Probably a bug somewhere else.
81  *
82  * To skip this limit, boot/load with a large max_cstate limit.
83  */
84 static int set_max_cstate(const struct dmi_system_id *id)
85 {
86 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 		return 0;
88 
89 	pr_notice("%s detected - limiting to C%ld max_cstate."
90 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 
93 	max_cstate = (long)id->driver_data;
94 
95 	return 0;
96 }
97 
98 static const struct dmi_system_id processor_power_dmi_table[] = {
99 	{ set_max_cstate, "Clevo 5600D", {
100 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
101 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
102 	 (void *)2},
103 	{ set_max_cstate, "Pavilion zv5000", {
104 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
105 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
106 	 (void *)1},
107 	{ set_max_cstate, "Asus L8400B", {
108 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
109 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
110 	 (void *)1},
111 	{},
112 };
113 
114 
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void __cpuidle acpi_safe_halt(void)
120 {
121 	if (!tif_need_resched()) {
122 		safe_halt();
123 		local_irq_disable();
124 	}
125 }
126 
127 #ifdef ARCH_APICTIMER_STOPS_ON_C3
128 
129 /*
130  * Some BIOS implementations switch to C3 in the published C2 state.
131  * This seems to be a common problem on AMD boxen, but other vendors
132  * are affected too. We pick the most conservative approach: we assume
133  * that the local APIC stops in both C2 and C3.
134  */
135 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
136 				   struct acpi_processor_cx *cx)
137 {
138 	struct acpi_processor_power *pwr = &pr->power;
139 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
140 
141 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
142 		return;
143 
144 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
145 		type = ACPI_STATE_C1;
146 
147 	/*
148 	 * Check, if one of the previous states already marked the lapic
149 	 * unstable
150 	 */
151 	if (pwr->timer_broadcast_on_state < state)
152 		return;
153 
154 	if (cx->type >= type)
155 		pr->power.timer_broadcast_on_state = state;
156 }
157 
158 static void __lapic_timer_propagate_broadcast(void *arg)
159 {
160 	struct acpi_processor *pr = (struct acpi_processor *) arg;
161 
162 	if (pr->power.timer_broadcast_on_state < INT_MAX)
163 		tick_broadcast_enable();
164 	else
165 		tick_broadcast_disable();
166 }
167 
168 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
169 {
170 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
171 				 (void *)pr, 1);
172 }
173 
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
176 				       struct acpi_processor_cx *cx,
177 				       int broadcast)
178 {
179 	int state = cx - pr->power.states;
180 
181 	if (state >= pr->power.timer_broadcast_on_state) {
182 		if (broadcast)
183 			tick_broadcast_enter();
184 		else
185 			tick_broadcast_exit();
186 	}
187 }
188 
189 #else
190 
191 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
192 				   struct acpi_processor_cx *cstate) { }
193 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195 				       struct acpi_processor_cx *cx,
196 				       int broadcast)
197 {
198 }
199 
200 #endif
201 
202 #if defined(CONFIG_X86)
203 static void tsc_check_state(int state)
204 {
205 	switch (boot_cpu_data.x86_vendor) {
206 	case X86_VENDOR_AMD:
207 	case X86_VENDOR_INTEL:
208 		/*
209 		 * AMD Fam10h TSC will tick in all
210 		 * C/P/S0/S1 states when this bit is set.
211 		 */
212 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
213 			return;
214 
215 		/*FALL THROUGH*/
216 	default:
217 		/* TSC could halt in idle, so notify users */
218 		if (state > ACPI_STATE_C1)
219 			mark_tsc_unstable("TSC halts in idle");
220 	}
221 }
222 #else
223 static void tsc_check_state(int state) { return; }
224 #endif
225 
226 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
227 {
228 
229 	if (!pr->pblk)
230 		return -ENODEV;
231 
232 	/* if info is obtained from pblk/fadt, type equals state */
233 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
234 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
235 
236 #ifndef CONFIG_HOTPLUG_CPU
237 	/*
238 	 * Check for P_LVL2_UP flag before entering C2 and above on
239 	 * an SMP system.
240 	 */
241 	if ((num_online_cpus() > 1) &&
242 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
243 		return -ENODEV;
244 #endif
245 
246 	/* determine C2 and C3 address from pblk */
247 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
248 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
249 
250 	/* determine latencies from FADT */
251 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
252 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
253 
254 	/*
255 	 * FADT specified C2 latency must be less than or equal to
256 	 * 100 microseconds.
257 	 */
258 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
259 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
260 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
261 		/* invalidate C2 */
262 		pr->power.states[ACPI_STATE_C2].address = 0;
263 	}
264 
265 	/*
266 	 * FADT supplied C3 latency must be less than or equal to
267 	 * 1000 microseconds.
268 	 */
269 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
270 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
271 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
272 		/* invalidate C3 */
273 		pr->power.states[ACPI_STATE_C3].address = 0;
274 	}
275 
276 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
277 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
278 			  pr->power.states[ACPI_STATE_C2].address,
279 			  pr->power.states[ACPI_STATE_C3].address));
280 
281 	return 0;
282 }
283 
284 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
285 {
286 	if (!pr->power.states[ACPI_STATE_C1].valid) {
287 		/* set the first C-State to C1 */
288 		/* all processors need to support C1 */
289 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
290 		pr->power.states[ACPI_STATE_C1].valid = 1;
291 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
292 	}
293 	/* the C0 state only exists as a filler in our array */
294 	pr->power.states[ACPI_STATE_C0].valid = 1;
295 	return 0;
296 }
297 
298 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
299 {
300 	acpi_status status;
301 	u64 count;
302 	int current_count;
303 	int i, ret = 0;
304 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
305 	union acpi_object *cst;
306 
307 	if (nocst)
308 		return -ENODEV;
309 
310 	current_count = 0;
311 
312 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
313 	if (ACPI_FAILURE(status)) {
314 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
315 		return -ENODEV;
316 	}
317 
318 	cst = buffer.pointer;
319 
320 	/* There must be at least 2 elements */
321 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
322 		pr_err("not enough elements in _CST\n");
323 		ret = -EFAULT;
324 		goto end;
325 	}
326 
327 	count = cst->package.elements[0].integer.value;
328 
329 	/* Validate number of power states. */
330 	if (count < 1 || count != cst->package.count - 1) {
331 		pr_err("count given by _CST is not valid\n");
332 		ret = -EFAULT;
333 		goto end;
334 	}
335 
336 	/* Tell driver that at least _CST is supported. */
337 	pr->flags.has_cst = 1;
338 
339 	for (i = 1; i <= count; i++) {
340 		union acpi_object *element;
341 		union acpi_object *obj;
342 		struct acpi_power_register *reg;
343 		struct acpi_processor_cx cx;
344 
345 		memset(&cx, 0, sizeof(cx));
346 
347 		element = &(cst->package.elements[i]);
348 		if (element->type != ACPI_TYPE_PACKAGE)
349 			continue;
350 
351 		if (element->package.count != 4)
352 			continue;
353 
354 		obj = &(element->package.elements[0]);
355 
356 		if (obj->type != ACPI_TYPE_BUFFER)
357 			continue;
358 
359 		reg = (struct acpi_power_register *)obj->buffer.pointer;
360 
361 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
362 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
363 			continue;
364 
365 		/* There should be an easy way to extract an integer... */
366 		obj = &(element->package.elements[1]);
367 		if (obj->type != ACPI_TYPE_INTEGER)
368 			continue;
369 
370 		cx.type = obj->integer.value;
371 		/*
372 		 * Some buggy BIOSes won't list C1 in _CST -
373 		 * Let acpi_processor_get_power_info_default() handle them later
374 		 */
375 		if (i == 1 && cx.type != ACPI_STATE_C1)
376 			current_count++;
377 
378 		cx.address = reg->address;
379 		cx.index = current_count + 1;
380 
381 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
382 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
383 			if (acpi_processor_ffh_cstate_probe
384 					(pr->id, &cx, reg) == 0) {
385 				cx.entry_method = ACPI_CSTATE_FFH;
386 			} else if (cx.type == ACPI_STATE_C1) {
387 				/*
388 				 * C1 is a special case where FIXED_HARDWARE
389 				 * can be handled in non-MWAIT way as well.
390 				 * In that case, save this _CST entry info.
391 				 * Otherwise, ignore this info and continue.
392 				 */
393 				cx.entry_method = ACPI_CSTATE_HALT;
394 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
395 			} else {
396 				continue;
397 			}
398 			if (cx.type == ACPI_STATE_C1 &&
399 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
400 				/*
401 				 * In most cases the C1 space_id obtained from
402 				 * _CST object is FIXED_HARDWARE access mode.
403 				 * But when the option of idle=halt is added,
404 				 * the entry_method type should be changed from
405 				 * CSTATE_FFH to CSTATE_HALT.
406 				 * When the option of idle=nomwait is added,
407 				 * the C1 entry_method type should be
408 				 * CSTATE_HALT.
409 				 */
410 				cx.entry_method = ACPI_CSTATE_HALT;
411 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
412 			}
413 		} else {
414 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
415 				 cx.address);
416 		}
417 
418 		if (cx.type == ACPI_STATE_C1) {
419 			cx.valid = 1;
420 		}
421 
422 		obj = &(element->package.elements[2]);
423 		if (obj->type != ACPI_TYPE_INTEGER)
424 			continue;
425 
426 		cx.latency = obj->integer.value;
427 
428 		obj = &(element->package.elements[3]);
429 		if (obj->type != ACPI_TYPE_INTEGER)
430 			continue;
431 
432 		current_count++;
433 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
434 
435 		/*
436 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
437 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
438 		 */
439 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
440 			pr_warn("Limiting number of power states to max (%d)\n",
441 				ACPI_PROCESSOR_MAX_POWER);
442 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
443 			break;
444 		}
445 	}
446 
447 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
448 			  current_count));
449 
450 	/* Validate number of power states discovered */
451 	if (current_count < 2)
452 		ret = -EFAULT;
453 
454       end:
455 	kfree(buffer.pointer);
456 
457 	return ret;
458 }
459 
460 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
461 					   struct acpi_processor_cx *cx)
462 {
463 	static int bm_check_flag = -1;
464 	static int bm_control_flag = -1;
465 
466 
467 	if (!cx->address)
468 		return;
469 
470 	/*
471 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
472 	 * DMA transfers are used by any ISA device to avoid livelock.
473 	 * Note that we could disable Type-F DMA (as recommended by
474 	 * the erratum), but this is known to disrupt certain ISA
475 	 * devices thus we take the conservative approach.
476 	 */
477 	else if (errata.piix4.fdma) {
478 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
479 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
480 		return;
481 	}
482 
483 	/* All the logic here assumes flags.bm_check is same across all CPUs */
484 	if (bm_check_flag == -1) {
485 		/* Determine whether bm_check is needed based on CPU  */
486 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
487 		bm_check_flag = pr->flags.bm_check;
488 		bm_control_flag = pr->flags.bm_control;
489 	} else {
490 		pr->flags.bm_check = bm_check_flag;
491 		pr->flags.bm_control = bm_control_flag;
492 	}
493 
494 	if (pr->flags.bm_check) {
495 		if (!pr->flags.bm_control) {
496 			if (pr->flags.has_cst != 1) {
497 				/* bus mastering control is necessary */
498 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
499 					"C3 support requires BM control\n"));
500 				return;
501 			} else {
502 				/* Here we enter C3 without bus mastering */
503 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
504 					"C3 support without BM control\n"));
505 			}
506 		}
507 	} else {
508 		/*
509 		 * WBINVD should be set in fadt, for C3 state to be
510 		 * supported on when bm_check is not required.
511 		 */
512 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
513 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514 					  "Cache invalidation should work properly"
515 					  " for C3 to be enabled on SMP systems\n"));
516 			return;
517 		}
518 	}
519 
520 	/*
521 	 * Otherwise we've met all of our C3 requirements.
522 	 * Normalize the C3 latency to expidite policy.  Enable
523 	 * checking of bus mastering status (bm_check) so we can
524 	 * use this in our C3 policy
525 	 */
526 	cx->valid = 1;
527 
528 	/*
529 	 * On older chipsets, BM_RLD needs to be set
530 	 * in order for Bus Master activity to wake the
531 	 * system from C3.  Newer chipsets handle DMA
532 	 * during C3 automatically and BM_RLD is a NOP.
533 	 * In either case, the proper way to
534 	 * handle BM_RLD is to set it and leave it set.
535 	 */
536 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
537 
538 	return;
539 }
540 
541 static int acpi_processor_power_verify(struct acpi_processor *pr)
542 {
543 	unsigned int i;
544 	unsigned int working = 0;
545 
546 	pr->power.timer_broadcast_on_state = INT_MAX;
547 
548 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
549 		struct acpi_processor_cx *cx = &pr->power.states[i];
550 
551 		switch (cx->type) {
552 		case ACPI_STATE_C1:
553 			cx->valid = 1;
554 			break;
555 
556 		case ACPI_STATE_C2:
557 			if (!cx->address)
558 				break;
559 			cx->valid = 1;
560 			break;
561 
562 		case ACPI_STATE_C3:
563 			acpi_processor_power_verify_c3(pr, cx);
564 			break;
565 		}
566 		if (!cx->valid)
567 			continue;
568 
569 		lapic_timer_check_state(i, pr, cx);
570 		tsc_check_state(cx->type);
571 		working++;
572 	}
573 
574 	lapic_timer_propagate_broadcast(pr);
575 
576 	return (working);
577 }
578 
579 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
580 {
581 	unsigned int i;
582 	int result;
583 
584 
585 	/* NOTE: the idle thread may not be running while calling
586 	 * this function */
587 
588 	/* Zero initialize all the C-states info. */
589 	memset(pr->power.states, 0, sizeof(pr->power.states));
590 
591 	result = acpi_processor_get_power_info_cst(pr);
592 	if (result == -ENODEV)
593 		result = acpi_processor_get_power_info_fadt(pr);
594 
595 	if (result)
596 		return result;
597 
598 	acpi_processor_get_power_info_default(pr);
599 
600 	pr->power.count = acpi_processor_power_verify(pr);
601 
602 	/*
603 	 * if one state of type C2 or C3 is available, mark this
604 	 * CPU as being "idle manageable"
605 	 */
606 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
607 		if (pr->power.states[i].valid) {
608 			pr->power.count = i;
609 			if (pr->power.states[i].type >= ACPI_STATE_C2)
610 				pr->flags.power = 1;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 /**
618  * acpi_idle_bm_check - checks if bus master activity was detected
619  */
620 static int acpi_idle_bm_check(void)
621 {
622 	u32 bm_status = 0;
623 
624 	if (bm_check_disable)
625 		return 0;
626 
627 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
628 	if (bm_status)
629 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
630 	/*
631 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
632 	 * the true state of bus mastering activity; forcing us to
633 	 * manually check the BMIDEA bit of each IDE channel.
634 	 */
635 	else if (errata.piix4.bmisx) {
636 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
637 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
638 			bm_status = 1;
639 	}
640 	return bm_status;
641 }
642 
643 /**
644  * acpi_idle_do_entry - enter idle state using the appropriate method
645  * @cx: cstate data
646  *
647  * Caller disables interrupt before call and enables interrupt after return.
648  */
649 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
650 {
651 	if (cx->entry_method == ACPI_CSTATE_FFH) {
652 		/* Call into architectural FFH based C-state */
653 		acpi_processor_ffh_cstate_enter(cx);
654 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
655 		acpi_safe_halt();
656 	} else {
657 		/* IO port based C-state */
658 		inb(cx->address);
659 		/* Dummy wait op - must do something useless after P_LVL2 read
660 		   because chipsets cannot guarantee that STPCLK# signal
661 		   gets asserted in time to freeze execution properly. */
662 		inl(acpi_gbl_FADT.xpm_timer_block.address);
663 	}
664 }
665 
666 /**
667  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
668  * @dev: the target CPU
669  * @index: the index of suggested state
670  */
671 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
672 {
673 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
674 
675 	ACPI_FLUSH_CPU_CACHE();
676 
677 	while (1) {
678 
679 		if (cx->entry_method == ACPI_CSTATE_HALT)
680 			safe_halt();
681 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
682 			inb(cx->address);
683 			/* See comment in acpi_idle_do_entry() */
684 			inl(acpi_gbl_FADT.xpm_timer_block.address);
685 		} else
686 			return -ENODEV;
687 	}
688 
689 	/* Never reached */
690 	return 0;
691 }
692 
693 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
694 {
695 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
696 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
697 }
698 
699 static int c3_cpu_count;
700 static DEFINE_RAW_SPINLOCK(c3_lock);
701 
702 /**
703  * acpi_idle_enter_bm - enters C3 with proper BM handling
704  * @pr: Target processor
705  * @cx: Target state context
706  * @timer_bc: Whether or not to change timer mode to broadcast
707  */
708 static void acpi_idle_enter_bm(struct acpi_processor *pr,
709 			       struct acpi_processor_cx *cx, bool timer_bc)
710 {
711 	acpi_unlazy_tlb(smp_processor_id());
712 
713 	/*
714 	 * Must be done before busmaster disable as we might need to
715 	 * access HPET !
716 	 */
717 	if (timer_bc)
718 		lapic_timer_state_broadcast(pr, cx, 1);
719 
720 	/*
721 	 * disable bus master
722 	 * bm_check implies we need ARB_DIS
723 	 * bm_control implies whether we can do ARB_DIS
724 	 *
725 	 * That leaves a case where bm_check is set and bm_control is
726 	 * not set. In that case we cannot do much, we enter C3
727 	 * without doing anything.
728 	 */
729 	if (pr->flags.bm_control) {
730 		raw_spin_lock(&c3_lock);
731 		c3_cpu_count++;
732 		/* Disable bus master arbitration when all CPUs are in C3 */
733 		if (c3_cpu_count == num_online_cpus())
734 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735 		raw_spin_unlock(&c3_lock);
736 	}
737 
738 	acpi_idle_do_entry(cx);
739 
740 	/* Re-enable bus master arbitration */
741 	if (pr->flags.bm_control) {
742 		raw_spin_lock(&c3_lock);
743 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744 		c3_cpu_count--;
745 		raw_spin_unlock(&c3_lock);
746 	}
747 
748 	if (timer_bc)
749 		lapic_timer_state_broadcast(pr, cx, 0);
750 }
751 
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753 			   struct cpuidle_driver *drv, int index)
754 {
755 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756 	struct acpi_processor *pr;
757 
758 	pr = __this_cpu_read(processors);
759 	if (unlikely(!pr))
760 		return -EINVAL;
761 
762 	if (cx->type != ACPI_STATE_C1) {
763 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764 			index = CPUIDLE_DRIVER_STATE_START;
765 			cx = per_cpu(acpi_cstate[index], dev->cpu);
766 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768 				acpi_idle_enter_bm(pr, cx, true);
769 				return index;
770 			} else if (drv->safe_state_index >= 0) {
771 				index = drv->safe_state_index;
772 				cx = per_cpu(acpi_cstate[index], dev->cpu);
773 			} else {
774 				acpi_safe_halt();
775 				return -EBUSY;
776 			}
777 		}
778 	}
779 
780 	lapic_timer_state_broadcast(pr, cx, 1);
781 
782 	if (cx->type == ACPI_STATE_C3)
783 		ACPI_FLUSH_CPU_CACHE();
784 
785 	acpi_idle_do_entry(cx);
786 
787 	lapic_timer_state_broadcast(pr, cx, 0);
788 
789 	return index;
790 }
791 
792 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
793 				   struct cpuidle_driver *drv, int index)
794 {
795 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796 
797 	if (cx->type == ACPI_STATE_C3) {
798 		struct acpi_processor *pr = __this_cpu_read(processors);
799 
800 		if (unlikely(!pr))
801 			return;
802 
803 		if (pr->flags.bm_check) {
804 			acpi_idle_enter_bm(pr, cx, false);
805 			return;
806 		} else {
807 			ACPI_FLUSH_CPU_CACHE();
808 		}
809 	}
810 	acpi_idle_do_entry(cx);
811 }
812 
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
814 					   struct cpuidle_device *dev)
815 {
816 	int i, count = CPUIDLE_DRIVER_STATE_START;
817 	struct acpi_processor_cx *cx;
818 
819 	if (max_cstate == 0)
820 		max_cstate = 1;
821 
822 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
823 		cx = &pr->power.states[i];
824 
825 		if (!cx->valid)
826 			continue;
827 
828 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
829 
830 		count++;
831 		if (count == CPUIDLE_STATE_MAX)
832 			break;
833 	}
834 
835 	if (!count)
836 		return -EINVAL;
837 
838 	return 0;
839 }
840 
841 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
842 {
843 	int i, count = CPUIDLE_DRIVER_STATE_START;
844 	struct acpi_processor_cx *cx;
845 	struct cpuidle_state *state;
846 	struct cpuidle_driver *drv = &acpi_idle_driver;
847 
848 	if (max_cstate == 0)
849 		max_cstate = 1;
850 
851 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
852 		cx = &pr->power.states[i];
853 
854 		if (!cx->valid)
855 			continue;
856 
857 		state = &drv->states[count];
858 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
859 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
860 		state->exit_latency = cx->latency;
861 		state->target_residency = cx->latency * latency_factor;
862 		state->enter = acpi_idle_enter;
863 
864 		state->flags = 0;
865 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
866 			state->enter_dead = acpi_idle_play_dead;
867 			drv->safe_state_index = count;
868 		}
869 		/*
870 		 * Halt-induced C1 is not good for ->enter_freeze, because it
871 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
872 		 * particularly interesting from the suspend-to-idle angle, so
873 		 * avoid C1 and the situations in which we may need to fall back
874 		 * to it altogether.
875 		 */
876 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
877 			state->enter_freeze = acpi_idle_enter_freeze;
878 
879 		count++;
880 		if (count == CPUIDLE_STATE_MAX)
881 			break;
882 	}
883 
884 	drv->state_count = count;
885 
886 	if (!count)
887 		return -EINVAL;
888 
889 	return 0;
890 }
891 
892 static inline void acpi_processor_cstate_first_run_checks(void)
893 {
894 	acpi_status status;
895 	static int first_run;
896 
897 	if (first_run)
898 		return;
899 	dmi_check_system(processor_power_dmi_table);
900 	max_cstate = acpi_processor_cstate_check(max_cstate);
901 	if (max_cstate < ACPI_C_STATES_MAX)
902 		pr_notice("ACPI: processor limited to max C-state %d\n",
903 			  max_cstate);
904 	first_run++;
905 
906 	if (acpi_gbl_FADT.cst_control && !nocst) {
907 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
908 					    acpi_gbl_FADT.cst_control, 8);
909 		if (ACPI_FAILURE(status))
910 			ACPI_EXCEPTION((AE_INFO, status,
911 					"Notifying BIOS of _CST ability failed"));
912 	}
913 }
914 #else
915 
916 static inline int disabled_by_idle_boot_param(void) { return 0; }
917 static inline void acpi_processor_cstate_first_run_checks(void) { }
918 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
919 {
920 	return -ENODEV;
921 }
922 
923 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
924 					   struct cpuidle_device *dev)
925 {
926 	return -EINVAL;
927 }
928 
929 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
930 {
931 	return -EINVAL;
932 }
933 
934 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
935 
936 struct acpi_lpi_states_array {
937 	unsigned int size;
938 	unsigned int composite_states_size;
939 	struct acpi_lpi_state *entries;
940 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
941 };
942 
943 static int obj_get_integer(union acpi_object *obj, u32 *value)
944 {
945 	if (obj->type != ACPI_TYPE_INTEGER)
946 		return -EINVAL;
947 
948 	*value = obj->integer.value;
949 	return 0;
950 }
951 
952 static int acpi_processor_evaluate_lpi(acpi_handle handle,
953 				       struct acpi_lpi_states_array *info)
954 {
955 	acpi_status status;
956 	int ret = 0;
957 	int pkg_count, state_idx = 1, loop;
958 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
959 	union acpi_object *lpi_data;
960 	struct acpi_lpi_state *lpi_state;
961 
962 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
963 	if (ACPI_FAILURE(status)) {
964 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
965 		return -ENODEV;
966 	}
967 
968 	lpi_data = buffer.pointer;
969 
970 	/* There must be at least 4 elements = 3 elements + 1 package */
971 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
972 	    lpi_data->package.count < 4) {
973 		pr_debug("not enough elements in _LPI\n");
974 		ret = -ENODATA;
975 		goto end;
976 	}
977 
978 	pkg_count = lpi_data->package.elements[2].integer.value;
979 
980 	/* Validate number of power states. */
981 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
982 		pr_debug("count given by _LPI is not valid\n");
983 		ret = -ENODATA;
984 		goto end;
985 	}
986 
987 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
988 	if (!lpi_state) {
989 		ret = -ENOMEM;
990 		goto end;
991 	}
992 
993 	info->size = pkg_count;
994 	info->entries = lpi_state;
995 
996 	/* LPI States start at index 3 */
997 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
998 		union acpi_object *element, *pkg_elem, *obj;
999 
1000 		element = &lpi_data->package.elements[loop];
1001 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002 			continue;
1003 
1004 		pkg_elem = element->package.elements;
1005 
1006 		obj = pkg_elem + 6;
1007 		if (obj->type == ACPI_TYPE_BUFFER) {
1008 			struct acpi_power_register *reg;
1009 
1010 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1011 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013 				continue;
1014 
1015 			lpi_state->address = reg->address;
1016 			lpi_state->entry_method =
1017 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1020 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021 			lpi_state->address = obj->integer.value;
1022 		} else {
1023 			continue;
1024 		}
1025 
1026 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027 
1028 		obj = pkg_elem + 9;
1029 		if (obj->type == ACPI_TYPE_STRING)
1030 			strlcpy(lpi_state->desc, obj->string.pointer,
1031 				ACPI_CX_DESC_LEN);
1032 
1033 		lpi_state->index = state_idx;
1034 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035 			pr_debug("No min. residency found, assuming 10 us\n");
1036 			lpi_state->min_residency = 10;
1037 		}
1038 
1039 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040 			pr_debug("No wakeup residency found, assuming 10 us\n");
1041 			lpi_state->wake_latency = 10;
1042 		}
1043 
1044 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045 			lpi_state->flags = 0;
1046 
1047 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048 			lpi_state->arch_flags = 0;
1049 
1050 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051 			lpi_state->res_cnt_freq = 1;
1052 
1053 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054 			lpi_state->enable_parent_state = 0;
1055 	}
1056 
1057 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058 end:
1059 	kfree(buffer.pointer);
1060 	return ret;
1061 }
1062 
1063 /*
1064  * flat_state_cnt - the number of composite LPI states after the process of flattening
1065  */
1066 static int flat_state_cnt;
1067 
1068 /**
1069  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070  *
1071  * @local: local LPI state
1072  * @parent: parent LPI state
1073  * @result: composite LPI state
1074  */
1075 static bool combine_lpi_states(struct acpi_lpi_state *local,
1076 			       struct acpi_lpi_state *parent,
1077 			       struct acpi_lpi_state *result)
1078 {
1079 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080 		if (!parent->address) /* 0 means autopromotable */
1081 			return false;
1082 		result->address = local->address + parent->address;
1083 	} else {
1084 		result->address = parent->address;
1085 	}
1086 
1087 	result->min_residency = max(local->min_residency, parent->min_residency);
1088 	result->wake_latency = local->wake_latency + parent->wake_latency;
1089 	result->enable_parent_state = parent->enable_parent_state;
1090 	result->entry_method = local->entry_method;
1091 
1092 	result->flags = parent->flags;
1093 	result->arch_flags = parent->arch_flags;
1094 	result->index = parent->index;
1095 
1096 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099 	return true;
1100 }
1101 
1102 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1103 
1104 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105 				  struct acpi_lpi_state *t)
1106 {
1107 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1108 }
1109 
1110 static int flatten_lpi_states(struct acpi_processor *pr,
1111 			      struct acpi_lpi_states_array *curr_level,
1112 			      struct acpi_lpi_states_array *prev_level)
1113 {
1114 	int i, j, state_count = curr_level->size;
1115 	struct acpi_lpi_state *p, *t = curr_level->entries;
1116 
1117 	curr_level->composite_states_size = 0;
1118 	for (j = 0; j < state_count; j++, t++) {
1119 		struct acpi_lpi_state *flpi;
1120 
1121 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122 			continue;
1123 
1124 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125 			pr_warn("Limiting number of LPI states to max (%d)\n",
1126 				ACPI_PROCESSOR_MAX_POWER);
1127 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128 			break;
1129 		}
1130 
1131 		flpi = &pr->power.lpi_states[flat_state_cnt];
1132 
1133 		if (!prev_level) { /* leaf/processor node */
1134 			memcpy(flpi, t, sizeof(*t));
1135 			stash_composite_state(curr_level, flpi);
1136 			flat_state_cnt++;
1137 			continue;
1138 		}
1139 
1140 		for (i = 0; i < prev_level->composite_states_size; i++) {
1141 			p = prev_level->composite_states[i];
1142 			if (t->index <= p->enable_parent_state &&
1143 			    combine_lpi_states(p, t, flpi)) {
1144 				stash_composite_state(curr_level, flpi);
1145 				flat_state_cnt++;
1146 				flpi++;
1147 			}
1148 		}
1149 	}
1150 
1151 	kfree(curr_level->entries);
1152 	return 0;
1153 }
1154 
1155 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156 {
1157 	int ret, i;
1158 	acpi_status status;
1159 	acpi_handle handle = pr->handle, pr_ahandle;
1160 	struct acpi_device *d = NULL;
1161 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162 
1163 	if (!osc_pc_lpi_support_confirmed)
1164 		return -EOPNOTSUPP;
1165 
1166 	if (!acpi_has_method(handle, "_LPI"))
1167 		return -EINVAL;
1168 
1169 	flat_state_cnt = 0;
1170 	prev = &info[0];
1171 	curr = &info[1];
1172 	handle = pr->handle;
1173 	ret = acpi_processor_evaluate_lpi(handle, prev);
1174 	if (ret)
1175 		return ret;
1176 	flatten_lpi_states(pr, prev, NULL);
1177 
1178 	status = acpi_get_parent(handle, &pr_ahandle);
1179 	while (ACPI_SUCCESS(status)) {
1180 		acpi_bus_get_device(pr_ahandle, &d);
1181 		handle = pr_ahandle;
1182 
1183 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184 			break;
1185 
1186 		/* can be optional ? */
1187 		if (!acpi_has_method(handle, "_LPI"))
1188 			break;
1189 
1190 		ret = acpi_processor_evaluate_lpi(handle, curr);
1191 		if (ret)
1192 			break;
1193 
1194 		/* flatten all the LPI states in this level of hierarchy */
1195 		flatten_lpi_states(pr, curr, prev);
1196 
1197 		tmp = prev, prev = curr, curr = tmp;
1198 
1199 		status = acpi_get_parent(handle, &pr_ahandle);
1200 	}
1201 
1202 	pr->power.count = flat_state_cnt;
1203 	/* reset the index after flattening */
1204 	for (i = 0; i < pr->power.count; i++)
1205 		pr->power.lpi_states[i].index = i;
1206 
1207 	/* Tell driver that _LPI is supported. */
1208 	pr->flags.has_lpi = 1;
1209 	pr->flags.power = 1;
1210 
1211 	return 0;
1212 }
1213 
1214 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215 {
1216 	return -ENODEV;
1217 }
1218 
1219 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220 {
1221 	return -ENODEV;
1222 }
1223 
1224 /**
1225  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226  * @dev: the target CPU
1227  * @drv: cpuidle driver containing cpuidle state info
1228  * @index: index of target state
1229  *
1230  * Return: 0 for success or negative value for error
1231  */
1232 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233 			       struct cpuidle_driver *drv, int index)
1234 {
1235 	struct acpi_processor *pr;
1236 	struct acpi_lpi_state *lpi;
1237 
1238 	pr = __this_cpu_read(processors);
1239 
1240 	if (unlikely(!pr))
1241 		return -EINVAL;
1242 
1243 	lpi = &pr->power.lpi_states[index];
1244 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1245 		return acpi_processor_ffh_lpi_enter(lpi);
1246 
1247 	return -EINVAL;
1248 }
1249 
1250 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251 {
1252 	int i;
1253 	struct acpi_lpi_state *lpi;
1254 	struct cpuidle_state *state;
1255 	struct cpuidle_driver *drv = &acpi_idle_driver;
1256 
1257 	if (!pr->flags.has_lpi)
1258 		return -EOPNOTSUPP;
1259 
1260 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261 		lpi = &pr->power.lpi_states[i];
1262 
1263 		state = &drv->states[i];
1264 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266 		state->exit_latency = lpi->wake_latency;
1267 		state->target_residency = lpi->min_residency;
1268 		if (lpi->arch_flags)
1269 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270 		state->enter = acpi_idle_lpi_enter;
1271 		drv->safe_state_index = i;
1272 	}
1273 
1274 	drv->state_count = i;
1275 
1276 	return 0;
1277 }
1278 
1279 /**
1280  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281  * global state data i.e. idle routines
1282  *
1283  * @pr: the ACPI processor
1284  */
1285 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286 {
1287 	int i;
1288 	struct cpuidle_driver *drv = &acpi_idle_driver;
1289 
1290 	if (!pr->flags.power_setup_done || !pr->flags.power)
1291 		return -EINVAL;
1292 
1293 	drv->safe_state_index = -1;
1294 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295 		drv->states[i].name[0] = '\0';
1296 		drv->states[i].desc[0] = '\0';
1297 	}
1298 
1299 	if (pr->flags.has_lpi)
1300 		return acpi_processor_setup_lpi_states(pr);
1301 
1302 	return acpi_processor_setup_cstates(pr);
1303 }
1304 
1305 /**
1306  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307  * device i.e. per-cpu data
1308  *
1309  * @pr: the ACPI processor
1310  * @dev : the cpuidle device
1311  */
1312 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313 					    struct cpuidle_device *dev)
1314 {
1315 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316 		return -EINVAL;
1317 
1318 	dev->cpu = pr->id;
1319 	if (pr->flags.has_lpi)
1320 		return acpi_processor_ffh_lpi_probe(pr->id);
1321 
1322 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1323 }
1324 
1325 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326 {
1327 	int ret;
1328 
1329 	ret = acpi_processor_get_lpi_info(pr);
1330 	if (ret)
1331 		ret = acpi_processor_get_cstate_info(pr);
1332 
1333 	return ret;
1334 }
1335 
1336 int acpi_processor_hotplug(struct acpi_processor *pr)
1337 {
1338 	int ret = 0;
1339 	struct cpuidle_device *dev;
1340 
1341 	if (disabled_by_idle_boot_param())
1342 		return 0;
1343 
1344 	if (!pr->flags.power_setup_done)
1345 		return -ENODEV;
1346 
1347 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1348 	cpuidle_pause_and_lock();
1349 	cpuidle_disable_device(dev);
1350 	ret = acpi_processor_get_power_info(pr);
1351 	if (!ret && pr->flags.power) {
1352 		acpi_processor_setup_cpuidle_dev(pr, dev);
1353 		ret = cpuidle_enable_device(dev);
1354 	}
1355 	cpuidle_resume_and_unlock();
1356 
1357 	return ret;
1358 }
1359 
1360 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1361 {
1362 	int cpu;
1363 	struct acpi_processor *_pr;
1364 	struct cpuidle_device *dev;
1365 
1366 	if (disabled_by_idle_boot_param())
1367 		return 0;
1368 
1369 	if (!pr->flags.power_setup_done)
1370 		return -ENODEV;
1371 
1372 	/*
1373 	 * FIXME:  Design the ACPI notification to make it once per
1374 	 * system instead of once per-cpu.  This condition is a hack
1375 	 * to make the code that updates C-States be called once.
1376 	 */
1377 
1378 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379 
1380 		/* Protect against cpu-hotplug */
1381 		get_online_cpus();
1382 		cpuidle_pause_and_lock();
1383 
1384 		/* Disable all cpuidle devices */
1385 		for_each_online_cpu(cpu) {
1386 			_pr = per_cpu(processors, cpu);
1387 			if (!_pr || !_pr->flags.power_setup_done)
1388 				continue;
1389 			dev = per_cpu(acpi_cpuidle_device, cpu);
1390 			cpuidle_disable_device(dev);
1391 		}
1392 
1393 		/* Populate Updated C-state information */
1394 		acpi_processor_get_power_info(pr);
1395 		acpi_processor_setup_cpuidle_states(pr);
1396 
1397 		/* Enable all cpuidle devices */
1398 		for_each_online_cpu(cpu) {
1399 			_pr = per_cpu(processors, cpu);
1400 			if (!_pr || !_pr->flags.power_setup_done)
1401 				continue;
1402 			acpi_processor_get_power_info(_pr);
1403 			if (_pr->flags.power) {
1404 				dev = per_cpu(acpi_cpuidle_device, cpu);
1405 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1406 				cpuidle_enable_device(dev);
1407 			}
1408 		}
1409 		cpuidle_resume_and_unlock();
1410 		put_online_cpus();
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static int acpi_processor_registered;
1417 
1418 int acpi_processor_power_init(struct acpi_processor *pr)
1419 {
1420 	int retval;
1421 	struct cpuidle_device *dev;
1422 
1423 	if (disabled_by_idle_boot_param())
1424 		return 0;
1425 
1426 	acpi_processor_cstate_first_run_checks();
1427 
1428 	if (!acpi_processor_get_power_info(pr))
1429 		pr->flags.power_setup_done = 1;
1430 
1431 	/*
1432 	 * Install the idle handler if processor power management is supported.
1433 	 * Note that we use previously set idle handler will be used on
1434 	 * platforms that only support C1.
1435 	 */
1436 	if (pr->flags.power) {
1437 		/* Register acpi_idle_driver if not already registered */
1438 		if (!acpi_processor_registered) {
1439 			acpi_processor_setup_cpuidle_states(pr);
1440 			retval = cpuidle_register_driver(&acpi_idle_driver);
1441 			if (retval)
1442 				return retval;
1443 			pr_debug("%s registered with cpuidle\n",
1444 				 acpi_idle_driver.name);
1445 		}
1446 
1447 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448 		if (!dev)
1449 			return -ENOMEM;
1450 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451 
1452 		acpi_processor_setup_cpuidle_dev(pr, dev);
1453 
1454 		/* Register per-cpu cpuidle_device. Cpuidle driver
1455 		 * must already be registered before registering device
1456 		 */
1457 		retval = cpuidle_register_device(dev);
1458 		if (retval) {
1459 			if (acpi_processor_registered == 0)
1460 				cpuidle_unregister_driver(&acpi_idle_driver);
1461 			return retval;
1462 		}
1463 		acpi_processor_registered++;
1464 	}
1465 	return 0;
1466 }
1467 
1468 int acpi_processor_power_exit(struct acpi_processor *pr)
1469 {
1470 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471 
1472 	if (disabled_by_idle_boot_param())
1473 		return 0;
1474 
1475 	if (pr->flags.power) {
1476 		cpuidle_unregister_device(dev);
1477 		acpi_processor_registered--;
1478 		if (acpi_processor_registered == 0)
1479 			cpuidle_unregister_driver(&acpi_idle_driver);
1480 	}
1481 
1482 	pr->flags.power_setup_done = 0;
1483 	return 0;
1484 }
1485