xref: /linux/block/blk-flush.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 /*
2  * Functions to sequence PREFLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no data
21  * or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without PREFLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each PREFLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static bool blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, unsigned int flags);
98 
99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 	unsigned int policy = 0;
102 
103 	if (blk_rq_sectors(rq))
104 		policy |= REQ_FSEQ_DATA;
105 
106 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 		if (rq->cmd_flags & REQ_PREFLUSH)
108 			policy |= REQ_FSEQ_PREFLUSH;
109 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 		    (rq->cmd_flags & REQ_FUA))
111 			policy |= REQ_FSEQ_POSTFLUSH;
112 	}
113 	return policy;
114 }
115 
116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 	return 1 << ffz(rq->flush.seq);
119 }
120 
121 static void blk_flush_restore_request(struct request *rq)
122 {
123 	/*
124 	 * After flush data completion, @rq->bio is %NULL but we need to
125 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126 	 * original @rq->bio.  Restore it.
127 	 */
128 	rq->bio = rq->biotail;
129 
130 	/* make @rq a normal request */
131 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 	rq->end_io = rq->flush.saved_end_io;
133 }
134 
135 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 	if (rq->q->mq_ops) {
138 		blk_mq_add_to_requeue_list(rq, add_front, true);
139 		return false;
140 	} else {
141 		if (add_front)
142 			list_add(&rq->queuelist, &rq->q->queue_head);
143 		else
144 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
145 		return true;
146 	}
147 }
148 
149 /**
150  * blk_flush_complete_seq - complete flush sequence
151  * @rq: PREFLUSH/FUA request being sequenced
152  * @fq: flush queue
153  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154  * @error: whether an error occurred
155  *
156  * @rq just completed @seq part of its flush sequence, record the
157  * completion and trigger the next step.
158  *
159  * CONTEXT:
160  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161  *
162  * RETURNS:
163  * %true if requests were added to the dispatch queue, %false otherwise.
164  */
165 static bool blk_flush_complete_seq(struct request *rq,
166 				   struct blk_flush_queue *fq,
167 				   unsigned int seq, blk_status_t error)
168 {
169 	struct request_queue *q = rq->q;
170 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171 	bool queued = false, kicked;
172 	unsigned int cmd_flags;
173 
174 	BUG_ON(rq->flush.seq & seq);
175 	rq->flush.seq |= seq;
176 	cmd_flags = rq->cmd_flags;
177 
178 	if (likely(!error))
179 		seq = blk_flush_cur_seq(rq);
180 	else
181 		seq = REQ_FSEQ_DONE;
182 
183 	switch (seq) {
184 	case REQ_FSEQ_PREFLUSH:
185 	case REQ_FSEQ_POSTFLUSH:
186 		/* queue for flush */
187 		if (list_empty(pending))
188 			fq->flush_pending_since = jiffies;
189 		list_move_tail(&rq->flush.list, pending);
190 		break;
191 
192 	case REQ_FSEQ_DATA:
193 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
194 		queued = blk_flush_queue_rq(rq, true);
195 		break;
196 
197 	case REQ_FSEQ_DONE:
198 		/*
199 		 * @rq was previously adjusted by blk_flush_issue() for
200 		 * flush sequencing and may already have gone through the
201 		 * flush data request completion path.  Restore @rq for
202 		 * normal completion and end it.
203 		 */
204 		BUG_ON(!list_empty(&rq->queuelist));
205 		list_del_init(&rq->flush.list);
206 		blk_flush_restore_request(rq);
207 		if (q->mq_ops)
208 			blk_mq_end_request(rq, error);
209 		else
210 			__blk_end_request_all(rq, error);
211 		break;
212 
213 	default:
214 		BUG();
215 	}
216 
217 	kicked = blk_kick_flush(q, fq, cmd_flags);
218 	return kicked | queued;
219 }
220 
221 static void flush_end_io(struct request *flush_rq, blk_status_t error)
222 {
223 	struct request_queue *q = flush_rq->q;
224 	struct list_head *running;
225 	bool queued = false;
226 	struct request *rq, *n;
227 	unsigned long flags = 0;
228 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
229 
230 	if (q->mq_ops) {
231 		struct blk_mq_hw_ctx *hctx;
232 
233 		/* release the tag's ownership to the req cloned from */
234 		spin_lock_irqsave(&fq->mq_flush_lock, flags);
235 		hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
236 		if (!q->elevator) {
237 			blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
238 			flush_rq->tag = -1;
239 		} else {
240 			blk_mq_put_driver_tag_hctx(hctx, flush_rq);
241 			flush_rq->internal_tag = -1;
242 		}
243 	}
244 
245 	running = &fq->flush_queue[fq->flush_running_idx];
246 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
247 
248 	/* account completion of the flush request */
249 	fq->flush_running_idx ^= 1;
250 
251 	if (!q->mq_ops)
252 		elv_completed_request(q, flush_rq);
253 
254 	/* and push the waiting requests to the next stage */
255 	list_for_each_entry_safe(rq, n, running, flush.list) {
256 		unsigned int seq = blk_flush_cur_seq(rq);
257 
258 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
259 		queued |= blk_flush_complete_seq(rq, fq, seq, error);
260 	}
261 
262 	/*
263 	 * Kick the queue to avoid stall for two cases:
264 	 * 1. Moving a request silently to empty queue_head may stall the
265 	 * queue.
266 	 * 2. When flush request is running in non-queueable queue, the
267 	 * queue is hold. Restart the queue after flush request is finished
268 	 * to avoid stall.
269 	 * This function is called from request completion path and calling
270 	 * directly into request_fn may confuse the driver.  Always use
271 	 * kblockd.
272 	 */
273 	if (queued || fq->flush_queue_delayed) {
274 		WARN_ON(q->mq_ops);
275 		blk_run_queue_async(q);
276 	}
277 	fq->flush_queue_delayed = 0;
278 	if (q->mq_ops)
279 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
280 }
281 
282 /**
283  * blk_kick_flush - consider issuing flush request
284  * @q: request_queue being kicked
285  * @fq: flush queue
286  * @flags: cmd_flags of the original request
287  *
288  * Flush related states of @q have changed, consider issuing flush request.
289  * Please read the comment at the top of this file for more info.
290  *
291  * CONTEXT:
292  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
293  *
294  * RETURNS:
295  * %true if flush was issued, %false otherwise.
296  */
297 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
298 			   unsigned int flags)
299 {
300 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
301 	struct request *first_rq =
302 		list_first_entry(pending, struct request, flush.list);
303 	struct request *flush_rq = fq->flush_rq;
304 
305 	/* C1 described at the top of this file */
306 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
307 		return false;
308 
309 	/* C2 and C3
310 	 *
311 	 * For blk-mq + scheduling, we can risk having all driver tags
312 	 * assigned to empty flushes, and we deadlock if we are expecting
313 	 * other requests to make progress. Don't defer for that case.
314 	 */
315 	if (!list_empty(&fq->flush_data_in_flight) &&
316 	    !(q->mq_ops && q->elevator) &&
317 	    time_before(jiffies,
318 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
319 		return false;
320 
321 	/*
322 	 * Issue flush and toggle pending_idx.  This makes pending_idx
323 	 * different from running_idx, which means flush is in flight.
324 	 */
325 	fq->flush_pending_idx ^= 1;
326 
327 	blk_rq_init(q, flush_rq);
328 
329 	/*
330 	 * In case of none scheduler, borrow tag from the first request
331 	 * since they can't be in flight at the same time. And acquire
332 	 * the tag's ownership for flush req.
333 	 *
334 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
335 	 * just for cheating put/get driver tag.
336 	 */
337 	if (q->mq_ops) {
338 		struct blk_mq_hw_ctx *hctx;
339 
340 		flush_rq->mq_ctx = first_rq->mq_ctx;
341 
342 		if (!q->elevator) {
343 			fq->orig_rq = first_rq;
344 			flush_rq->tag = first_rq->tag;
345 			hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
346 			blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
347 		} else {
348 			flush_rq->internal_tag = first_rq->internal_tag;
349 		}
350 	}
351 
352 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
353 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
354 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
355 	flush_rq->rq_disk = first_rq->rq_disk;
356 	flush_rq->end_io = flush_end_io;
357 
358 	return blk_flush_queue_rq(flush_rq, false);
359 }
360 
361 static void flush_data_end_io(struct request *rq, blk_status_t error)
362 {
363 	struct request_queue *q = rq->q;
364 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
365 
366 	lockdep_assert_held(q->queue_lock);
367 
368 	/*
369 	 * Updating q->in_flight[] here for making this tag usable
370 	 * early. Because in blk_queue_start_tag(),
371 	 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
372 	 * reserve tags for sync I/O.
373 	 *
374 	 * More importantly this way can avoid the following I/O
375 	 * deadlock:
376 	 *
377 	 * - suppose there are 40 fua requests comming to flush queue
378 	 *   and queue depth is 31
379 	 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
380 	 *   tag for async I/O any more
381 	 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
382 	 *   and flush_data_end_io() is called
383 	 * - the other rqs still can't go ahead if not updating
384 	 *   q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
385 	 *   are held in flush data queue and make no progress of
386 	 *   handling post flush rq
387 	 * - only after the post flush rq is handled, all these rqs
388 	 *   can be completed
389 	 */
390 
391 	elv_completed_request(q, rq);
392 
393 	/* for avoiding double accounting */
394 	rq->rq_flags &= ~RQF_STARTED;
395 
396 	/*
397 	 * After populating an empty queue, kick it to avoid stall.  Read
398 	 * the comment in flush_end_io().
399 	 */
400 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
401 		blk_run_queue_async(q);
402 }
403 
404 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
405 {
406 	struct request_queue *q = rq->q;
407 	struct blk_mq_hw_ctx *hctx;
408 	struct blk_mq_ctx *ctx = rq->mq_ctx;
409 	unsigned long flags;
410 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
411 
412 	hctx = blk_mq_map_queue(q, ctx->cpu);
413 
414 	if (q->elevator) {
415 		WARN_ON(rq->tag < 0);
416 		blk_mq_put_driver_tag_hctx(hctx, rq);
417 	}
418 
419 	/*
420 	 * After populating an empty queue, kick it to avoid stall.  Read
421 	 * the comment in flush_end_io().
422 	 */
423 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
424 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
425 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
426 
427 	blk_mq_run_hw_queue(hctx, true);
428 }
429 
430 /**
431  * blk_insert_flush - insert a new PREFLUSH/FUA request
432  * @rq: request to insert
433  *
434  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
435  * or __blk_mq_run_hw_queue() to dispatch request.
436  * @rq is being submitted.  Analyze what needs to be done and put it on the
437  * right queue.
438  */
439 void blk_insert_flush(struct request *rq)
440 {
441 	struct request_queue *q = rq->q;
442 	unsigned long fflags = q->queue_flags;	/* may change, cache */
443 	unsigned int policy = blk_flush_policy(fflags, rq);
444 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
445 
446 	if (!q->mq_ops)
447 		lockdep_assert_held(q->queue_lock);
448 
449 	/*
450 	 * @policy now records what operations need to be done.  Adjust
451 	 * REQ_PREFLUSH and FUA for the driver.
452 	 */
453 	rq->cmd_flags &= ~REQ_PREFLUSH;
454 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
455 		rq->cmd_flags &= ~REQ_FUA;
456 
457 	/*
458 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
459 	 * of those flags, we have to set REQ_SYNC to avoid skewing
460 	 * the request accounting.
461 	 */
462 	rq->cmd_flags |= REQ_SYNC;
463 
464 	/*
465 	 * An empty flush handed down from a stacking driver may
466 	 * translate into nothing if the underlying device does not
467 	 * advertise a write-back cache.  In this case, simply
468 	 * complete the request.
469 	 */
470 	if (!policy) {
471 		if (q->mq_ops)
472 			blk_mq_end_request(rq, 0);
473 		else
474 			__blk_end_request(rq, 0, 0);
475 		return;
476 	}
477 
478 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
479 
480 	/*
481 	 * If there's data but flush is not necessary, the request can be
482 	 * processed directly without going through flush machinery.  Queue
483 	 * for normal execution.
484 	 */
485 	if ((policy & REQ_FSEQ_DATA) &&
486 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
487 		if (q->mq_ops)
488 			blk_mq_request_bypass_insert(rq, false);
489 		else
490 			list_add_tail(&rq->queuelist, &q->queue_head);
491 		return;
492 	}
493 
494 	/*
495 	 * @rq should go through flush machinery.  Mark it part of flush
496 	 * sequence and submit for further processing.
497 	 */
498 	memset(&rq->flush, 0, sizeof(rq->flush));
499 	INIT_LIST_HEAD(&rq->flush.list);
500 	rq->rq_flags |= RQF_FLUSH_SEQ;
501 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
502 	if (q->mq_ops) {
503 		rq->end_io = mq_flush_data_end_io;
504 
505 		spin_lock_irq(&fq->mq_flush_lock);
506 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
507 		spin_unlock_irq(&fq->mq_flush_lock);
508 		return;
509 	}
510 	rq->end_io = flush_data_end_io;
511 
512 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
513 }
514 
515 /**
516  * blkdev_issue_flush - queue a flush
517  * @bdev:	blockdev to issue flush for
518  * @gfp_mask:	memory allocation flags (for bio_alloc)
519  * @error_sector:	error sector
520  *
521  * Description:
522  *    Issue a flush for the block device in question. Caller can supply
523  *    room for storing the error offset in case of a flush error, if they
524  *    wish to.
525  */
526 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
527 		sector_t *error_sector)
528 {
529 	struct request_queue *q;
530 	struct bio *bio;
531 	int ret = 0;
532 
533 	if (bdev->bd_disk == NULL)
534 		return -ENXIO;
535 
536 	q = bdev_get_queue(bdev);
537 	if (!q)
538 		return -ENXIO;
539 
540 	/*
541 	 * some block devices may not have their queue correctly set up here
542 	 * (e.g. loop device without a backing file) and so issuing a flush
543 	 * here will panic. Ensure there is a request function before issuing
544 	 * the flush.
545 	 */
546 	if (!q->make_request_fn)
547 		return -ENXIO;
548 
549 	bio = bio_alloc(gfp_mask, 0);
550 	bio_set_dev(bio, bdev);
551 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
552 
553 	ret = submit_bio_wait(bio);
554 
555 	/*
556 	 * The driver must store the error location in ->bi_sector, if
557 	 * it supports it. For non-stacked drivers, this should be
558 	 * copied from blk_rq_pos(rq).
559 	 */
560 	if (error_sector)
561 		*error_sector = bio->bi_iter.bi_sector;
562 
563 	bio_put(bio);
564 	return ret;
565 }
566 EXPORT_SYMBOL(blkdev_issue_flush);
567 
568 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
569 		int node, int cmd_size)
570 {
571 	struct blk_flush_queue *fq;
572 	int rq_sz = sizeof(struct request);
573 
574 	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
575 	if (!fq)
576 		goto fail;
577 
578 	if (q->mq_ops)
579 		spin_lock_init(&fq->mq_flush_lock);
580 
581 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
582 	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
583 	if (!fq->flush_rq)
584 		goto fail_rq;
585 
586 	INIT_LIST_HEAD(&fq->flush_queue[0]);
587 	INIT_LIST_HEAD(&fq->flush_queue[1]);
588 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
589 
590 	return fq;
591 
592  fail_rq:
593 	kfree(fq);
594  fail:
595 	return NULL;
596 }
597 
598 void blk_free_flush_queue(struct blk_flush_queue *fq)
599 {
600 	/* bio based request queue hasn't flush queue */
601 	if (!fq)
602 		return;
603 
604 	kfree(fq->flush_rq);
605 	kfree(fq);
606 }
607