xref: /linux/block/bio.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 static void __bio_free(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 
247 	if (bio_integrity(bio))
248 		bio_integrity_free(bio);
249 }
250 
251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	__bio_free(bio);
257 
258 	if (bs) {
259 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 void bio_init(struct bio *bio, struct bio_vec *table,
275 	      unsigned short max_vecs)
276 {
277 	memset(bio, 0, sizeof(*bio));
278 	atomic_set(&bio->__bi_remaining, 1);
279 	atomic_set(&bio->__bi_cnt, 1);
280 
281 	bio->bi_io_vec = table;
282 	bio->bi_max_vecs = max_vecs;
283 }
284 EXPORT_SYMBOL(bio_init);
285 
286 /**
287  * bio_reset - reinitialize a bio
288  * @bio:	bio to reset
289  *
290  * Description:
291  *   After calling bio_reset(), @bio will be in the same state as a freshly
292  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
293  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
294  *   comment in struct bio.
295  */
296 void bio_reset(struct bio *bio)
297 {
298 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299 
300 	__bio_free(bio);
301 
302 	memset(bio, 0, BIO_RESET_BYTES);
303 	bio->bi_flags = flags;
304 	atomic_set(&bio->__bi_remaining, 1);
305 }
306 EXPORT_SYMBOL(bio_reset);
307 
308 static struct bio *__bio_chain_endio(struct bio *bio)
309 {
310 	struct bio *parent = bio->bi_private;
311 
312 	if (!parent->bi_error)
313 		parent->bi_error = bio->bi_error;
314 	bio_put(bio);
315 	return parent;
316 }
317 
318 static void bio_chain_endio(struct bio *bio)
319 {
320 	bio_endio(__bio_chain_endio(bio));
321 }
322 
323 /**
324  * bio_chain - chain bio completions
325  * @bio: the target bio
326  * @parent: the @bio's parent bio
327  *
328  * The caller won't have a bi_end_io called when @bio completes - instead,
329  * @parent's bi_end_io won't be called until both @parent and @bio have
330  * completed; the chained bio will also be freed when it completes.
331  *
332  * The caller must not set bi_private or bi_end_io in @bio.
333  */
334 void bio_chain(struct bio *bio, struct bio *parent)
335 {
336 	BUG_ON(bio->bi_private || bio->bi_end_io);
337 
338 	bio->bi_private = parent;
339 	bio->bi_end_io	= bio_chain_endio;
340 	bio_inc_remaining(parent);
341 }
342 EXPORT_SYMBOL(bio_chain);
343 
344 static void bio_alloc_rescue(struct work_struct *work)
345 {
346 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 	struct bio *bio;
348 
349 	while (1) {
350 		spin_lock(&bs->rescue_lock);
351 		bio = bio_list_pop(&bs->rescue_list);
352 		spin_unlock(&bs->rescue_lock);
353 
354 		if (!bio)
355 			break;
356 
357 		generic_make_request(bio);
358 	}
359 }
360 
361 static void punt_bios_to_rescuer(struct bio_set *bs)
362 {
363 	struct bio_list punt, nopunt;
364 	struct bio *bio;
365 
366 	/*
367 	 * In order to guarantee forward progress we must punt only bios that
368 	 * were allocated from this bio_set; otherwise, if there was a bio on
369 	 * there for a stacking driver higher up in the stack, processing it
370 	 * could require allocating bios from this bio_set, and doing that from
371 	 * our own rescuer would be bad.
372 	 *
373 	 * Since bio lists are singly linked, pop them all instead of trying to
374 	 * remove from the middle of the list:
375 	 */
376 
377 	bio_list_init(&punt);
378 	bio_list_init(&nopunt);
379 
380 	while ((bio = bio_list_pop(&current->bio_list[0])))
381 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 	current->bio_list[0] = nopunt;
383 
384 	bio_list_init(&nopunt);
385 	while ((bio = bio_list_pop(&current->bio_list[1])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[1] = nopunt;
388 
389 	spin_lock(&bs->rescue_lock);
390 	bio_list_merge(&bs->rescue_list, &punt);
391 	spin_unlock(&bs->rescue_lock);
392 
393 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
394 }
395 
396 /**
397  * bio_alloc_bioset - allocate a bio for I/O
398  * @gfp_mask:   the GFP_ mask given to the slab allocator
399  * @nr_iovecs:	number of iovecs to pre-allocate
400  * @bs:		the bio_set to allocate from.
401  *
402  * Description:
403  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
404  *   backed by the @bs's mempool.
405  *
406  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
407  *   always be able to allocate a bio. This is due to the mempool guarantees.
408  *   To make this work, callers must never allocate more than 1 bio at a time
409  *   from this pool. Callers that need to allocate more than 1 bio must always
410  *   submit the previously allocated bio for IO before attempting to allocate
411  *   a new one. Failure to do so can cause deadlocks under memory pressure.
412  *
413  *   Note that when running under generic_make_request() (i.e. any block
414  *   driver), bios are not submitted until after you return - see the code in
415  *   generic_make_request() that converts recursion into iteration, to prevent
416  *   stack overflows.
417  *
418  *   This would normally mean allocating multiple bios under
419  *   generic_make_request() would be susceptible to deadlocks, but we have
420  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
421  *   thread.
422  *
423  *   However, we do not guarantee forward progress for allocations from other
424  *   mempools. Doing multiple allocations from the same mempool under
425  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
426  *   for per bio allocations.
427  *
428  *   RETURNS:
429  *   Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	unsigned front_pad;
436 	unsigned inline_vecs;
437 	struct bio_vec *bvl = NULL;
438 	struct bio *bio;
439 	void *p;
440 
441 	if (!bs) {
442 		if (nr_iovecs > UIO_MAXIOV)
443 			return NULL;
444 
445 		p = kmalloc(sizeof(struct bio) +
446 			    nr_iovecs * sizeof(struct bio_vec),
447 			    gfp_mask);
448 		front_pad = 0;
449 		inline_vecs = nr_iovecs;
450 	} else {
451 		/* should not use nobvec bioset for nr_iovecs > 0 */
452 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
453 			return NULL;
454 		/*
455 		 * generic_make_request() converts recursion to iteration; this
456 		 * means if we're running beneath it, any bios we allocate and
457 		 * submit will not be submitted (and thus freed) until after we
458 		 * return.
459 		 *
460 		 * This exposes us to a potential deadlock if we allocate
461 		 * multiple bios from the same bio_set() while running
462 		 * underneath generic_make_request(). If we were to allocate
463 		 * multiple bios (say a stacking block driver that was splitting
464 		 * bios), we would deadlock if we exhausted the mempool's
465 		 * reserve.
466 		 *
467 		 * We solve this, and guarantee forward progress, with a rescuer
468 		 * workqueue per bio_set. If we go to allocate and there are
469 		 * bios on current->bio_list, we first try the allocation
470 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 		 * bios we would be blocking to the rescuer workqueue before
472 		 * we retry with the original gfp_flags.
473 		 */
474 
475 		if (current->bio_list &&
476 		    (!bio_list_empty(&current->bio_list[0]) ||
477 		     !bio_list_empty(&current->bio_list[1])))
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio(struct bio *bio)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	bio_for_each_segment(bv, bio, iter) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio);
540 
541 /**
542  * bio_put - release a reference to a bio
543  * @bio:   bio to release reference to
544  *
545  * Description:
546  *   Put a reference to a &struct bio, either one you have gotten with
547  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
548  **/
549 void bio_put(struct bio *bio)
550 {
551 	if (!bio_flagged(bio, BIO_REFFED))
552 		bio_free(bio);
553 	else {
554 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555 
556 		/*
557 		 * last put frees it
558 		 */
559 		if (atomic_dec_and_test(&bio->__bi_cnt))
560 			bio_free(bio);
561 	}
562 }
563 EXPORT_SYMBOL(bio_put);
564 
565 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
566 {
567 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
568 		blk_recount_segments(q, bio);
569 
570 	return bio->bi_phys_segments;
571 }
572 EXPORT_SYMBOL(bio_phys_segments);
573 
574 /**
575  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
576  * 	@bio: destination bio
577  * 	@bio_src: bio to clone
578  *
579  *	Clone a &bio. Caller will own the returned bio, but not
580  *	the actual data it points to. Reference count of returned
581  * 	bio will be one.
582  *
583  * 	Caller must ensure that @bio_src is not freed before @bio.
584  */
585 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
586 {
587 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
588 
589 	/*
590 	 * most users will be overriding ->bi_bdev with a new target,
591 	 * so we don't set nor calculate new physical/hw segment counts here
592 	 */
593 	bio->bi_bdev = bio_src->bi_bdev;
594 	bio_set_flag(bio, BIO_CLONED);
595 	bio->bi_opf = bio_src->bi_opf;
596 	bio->bi_iter = bio_src->bi_iter;
597 	bio->bi_io_vec = bio_src->bi_io_vec;
598 
599 	bio_clone_blkcg_association(bio, bio_src);
600 }
601 EXPORT_SYMBOL(__bio_clone_fast);
602 
603 /**
604  *	bio_clone_fast - clone a bio that shares the original bio's biovec
605  *	@bio: bio to clone
606  *	@gfp_mask: allocation priority
607  *	@bs: bio_set to allocate from
608  *
609  * 	Like __bio_clone_fast, only also allocates the returned bio
610  */
611 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
612 {
613 	struct bio *b;
614 
615 	b = bio_alloc_bioset(gfp_mask, 0, bs);
616 	if (!b)
617 		return NULL;
618 
619 	__bio_clone_fast(b, bio);
620 
621 	if (bio_integrity(bio)) {
622 		int ret;
623 
624 		ret = bio_integrity_clone(b, bio, gfp_mask);
625 
626 		if (ret < 0) {
627 			bio_put(b);
628 			return NULL;
629 		}
630 	}
631 
632 	return b;
633 }
634 EXPORT_SYMBOL(bio_clone_fast);
635 
636 /**
637  * 	bio_clone_bioset - clone a bio
638  * 	@bio_src: bio to clone
639  *	@gfp_mask: allocation priority
640  *	@bs: bio_set to allocate from
641  *
642  *	Clone bio. Caller will own the returned bio, but not the actual data it
643  *	points to. Reference count of returned bio will be one.
644  */
645 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
646 			     struct bio_set *bs)
647 {
648 	struct bvec_iter iter;
649 	struct bio_vec bv;
650 	struct bio *bio;
651 
652 	/*
653 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
654 	 * bio_src->bi_io_vec to bio->bi_io_vec.
655 	 *
656 	 * We can't do that anymore, because:
657 	 *
658 	 *  - The point of cloning the biovec is to produce a bio with a biovec
659 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
660 	 *
661 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
662 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
663 	 *    But the clone should succeed as long as the number of biovecs we
664 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
665 	 *
666 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
667 	 *    that does not own the bio - reason being drivers don't use it for
668 	 *    iterating over the biovec anymore, so expecting it to be kept up
669 	 *    to date (i.e. for clones that share the parent biovec) is just
670 	 *    asking for trouble and would force extra work on
671 	 *    __bio_clone_fast() anyways.
672 	 */
673 
674 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
675 	if (!bio)
676 		return NULL;
677 	bio->bi_bdev		= bio_src->bi_bdev;
678 	bio->bi_opf		= bio_src->bi_opf;
679 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
680 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
681 
682 	switch (bio_op(bio)) {
683 	case REQ_OP_DISCARD:
684 	case REQ_OP_SECURE_ERASE:
685 	case REQ_OP_WRITE_ZEROES:
686 		break;
687 	case REQ_OP_WRITE_SAME:
688 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
689 		break;
690 	default:
691 		bio_for_each_segment(bv, bio_src, iter)
692 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
693 		break;
694 	}
695 
696 	if (bio_integrity(bio_src)) {
697 		int ret;
698 
699 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
700 		if (ret < 0) {
701 			bio_put(bio);
702 			return NULL;
703 		}
704 	}
705 
706 	bio_clone_blkcg_association(bio, bio_src);
707 
708 	return bio;
709 }
710 EXPORT_SYMBOL(bio_clone_bioset);
711 
712 /**
713  *	bio_add_pc_page	-	attempt to add page to bio
714  *	@q: the target queue
715  *	@bio: destination bio
716  *	@page: page to add
717  *	@len: vec entry length
718  *	@offset: vec entry offset
719  *
720  *	Attempt to add a page to the bio_vec maplist. This can fail for a
721  *	number of reasons, such as the bio being full or target block device
722  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
723  *	so it is always possible to add a single page to an empty bio.
724  *
725  *	This should only be used by REQ_PC bios.
726  */
727 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
728 		    *page, unsigned int len, unsigned int offset)
729 {
730 	int retried_segments = 0;
731 	struct bio_vec *bvec;
732 
733 	/*
734 	 * cloned bio must not modify vec list
735 	 */
736 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
737 		return 0;
738 
739 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
740 		return 0;
741 
742 	/*
743 	 * For filesystems with a blocksize smaller than the pagesize
744 	 * we will often be called with the same page as last time and
745 	 * a consecutive offset.  Optimize this special case.
746 	 */
747 	if (bio->bi_vcnt > 0) {
748 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
749 
750 		if (page == prev->bv_page &&
751 		    offset == prev->bv_offset + prev->bv_len) {
752 			prev->bv_len += len;
753 			bio->bi_iter.bi_size += len;
754 			goto done;
755 		}
756 
757 		/*
758 		 * If the queue doesn't support SG gaps and adding this
759 		 * offset would create a gap, disallow it.
760 		 */
761 		if (bvec_gap_to_prev(q, prev, offset))
762 			return 0;
763 	}
764 
765 	if (bio->bi_vcnt >= bio->bi_max_vecs)
766 		return 0;
767 
768 	/*
769 	 * setup the new entry, we might clear it again later if we
770 	 * cannot add the page
771 	 */
772 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
773 	bvec->bv_page = page;
774 	bvec->bv_len = len;
775 	bvec->bv_offset = offset;
776 	bio->bi_vcnt++;
777 	bio->bi_phys_segments++;
778 	bio->bi_iter.bi_size += len;
779 
780 	/*
781 	 * Perform a recount if the number of segments is greater
782 	 * than queue_max_segments(q).
783 	 */
784 
785 	while (bio->bi_phys_segments > queue_max_segments(q)) {
786 
787 		if (retried_segments)
788 			goto failed;
789 
790 		retried_segments = 1;
791 		blk_recount_segments(q, bio);
792 	}
793 
794 	/* If we may be able to merge these biovecs, force a recount */
795 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
796 		bio_clear_flag(bio, BIO_SEG_VALID);
797 
798  done:
799 	return len;
800 
801  failed:
802 	bvec->bv_page = NULL;
803 	bvec->bv_len = 0;
804 	bvec->bv_offset = 0;
805 	bio->bi_vcnt--;
806 	bio->bi_iter.bi_size -= len;
807 	blk_recount_segments(q, bio);
808 	return 0;
809 }
810 EXPORT_SYMBOL(bio_add_pc_page);
811 
812 /**
813  *	bio_add_page	-	attempt to add page to bio
814  *	@bio: destination bio
815  *	@page: page to add
816  *	@len: vec entry length
817  *	@offset: vec entry offset
818  *
819  *	Attempt to add a page to the bio_vec maplist. This will only fail
820  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
821  */
822 int bio_add_page(struct bio *bio, struct page *page,
823 		 unsigned int len, unsigned int offset)
824 {
825 	struct bio_vec *bv;
826 
827 	/*
828 	 * cloned bio must not modify vec list
829 	 */
830 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
831 		return 0;
832 
833 	/*
834 	 * For filesystems with a blocksize smaller than the pagesize
835 	 * we will often be called with the same page as last time and
836 	 * a consecutive offset.  Optimize this special case.
837 	 */
838 	if (bio->bi_vcnt > 0) {
839 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
840 
841 		if (page == bv->bv_page &&
842 		    offset == bv->bv_offset + bv->bv_len) {
843 			bv->bv_len += len;
844 			goto done;
845 		}
846 	}
847 
848 	if (bio->bi_vcnt >= bio->bi_max_vecs)
849 		return 0;
850 
851 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
852 	bv->bv_page	= page;
853 	bv->bv_len	= len;
854 	bv->bv_offset	= offset;
855 
856 	bio->bi_vcnt++;
857 done:
858 	bio->bi_iter.bi_size += len;
859 	return len;
860 }
861 EXPORT_SYMBOL(bio_add_page);
862 
863 /**
864  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
865  * @bio: bio to add pages to
866  * @iter: iov iterator describing the region to be mapped
867  *
868  * Pins as many pages from *iter and appends them to @bio's bvec array. The
869  * pages will have to be released using put_page() when done.
870  */
871 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
872 {
873 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
874 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
875 	struct page **pages = (struct page **)bv;
876 	size_t offset, diff;
877 	ssize_t size;
878 
879 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
880 	if (unlikely(size <= 0))
881 		return size ? size : -EFAULT;
882 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
883 
884 	/*
885 	 * Deep magic below:  We need to walk the pinned pages backwards
886 	 * because we are abusing the space allocated for the bio_vecs
887 	 * for the page array.  Because the bio_vecs are larger than the
888 	 * page pointers by definition this will always work.  But it also
889 	 * means we can't use bio_add_page, so any changes to it's semantics
890 	 * need to be reflected here as well.
891 	 */
892 	bio->bi_iter.bi_size += size;
893 	bio->bi_vcnt += nr_pages;
894 
895 	diff = (nr_pages * PAGE_SIZE - offset) - size;
896 	while (nr_pages--) {
897 		bv[nr_pages].bv_page = pages[nr_pages];
898 		bv[nr_pages].bv_len = PAGE_SIZE;
899 		bv[nr_pages].bv_offset = 0;
900 	}
901 
902 	bv[0].bv_offset += offset;
903 	bv[0].bv_len -= offset;
904 	if (diff)
905 		bv[bio->bi_vcnt - 1].bv_len -= diff;
906 
907 	iov_iter_advance(iter, size);
908 	return 0;
909 }
910 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
911 
912 struct submit_bio_ret {
913 	struct completion event;
914 	int error;
915 };
916 
917 static void submit_bio_wait_endio(struct bio *bio)
918 {
919 	struct submit_bio_ret *ret = bio->bi_private;
920 
921 	ret->error = bio->bi_error;
922 	complete(&ret->event);
923 }
924 
925 /**
926  * submit_bio_wait - submit a bio, and wait until it completes
927  * @bio: The &struct bio which describes the I/O
928  *
929  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
930  * bio_endio() on failure.
931  */
932 int submit_bio_wait(struct bio *bio)
933 {
934 	struct submit_bio_ret ret;
935 
936 	init_completion(&ret.event);
937 	bio->bi_private = &ret;
938 	bio->bi_end_io = submit_bio_wait_endio;
939 	bio->bi_opf |= REQ_SYNC;
940 	submit_bio(bio);
941 	wait_for_completion_io(&ret.event);
942 
943 	return ret.error;
944 }
945 EXPORT_SYMBOL(submit_bio_wait);
946 
947 /**
948  * bio_advance - increment/complete a bio by some number of bytes
949  * @bio:	bio to advance
950  * @bytes:	number of bytes to complete
951  *
952  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
953  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
954  * be updated on the last bvec as well.
955  *
956  * @bio will then represent the remaining, uncompleted portion of the io.
957  */
958 void bio_advance(struct bio *bio, unsigned bytes)
959 {
960 	if (bio_integrity(bio))
961 		bio_integrity_advance(bio, bytes);
962 
963 	bio_advance_iter(bio, &bio->bi_iter, bytes);
964 }
965 EXPORT_SYMBOL(bio_advance);
966 
967 /**
968  * bio_alloc_pages - allocates a single page for each bvec in a bio
969  * @bio: bio to allocate pages for
970  * @gfp_mask: flags for allocation
971  *
972  * Allocates pages up to @bio->bi_vcnt.
973  *
974  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
975  * freed.
976  */
977 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
978 {
979 	int i;
980 	struct bio_vec *bv;
981 
982 	bio_for_each_segment_all(bv, bio, i) {
983 		bv->bv_page = alloc_page(gfp_mask);
984 		if (!bv->bv_page) {
985 			while (--bv >= bio->bi_io_vec)
986 				__free_page(bv->bv_page);
987 			return -ENOMEM;
988 		}
989 	}
990 
991 	return 0;
992 }
993 EXPORT_SYMBOL(bio_alloc_pages);
994 
995 /**
996  * bio_copy_data - copy contents of data buffers from one chain of bios to
997  * another
998  * @src: source bio list
999  * @dst: destination bio list
1000  *
1001  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1002  * @src and @dst as linked lists of bios.
1003  *
1004  * Stops when it reaches the end of either @src or @dst - that is, copies
1005  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1006  */
1007 void bio_copy_data(struct bio *dst, struct bio *src)
1008 {
1009 	struct bvec_iter src_iter, dst_iter;
1010 	struct bio_vec src_bv, dst_bv;
1011 	void *src_p, *dst_p;
1012 	unsigned bytes;
1013 
1014 	src_iter = src->bi_iter;
1015 	dst_iter = dst->bi_iter;
1016 
1017 	while (1) {
1018 		if (!src_iter.bi_size) {
1019 			src = src->bi_next;
1020 			if (!src)
1021 				break;
1022 
1023 			src_iter = src->bi_iter;
1024 		}
1025 
1026 		if (!dst_iter.bi_size) {
1027 			dst = dst->bi_next;
1028 			if (!dst)
1029 				break;
1030 
1031 			dst_iter = dst->bi_iter;
1032 		}
1033 
1034 		src_bv = bio_iter_iovec(src, src_iter);
1035 		dst_bv = bio_iter_iovec(dst, dst_iter);
1036 
1037 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1038 
1039 		src_p = kmap_atomic(src_bv.bv_page);
1040 		dst_p = kmap_atomic(dst_bv.bv_page);
1041 
1042 		memcpy(dst_p + dst_bv.bv_offset,
1043 		       src_p + src_bv.bv_offset,
1044 		       bytes);
1045 
1046 		kunmap_atomic(dst_p);
1047 		kunmap_atomic(src_p);
1048 
1049 		bio_advance_iter(src, &src_iter, bytes);
1050 		bio_advance_iter(dst, &dst_iter, bytes);
1051 	}
1052 }
1053 EXPORT_SYMBOL(bio_copy_data);
1054 
1055 struct bio_map_data {
1056 	int is_our_pages;
1057 	struct iov_iter iter;
1058 	struct iovec iov[];
1059 };
1060 
1061 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1062 					       gfp_t gfp_mask)
1063 {
1064 	if (iov_count > UIO_MAXIOV)
1065 		return NULL;
1066 
1067 	return kmalloc(sizeof(struct bio_map_data) +
1068 		       sizeof(struct iovec) * iov_count, gfp_mask);
1069 }
1070 
1071 /**
1072  * bio_copy_from_iter - copy all pages from iov_iter to bio
1073  * @bio: The &struct bio which describes the I/O as destination
1074  * @iter: iov_iter as source
1075  *
1076  * Copy all pages from iov_iter to bio.
1077  * Returns 0 on success, or error on failure.
1078  */
1079 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1080 {
1081 	int i;
1082 	struct bio_vec *bvec;
1083 
1084 	bio_for_each_segment_all(bvec, bio, i) {
1085 		ssize_t ret;
1086 
1087 		ret = copy_page_from_iter(bvec->bv_page,
1088 					  bvec->bv_offset,
1089 					  bvec->bv_len,
1090 					  &iter);
1091 
1092 		if (!iov_iter_count(&iter))
1093 			break;
1094 
1095 		if (ret < bvec->bv_len)
1096 			return -EFAULT;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /**
1103  * bio_copy_to_iter - copy all pages from bio to iov_iter
1104  * @bio: The &struct bio which describes the I/O as source
1105  * @iter: iov_iter as destination
1106  *
1107  * Copy all pages from bio to iov_iter.
1108  * Returns 0 on success, or error on failure.
1109  */
1110 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1111 {
1112 	int i;
1113 	struct bio_vec *bvec;
1114 
1115 	bio_for_each_segment_all(bvec, bio, i) {
1116 		ssize_t ret;
1117 
1118 		ret = copy_page_to_iter(bvec->bv_page,
1119 					bvec->bv_offset,
1120 					bvec->bv_len,
1121 					&iter);
1122 
1123 		if (!iov_iter_count(&iter))
1124 			break;
1125 
1126 		if (ret < bvec->bv_len)
1127 			return -EFAULT;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 void bio_free_pages(struct bio *bio)
1134 {
1135 	struct bio_vec *bvec;
1136 	int i;
1137 
1138 	bio_for_each_segment_all(bvec, bio, i)
1139 		__free_page(bvec->bv_page);
1140 }
1141 EXPORT_SYMBOL(bio_free_pages);
1142 
1143 /**
1144  *	bio_uncopy_user	-	finish previously mapped bio
1145  *	@bio: bio being terminated
1146  *
1147  *	Free pages allocated from bio_copy_user_iov() and write back data
1148  *	to user space in case of a read.
1149  */
1150 int bio_uncopy_user(struct bio *bio)
1151 {
1152 	struct bio_map_data *bmd = bio->bi_private;
1153 	int ret = 0;
1154 
1155 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1156 		/*
1157 		 * if we're in a workqueue, the request is orphaned, so
1158 		 * don't copy into a random user address space, just free
1159 		 * and return -EINTR so user space doesn't expect any data.
1160 		 */
1161 		if (!current->mm)
1162 			ret = -EINTR;
1163 		else if (bio_data_dir(bio) == READ)
1164 			ret = bio_copy_to_iter(bio, bmd->iter);
1165 		if (bmd->is_our_pages)
1166 			bio_free_pages(bio);
1167 	}
1168 	kfree(bmd);
1169 	bio_put(bio);
1170 	return ret;
1171 }
1172 
1173 /**
1174  *	bio_copy_user_iov	-	copy user data to bio
1175  *	@q:		destination block queue
1176  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1177  *	@iter:		iovec iterator
1178  *	@gfp_mask:	memory allocation flags
1179  *
1180  *	Prepares and returns a bio for indirect user io, bouncing data
1181  *	to/from kernel pages as necessary. Must be paired with
1182  *	call bio_uncopy_user() on io completion.
1183  */
1184 struct bio *bio_copy_user_iov(struct request_queue *q,
1185 			      struct rq_map_data *map_data,
1186 			      const struct iov_iter *iter,
1187 			      gfp_t gfp_mask)
1188 {
1189 	struct bio_map_data *bmd;
1190 	struct page *page;
1191 	struct bio *bio;
1192 	int i, ret;
1193 	int nr_pages = 0;
1194 	unsigned int len = iter->count;
1195 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1196 
1197 	for (i = 0; i < iter->nr_segs; i++) {
1198 		unsigned long uaddr;
1199 		unsigned long end;
1200 		unsigned long start;
1201 
1202 		uaddr = (unsigned long) iter->iov[i].iov_base;
1203 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1204 			>> PAGE_SHIFT;
1205 		start = uaddr >> PAGE_SHIFT;
1206 
1207 		/*
1208 		 * Overflow, abort
1209 		 */
1210 		if (end < start)
1211 			return ERR_PTR(-EINVAL);
1212 
1213 		nr_pages += end - start;
1214 	}
1215 
1216 	if (offset)
1217 		nr_pages++;
1218 
1219 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1220 	if (!bmd)
1221 		return ERR_PTR(-ENOMEM);
1222 
1223 	/*
1224 	 * We need to do a deep copy of the iov_iter including the iovecs.
1225 	 * The caller provided iov might point to an on-stack or otherwise
1226 	 * shortlived one.
1227 	 */
1228 	bmd->is_our_pages = map_data ? 0 : 1;
1229 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1230 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1231 			iter->nr_segs, iter->count);
1232 
1233 	ret = -ENOMEM;
1234 	bio = bio_kmalloc(gfp_mask, nr_pages);
1235 	if (!bio)
1236 		goto out_bmd;
1237 
1238 	ret = 0;
1239 
1240 	if (map_data) {
1241 		nr_pages = 1 << map_data->page_order;
1242 		i = map_data->offset / PAGE_SIZE;
1243 	}
1244 	while (len) {
1245 		unsigned int bytes = PAGE_SIZE;
1246 
1247 		bytes -= offset;
1248 
1249 		if (bytes > len)
1250 			bytes = len;
1251 
1252 		if (map_data) {
1253 			if (i == map_data->nr_entries * nr_pages) {
1254 				ret = -ENOMEM;
1255 				break;
1256 			}
1257 
1258 			page = map_data->pages[i / nr_pages];
1259 			page += (i % nr_pages);
1260 
1261 			i++;
1262 		} else {
1263 			page = alloc_page(q->bounce_gfp | gfp_mask);
1264 			if (!page) {
1265 				ret = -ENOMEM;
1266 				break;
1267 			}
1268 		}
1269 
1270 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1271 			break;
1272 
1273 		len -= bytes;
1274 		offset = 0;
1275 	}
1276 
1277 	if (ret)
1278 		goto cleanup;
1279 
1280 	/*
1281 	 * success
1282 	 */
1283 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1284 	    (map_data && map_data->from_user)) {
1285 		ret = bio_copy_from_iter(bio, *iter);
1286 		if (ret)
1287 			goto cleanup;
1288 	}
1289 
1290 	bio->bi_private = bmd;
1291 	return bio;
1292 cleanup:
1293 	if (!map_data)
1294 		bio_free_pages(bio);
1295 	bio_put(bio);
1296 out_bmd:
1297 	kfree(bmd);
1298 	return ERR_PTR(ret);
1299 }
1300 
1301 /**
1302  *	bio_map_user_iov - map user iovec into bio
1303  *	@q:		the struct request_queue for the bio
1304  *	@iter:		iovec iterator
1305  *	@gfp_mask:	memory allocation flags
1306  *
1307  *	Map the user space address into a bio suitable for io to a block
1308  *	device. Returns an error pointer in case of error.
1309  */
1310 struct bio *bio_map_user_iov(struct request_queue *q,
1311 			     const struct iov_iter *iter,
1312 			     gfp_t gfp_mask)
1313 {
1314 	int j;
1315 	int nr_pages = 0;
1316 	struct page **pages;
1317 	struct bio *bio;
1318 	int cur_page = 0;
1319 	int ret, offset;
1320 	struct iov_iter i;
1321 	struct iovec iov;
1322 
1323 	iov_for_each(iov, i, *iter) {
1324 		unsigned long uaddr = (unsigned long) iov.iov_base;
1325 		unsigned long len = iov.iov_len;
1326 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327 		unsigned long start = uaddr >> PAGE_SHIFT;
1328 
1329 		/*
1330 		 * Overflow, abort
1331 		 */
1332 		if (end < start)
1333 			return ERR_PTR(-EINVAL);
1334 
1335 		nr_pages += end - start;
1336 		/*
1337 		 * buffer must be aligned to at least logical block size for now
1338 		 */
1339 		if (uaddr & queue_dma_alignment(q))
1340 			return ERR_PTR(-EINVAL);
1341 	}
1342 
1343 	if (!nr_pages)
1344 		return ERR_PTR(-EINVAL);
1345 
1346 	bio = bio_kmalloc(gfp_mask, nr_pages);
1347 	if (!bio)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	ret = -ENOMEM;
1351 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1352 	if (!pages)
1353 		goto out;
1354 
1355 	iov_for_each(iov, i, *iter) {
1356 		unsigned long uaddr = (unsigned long) iov.iov_base;
1357 		unsigned long len = iov.iov_len;
1358 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1359 		unsigned long start = uaddr >> PAGE_SHIFT;
1360 		const int local_nr_pages = end - start;
1361 		const int page_limit = cur_page + local_nr_pages;
1362 
1363 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1364 				(iter->type & WRITE) != WRITE,
1365 				&pages[cur_page]);
1366 		if (ret < local_nr_pages) {
1367 			ret = -EFAULT;
1368 			goto out_unmap;
1369 		}
1370 
1371 		offset = offset_in_page(uaddr);
1372 		for (j = cur_page; j < page_limit; j++) {
1373 			unsigned int bytes = PAGE_SIZE - offset;
1374 
1375 			if (len <= 0)
1376 				break;
1377 
1378 			if (bytes > len)
1379 				bytes = len;
1380 
1381 			/*
1382 			 * sorry...
1383 			 */
1384 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1385 					    bytes)
1386 				break;
1387 
1388 			len -= bytes;
1389 			offset = 0;
1390 		}
1391 
1392 		cur_page = j;
1393 		/*
1394 		 * release the pages we didn't map into the bio, if any
1395 		 */
1396 		while (j < page_limit)
1397 			put_page(pages[j++]);
1398 	}
1399 
1400 	kfree(pages);
1401 
1402 	bio_set_flag(bio, BIO_USER_MAPPED);
1403 
1404 	/*
1405 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1406 	 * it would normally disappear when its bi_end_io is run.
1407 	 * however, we need it for the unmap, so grab an extra
1408 	 * reference to it
1409 	 */
1410 	bio_get(bio);
1411 	return bio;
1412 
1413  out_unmap:
1414 	for (j = 0; j < nr_pages; j++) {
1415 		if (!pages[j])
1416 			break;
1417 		put_page(pages[j]);
1418 	}
1419  out:
1420 	kfree(pages);
1421 	bio_put(bio);
1422 	return ERR_PTR(ret);
1423 }
1424 
1425 static void __bio_unmap_user(struct bio *bio)
1426 {
1427 	struct bio_vec *bvec;
1428 	int i;
1429 
1430 	/*
1431 	 * make sure we dirty pages we wrote to
1432 	 */
1433 	bio_for_each_segment_all(bvec, bio, i) {
1434 		if (bio_data_dir(bio) == READ)
1435 			set_page_dirty_lock(bvec->bv_page);
1436 
1437 		put_page(bvec->bv_page);
1438 	}
1439 
1440 	bio_put(bio);
1441 }
1442 
1443 /**
1444  *	bio_unmap_user	-	unmap a bio
1445  *	@bio:		the bio being unmapped
1446  *
1447  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1448  *	process context.
1449  *
1450  *	bio_unmap_user() may sleep.
1451  */
1452 void bio_unmap_user(struct bio *bio)
1453 {
1454 	__bio_unmap_user(bio);
1455 	bio_put(bio);
1456 }
1457 
1458 static void bio_map_kern_endio(struct bio *bio)
1459 {
1460 	bio_put(bio);
1461 }
1462 
1463 /**
1464  *	bio_map_kern	-	map kernel address into bio
1465  *	@q: the struct request_queue for the bio
1466  *	@data: pointer to buffer to map
1467  *	@len: length in bytes
1468  *	@gfp_mask: allocation flags for bio allocation
1469  *
1470  *	Map the kernel address into a bio suitable for io to a block
1471  *	device. Returns an error pointer in case of error.
1472  */
1473 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1474 			 gfp_t gfp_mask)
1475 {
1476 	unsigned long kaddr = (unsigned long)data;
1477 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1478 	unsigned long start = kaddr >> PAGE_SHIFT;
1479 	const int nr_pages = end - start;
1480 	int offset, i;
1481 	struct bio *bio;
1482 
1483 	bio = bio_kmalloc(gfp_mask, nr_pages);
1484 	if (!bio)
1485 		return ERR_PTR(-ENOMEM);
1486 
1487 	offset = offset_in_page(kaddr);
1488 	for (i = 0; i < nr_pages; i++) {
1489 		unsigned int bytes = PAGE_SIZE - offset;
1490 
1491 		if (len <= 0)
1492 			break;
1493 
1494 		if (bytes > len)
1495 			bytes = len;
1496 
1497 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1498 				    offset) < bytes) {
1499 			/* we don't support partial mappings */
1500 			bio_put(bio);
1501 			return ERR_PTR(-EINVAL);
1502 		}
1503 
1504 		data += bytes;
1505 		len -= bytes;
1506 		offset = 0;
1507 	}
1508 
1509 	bio->bi_end_io = bio_map_kern_endio;
1510 	return bio;
1511 }
1512 EXPORT_SYMBOL(bio_map_kern);
1513 
1514 static void bio_copy_kern_endio(struct bio *bio)
1515 {
1516 	bio_free_pages(bio);
1517 	bio_put(bio);
1518 }
1519 
1520 static void bio_copy_kern_endio_read(struct bio *bio)
1521 {
1522 	char *p = bio->bi_private;
1523 	struct bio_vec *bvec;
1524 	int i;
1525 
1526 	bio_for_each_segment_all(bvec, bio, i) {
1527 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 		p += bvec->bv_len;
1529 	}
1530 
1531 	bio_copy_kern_endio(bio);
1532 }
1533 
1534 /**
1535  *	bio_copy_kern	-	copy kernel address into bio
1536  *	@q: the struct request_queue for the bio
1537  *	@data: pointer to buffer to copy
1538  *	@len: length in bytes
1539  *	@gfp_mask: allocation flags for bio and page allocation
1540  *	@reading: data direction is READ
1541  *
1542  *	copy the kernel address into a bio suitable for io to a block
1543  *	device. Returns an error pointer in case of error.
1544  */
1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 			  gfp_t gfp_mask, int reading)
1547 {
1548 	unsigned long kaddr = (unsigned long)data;
1549 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 	unsigned long start = kaddr >> PAGE_SHIFT;
1551 	struct bio *bio;
1552 	void *p = data;
1553 	int nr_pages = 0;
1554 
1555 	/*
1556 	 * Overflow, abort
1557 	 */
1558 	if (end < start)
1559 		return ERR_PTR(-EINVAL);
1560 
1561 	nr_pages = end - start;
1562 	bio = bio_kmalloc(gfp_mask, nr_pages);
1563 	if (!bio)
1564 		return ERR_PTR(-ENOMEM);
1565 
1566 	while (len) {
1567 		struct page *page;
1568 		unsigned int bytes = PAGE_SIZE;
1569 
1570 		if (bytes > len)
1571 			bytes = len;
1572 
1573 		page = alloc_page(q->bounce_gfp | gfp_mask);
1574 		if (!page)
1575 			goto cleanup;
1576 
1577 		if (!reading)
1578 			memcpy(page_address(page), p, bytes);
1579 
1580 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 			break;
1582 
1583 		len -= bytes;
1584 		p += bytes;
1585 	}
1586 
1587 	if (reading) {
1588 		bio->bi_end_io = bio_copy_kern_endio_read;
1589 		bio->bi_private = data;
1590 	} else {
1591 		bio->bi_end_io = bio_copy_kern_endio;
1592 	}
1593 
1594 	return bio;
1595 
1596 cleanup:
1597 	bio_free_pages(bio);
1598 	bio_put(bio);
1599 	return ERR_PTR(-ENOMEM);
1600 }
1601 
1602 /*
1603  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604  * for performing direct-IO in BIOs.
1605  *
1606  * The problem is that we cannot run set_page_dirty() from interrupt context
1607  * because the required locks are not interrupt-safe.  So what we can do is to
1608  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1609  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1610  * in process context.
1611  *
1612  * We special-case compound pages here: normally this means reads into hugetlb
1613  * pages.  The logic in here doesn't really work right for compound pages
1614  * because the VM does not uniformly chase down the head page in all cases.
1615  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616  * handle them at all.  So we skip compound pages here at an early stage.
1617  *
1618  * Note that this code is very hard to test under normal circumstances because
1619  * direct-io pins the pages with get_user_pages().  This makes
1620  * is_page_cache_freeable return false, and the VM will not clean the pages.
1621  * But other code (eg, flusher threads) could clean the pages if they are mapped
1622  * pagecache.
1623  *
1624  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625  * deferred bio dirtying paths.
1626  */
1627 
1628 /*
1629  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630  */
1631 void bio_set_pages_dirty(struct bio *bio)
1632 {
1633 	struct bio_vec *bvec;
1634 	int i;
1635 
1636 	bio_for_each_segment_all(bvec, bio, i) {
1637 		struct page *page = bvec->bv_page;
1638 
1639 		if (page && !PageCompound(page))
1640 			set_page_dirty_lock(page);
1641 	}
1642 }
1643 
1644 static void bio_release_pages(struct bio *bio)
1645 {
1646 	struct bio_vec *bvec;
1647 	int i;
1648 
1649 	bio_for_each_segment_all(bvec, bio, i) {
1650 		struct page *page = bvec->bv_page;
1651 
1652 		if (page)
1653 			put_page(page);
1654 	}
1655 }
1656 
1657 /*
1658  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1659  * If they are, then fine.  If, however, some pages are clean then they must
1660  * have been written out during the direct-IO read.  So we take another ref on
1661  * the BIO and the offending pages and re-dirty the pages in process context.
1662  *
1663  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1664  * here on.  It will run one put_page() against each page and will run one
1665  * bio_put() against the BIO.
1666  */
1667 
1668 static void bio_dirty_fn(struct work_struct *work);
1669 
1670 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1671 static DEFINE_SPINLOCK(bio_dirty_lock);
1672 static struct bio *bio_dirty_list;
1673 
1674 /*
1675  * This runs in process context
1676  */
1677 static void bio_dirty_fn(struct work_struct *work)
1678 {
1679 	unsigned long flags;
1680 	struct bio *bio;
1681 
1682 	spin_lock_irqsave(&bio_dirty_lock, flags);
1683 	bio = bio_dirty_list;
1684 	bio_dirty_list = NULL;
1685 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1686 
1687 	while (bio) {
1688 		struct bio *next = bio->bi_private;
1689 
1690 		bio_set_pages_dirty(bio);
1691 		bio_release_pages(bio);
1692 		bio_put(bio);
1693 		bio = next;
1694 	}
1695 }
1696 
1697 void bio_check_pages_dirty(struct bio *bio)
1698 {
1699 	struct bio_vec *bvec;
1700 	int nr_clean_pages = 0;
1701 	int i;
1702 
1703 	bio_for_each_segment_all(bvec, bio, i) {
1704 		struct page *page = bvec->bv_page;
1705 
1706 		if (PageDirty(page) || PageCompound(page)) {
1707 			put_page(page);
1708 			bvec->bv_page = NULL;
1709 		} else {
1710 			nr_clean_pages++;
1711 		}
1712 	}
1713 
1714 	if (nr_clean_pages) {
1715 		unsigned long flags;
1716 
1717 		spin_lock_irqsave(&bio_dirty_lock, flags);
1718 		bio->bi_private = bio_dirty_list;
1719 		bio_dirty_list = bio;
1720 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 		schedule_work(&bio_dirty_work);
1722 	} else {
1723 		bio_put(bio);
1724 	}
1725 }
1726 
1727 void generic_start_io_acct(int rw, unsigned long sectors,
1728 			   struct hd_struct *part)
1729 {
1730 	int cpu = part_stat_lock();
1731 
1732 	part_round_stats(cpu, part);
1733 	part_stat_inc(cpu, part, ios[rw]);
1734 	part_stat_add(cpu, part, sectors[rw], sectors);
1735 	part_inc_in_flight(part, rw);
1736 
1737 	part_stat_unlock();
1738 }
1739 EXPORT_SYMBOL(generic_start_io_acct);
1740 
1741 void generic_end_io_acct(int rw, struct hd_struct *part,
1742 			 unsigned long start_time)
1743 {
1744 	unsigned long duration = jiffies - start_time;
1745 	int cpu = part_stat_lock();
1746 
1747 	part_stat_add(cpu, part, ticks[rw], duration);
1748 	part_round_stats(cpu, part);
1749 	part_dec_in_flight(part, rw);
1750 
1751 	part_stat_unlock();
1752 }
1753 EXPORT_SYMBOL(generic_end_io_acct);
1754 
1755 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1756 void bio_flush_dcache_pages(struct bio *bi)
1757 {
1758 	struct bio_vec bvec;
1759 	struct bvec_iter iter;
1760 
1761 	bio_for_each_segment(bvec, bi, iter)
1762 		flush_dcache_page(bvec.bv_page);
1763 }
1764 EXPORT_SYMBOL(bio_flush_dcache_pages);
1765 #endif
1766 
1767 static inline bool bio_remaining_done(struct bio *bio)
1768 {
1769 	/*
1770 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1771 	 * we always end io on the first invocation.
1772 	 */
1773 	if (!bio_flagged(bio, BIO_CHAIN))
1774 		return true;
1775 
1776 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1777 
1778 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1779 		bio_clear_flag(bio, BIO_CHAIN);
1780 		return true;
1781 	}
1782 
1783 	return false;
1784 }
1785 
1786 /**
1787  * bio_endio - end I/O on a bio
1788  * @bio:	bio
1789  *
1790  * Description:
1791  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1792  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1793  *   bio unless they own it and thus know that it has an end_io function.
1794  *
1795  *   bio_endio() can be called several times on a bio that has been chained
1796  *   using bio_chain().  The ->bi_end_io() function will only be called the
1797  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1798  *   generated if BIO_TRACE_COMPLETION is set.
1799  **/
1800 void bio_endio(struct bio *bio)
1801 {
1802 again:
1803 	if (!bio_remaining_done(bio))
1804 		return;
1805 
1806 	/*
1807 	 * Need to have a real endio function for chained bios, otherwise
1808 	 * various corner cases will break (like stacking block devices that
1809 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1810 	 * recursion and blowing the stack. Tail call optimization would
1811 	 * handle this, but compiling with frame pointers also disables
1812 	 * gcc's sibling call optimization.
1813 	 */
1814 	if (bio->bi_end_io == bio_chain_endio) {
1815 		bio = __bio_chain_endio(bio);
1816 		goto again;
1817 	}
1818 
1819 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1820 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
1821 					 bio, bio->bi_error);
1822 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1823 	}
1824 
1825 	blk_throtl_bio_endio(bio);
1826 	if (bio->bi_end_io)
1827 		bio->bi_end_io(bio);
1828 }
1829 EXPORT_SYMBOL(bio_endio);
1830 
1831 /**
1832  * bio_split - split a bio
1833  * @bio:	bio to split
1834  * @sectors:	number of sectors to split from the front of @bio
1835  * @gfp:	gfp mask
1836  * @bs:		bio set to allocate from
1837  *
1838  * Allocates and returns a new bio which represents @sectors from the start of
1839  * @bio, and updates @bio to represent the remaining sectors.
1840  *
1841  * Unless this is a discard request the newly allocated bio will point
1842  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1843  * @bio is not freed before the split.
1844  */
1845 struct bio *bio_split(struct bio *bio, int sectors,
1846 		      gfp_t gfp, struct bio_set *bs)
1847 {
1848 	struct bio *split = NULL;
1849 
1850 	BUG_ON(sectors <= 0);
1851 	BUG_ON(sectors >= bio_sectors(bio));
1852 
1853 	split = bio_clone_fast(bio, gfp, bs);
1854 	if (!split)
1855 		return NULL;
1856 
1857 	split->bi_iter.bi_size = sectors << 9;
1858 
1859 	if (bio_integrity(split))
1860 		bio_integrity_trim(split, 0, sectors);
1861 
1862 	bio_advance(bio, split->bi_iter.bi_size);
1863 
1864 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1865 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1866 
1867 	return split;
1868 }
1869 EXPORT_SYMBOL(bio_split);
1870 
1871 /**
1872  * bio_trim - trim a bio
1873  * @bio:	bio to trim
1874  * @offset:	number of sectors to trim from the front of @bio
1875  * @size:	size we want to trim @bio to, in sectors
1876  */
1877 void bio_trim(struct bio *bio, int offset, int size)
1878 {
1879 	/* 'bio' is a cloned bio which we need to trim to match
1880 	 * the given offset and size.
1881 	 */
1882 
1883 	size <<= 9;
1884 	if (offset == 0 && size == bio->bi_iter.bi_size)
1885 		return;
1886 
1887 	bio_clear_flag(bio, BIO_SEG_VALID);
1888 
1889 	bio_advance(bio, offset << 9);
1890 
1891 	bio->bi_iter.bi_size = size;
1892 }
1893 EXPORT_SYMBOL_GPL(bio_trim);
1894 
1895 /*
1896  * create memory pools for biovec's in a bio_set.
1897  * use the global biovec slabs created for general use.
1898  */
1899 mempool_t *biovec_create_pool(int pool_entries)
1900 {
1901 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1902 
1903 	return mempool_create_slab_pool(pool_entries, bp->slab);
1904 }
1905 
1906 void bioset_free(struct bio_set *bs)
1907 {
1908 	if (bs->rescue_workqueue)
1909 		destroy_workqueue(bs->rescue_workqueue);
1910 
1911 	if (bs->bio_pool)
1912 		mempool_destroy(bs->bio_pool);
1913 
1914 	if (bs->bvec_pool)
1915 		mempool_destroy(bs->bvec_pool);
1916 
1917 	bioset_integrity_free(bs);
1918 	bio_put_slab(bs);
1919 
1920 	kfree(bs);
1921 }
1922 EXPORT_SYMBOL(bioset_free);
1923 
1924 static struct bio_set *__bioset_create(unsigned int pool_size,
1925 				       unsigned int front_pad,
1926 				       bool create_bvec_pool)
1927 {
1928 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1929 	struct bio_set *bs;
1930 
1931 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1932 	if (!bs)
1933 		return NULL;
1934 
1935 	bs->front_pad = front_pad;
1936 
1937 	spin_lock_init(&bs->rescue_lock);
1938 	bio_list_init(&bs->rescue_list);
1939 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1940 
1941 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1942 	if (!bs->bio_slab) {
1943 		kfree(bs);
1944 		return NULL;
1945 	}
1946 
1947 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1948 	if (!bs->bio_pool)
1949 		goto bad;
1950 
1951 	if (create_bvec_pool) {
1952 		bs->bvec_pool = biovec_create_pool(pool_size);
1953 		if (!bs->bvec_pool)
1954 			goto bad;
1955 	}
1956 
1957 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1958 	if (!bs->rescue_workqueue)
1959 		goto bad;
1960 
1961 	return bs;
1962 bad:
1963 	bioset_free(bs);
1964 	return NULL;
1965 }
1966 
1967 /**
1968  * bioset_create  - Create a bio_set
1969  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1970  * @front_pad:	Number of bytes to allocate in front of the returned bio
1971  *
1972  * Description:
1973  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1974  *    to ask for a number of bytes to be allocated in front of the bio.
1975  *    Front pad allocation is useful for embedding the bio inside
1976  *    another structure, to avoid allocating extra data to go with the bio.
1977  *    Note that the bio must be embedded at the END of that structure always,
1978  *    or things will break badly.
1979  */
1980 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1981 {
1982 	return __bioset_create(pool_size, front_pad, true);
1983 }
1984 EXPORT_SYMBOL(bioset_create);
1985 
1986 /**
1987  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1988  * @pool_size:	Number of bio to cache in the mempool
1989  * @front_pad:	Number of bytes to allocate in front of the returned bio
1990  *
1991  * Description:
1992  *    Same functionality as bioset_create() except that mempool is not
1993  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1994  */
1995 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1996 {
1997 	return __bioset_create(pool_size, front_pad, false);
1998 }
1999 EXPORT_SYMBOL(bioset_create_nobvec);
2000 
2001 #ifdef CONFIG_BLK_CGROUP
2002 
2003 /**
2004  * bio_associate_blkcg - associate a bio with the specified blkcg
2005  * @bio: target bio
2006  * @blkcg_css: css of the blkcg to associate
2007  *
2008  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2009  * treat @bio as if it were issued by a task which belongs to the blkcg.
2010  *
2011  * This function takes an extra reference of @blkcg_css which will be put
2012  * when @bio is released.  The caller must own @bio and is responsible for
2013  * synchronizing calls to this function.
2014  */
2015 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2016 {
2017 	if (unlikely(bio->bi_css))
2018 		return -EBUSY;
2019 	css_get(blkcg_css);
2020 	bio->bi_css = blkcg_css;
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2024 
2025 /**
2026  * bio_associate_current - associate a bio with %current
2027  * @bio: target bio
2028  *
2029  * Associate @bio with %current if it hasn't been associated yet.  Block
2030  * layer will treat @bio as if it were issued by %current no matter which
2031  * task actually issues it.
2032  *
2033  * This function takes an extra reference of @task's io_context and blkcg
2034  * which will be put when @bio is released.  The caller must own @bio,
2035  * ensure %current->io_context exists, and is responsible for synchronizing
2036  * calls to this function.
2037  */
2038 int bio_associate_current(struct bio *bio)
2039 {
2040 	struct io_context *ioc;
2041 
2042 	if (bio->bi_css)
2043 		return -EBUSY;
2044 
2045 	ioc = current->io_context;
2046 	if (!ioc)
2047 		return -ENOENT;
2048 
2049 	get_io_context_active(ioc);
2050 	bio->bi_ioc = ioc;
2051 	bio->bi_css = task_get_css(current, io_cgrp_id);
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(bio_associate_current);
2055 
2056 /**
2057  * bio_disassociate_task - undo bio_associate_current()
2058  * @bio: target bio
2059  */
2060 void bio_disassociate_task(struct bio *bio)
2061 {
2062 	if (bio->bi_ioc) {
2063 		put_io_context(bio->bi_ioc);
2064 		bio->bi_ioc = NULL;
2065 	}
2066 	if (bio->bi_css) {
2067 		css_put(bio->bi_css);
2068 		bio->bi_css = NULL;
2069 	}
2070 }
2071 
2072 /**
2073  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2074  * @dst: destination bio
2075  * @src: source bio
2076  */
2077 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2078 {
2079 	if (src->bi_css)
2080 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2081 }
2082 
2083 #endif /* CONFIG_BLK_CGROUP */
2084 
2085 static void __init biovec_init_slabs(void)
2086 {
2087 	int i;
2088 
2089 	for (i = 0; i < BVEC_POOL_NR; i++) {
2090 		int size;
2091 		struct biovec_slab *bvs = bvec_slabs + i;
2092 
2093 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2094 			bvs->slab = NULL;
2095 			continue;
2096 		}
2097 
2098 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2099 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2100                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2101 	}
2102 }
2103 
2104 static int __init init_bio(void)
2105 {
2106 	bio_slab_max = 2;
2107 	bio_slab_nr = 0;
2108 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2109 	if (!bio_slabs)
2110 		panic("bio: can't allocate bios\n");
2111 
2112 	bio_integrity_init();
2113 	biovec_init_slabs();
2114 
2115 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2116 	if (!fs_bio_set)
2117 		panic("bio: can't allocate bios\n");
2118 
2119 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2120 		panic("bio: can't create integrity pool\n");
2121 
2122 	return 0;
2123 }
2124 subsys_initcall(init_bio);
2125