xref: /linux/arch/xtensa/kernel/vectors.S (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License.  See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 *   a0:	trashed, original value saved on stack (PT_AREG0)
29 *   a1:	a1
30 *   a2:	new stack pointer, original value in depc
31 *   a3:	dispatch table
32 *   depc:	a2, original value saved on stack (PT_DEPC)
33 *   excsave_1:	a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 *   PT_DEPC	>= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 *		<  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note:  Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <linux/pgtable.h>
47#include <asm/asmmacro.h>
48#include <asm/ptrace.h>
49#include <asm/current.h>
50#include <asm/asm-offsets.h>
51#include <asm/processor.h>
52#include <asm/page.h>
53#include <asm/thread_info.h>
54#include <asm/vectors.h>
55
56#define WINDOW_VECTORS_SIZE   0x180
57
58
59/*
60 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
61 *
62 * We get here when an exception occurred while we were in userland.
63 * We switch to the kernel stack and jump to the first level handler
64 * associated to the exception cause.
65 *
66 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
67 *       decremented by PT_USER_SIZE.
68 */
69
70	.section .UserExceptionVector.text, "ax"
71
72ENTRY(_UserExceptionVector)
73
74	xsr	a3, excsave1		# save a3 and get dispatch table
75	wsr	a2, depc		# save a2
76	l32i	a2, a3, EXC_TABLE_KSTK	# load kernel stack to a2
77	s32i	a0, a2, PT_AREG0	# save a0 to ESF
78	rsr	a0, exccause		# retrieve exception cause
79	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
80	addx4	a0, a0, a3		# find entry in table
81	l32i	a0, a0, EXC_TABLE_FAST_USER	# load handler
82	xsr	a3, excsave1		# restore a3 and dispatch table
83	jx	a0
84
85ENDPROC(_UserExceptionVector)
86
87/*
88 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
89 *
90 * We get this exception when we were already in kernel space.
91 * We decrement the current stack pointer (kernel) by PT_SIZE and
92 * jump to the first-level handler associated with the exception cause.
93 *
94 * Note: we need to preserve space for the spill region.
95 */
96
97	.section .KernelExceptionVector.text, "ax"
98
99ENTRY(_KernelExceptionVector)
100
101	xsr	a3, excsave1		# save a3, and get dispatch table
102	wsr	a2, depc		# save a2
103	addi	a2, a1, -16-PT_SIZE	# adjust stack pointer
104	s32i	a0, a2, PT_AREG0	# save a0 to ESF
105	rsr	a0, exccause		# retrieve exception cause
106	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
107	addx4	a0, a0, a3		# find entry in table
108	l32i	a0, a0, EXC_TABLE_FAST_KERNEL	# load handler address
109	xsr	a3, excsave1		# restore a3 and dispatch table
110	jx	a0
111
112ENDPROC(_KernelExceptionVector)
113
114/*
115 * Double exception vector (Exceptions with PS.EXCM == 1)
116 * We get this exception when another exception occurs while were are
117 * already in an exception, such as window overflow/underflow exception,
118 * or 'expected' exceptions, for example memory exception when we were trying
119 * to read data from an invalid address in user space.
120 *
121 * Note that this vector is never invoked for level-1 interrupts, because such
122 * interrupts are disabled (masked) when PS.EXCM is set.
123 *
124 * We decode the exception and take the appropriate action.  However, the
125 * double exception vector is much more careful, because a lot more error
126 * cases go through the double exception vector than through the user and
127 * kernel exception vectors.
128 *
129 * Occasionally, the kernel expects a double exception to occur.  This usually
130 * happens when accessing user-space memory with the user's permissions
131 * (l32e/s32e instructions).  The kernel state, though, is not always suitable
132 * for immediate transfer of control to handle_double, where "normal" exception
133 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
134 * vmalloc memory, possibly requiring repair in a double exception handler.
135 *
136 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
137 * a boolean variable and a pointer to a fixup routine. If the variable
138 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
139 * zero indicates to use the default kernel/user exception handler.
140 * There is only one exception, when the value is identical to the exc_table
141 * label, the kernel is in trouble. This mechanism is used to protect critical
142 * sections, mainly when the handler writes to the stack to assert the stack
143 * pointer is valid. Once the fixup/default handler leaves that area, the
144 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
145 *
146 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
147 * nonzero address of a fixup routine before it could cause a double exception
148 * and reset it before it returns.
149 *
150 * Some other things to take care of when a fast exception handler doesn't
151 * specify a particular fixup handler but wants to use the default handlers:
152 *
153 *  - The original stack pointer (in a1) must not be modified. The fast
154 *    exception handler should only use a2 as the stack pointer.
155 *
156 *  - If the fast handler manipulates the stack pointer (in a2), it has to
157 *    register a valid fixup handler and cannot use the default handlers.
158 *
159 *  - The handler can use any other generic register from a3 to a15, but it
160 *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
161 *
162 *  - These registers must be saved before a double exception can occur.
163 *
164 *  - If we ever implement handling signals while in double exceptions, the
165 *    number of registers a fast handler has saved (excluding a0 and a1) must
166 *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
167 *
168 * The fixup handlers are special handlers:
169 *
170 *  - Fixup entry conditions differ from regular exceptions:
171 *
172 *	a0:	   DEPC
173 *	a1: 	   a1
174 *	a2:	   trashed, original value in EXC_TABLE_DOUBLE_SAVE
175 *	a3:	   exctable
176 *	depc:	   a0
177 *	excsave_1: a3
178 *
179 *  - When the kernel enters the fixup handler, it still assumes it is in a
180 *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
181 *    The fixup handler, therefore, has to re-register itself as the fixup
182 *    handler before it returns from the double exception.
183 *
184 *  - Fixup handler can share the same exception frame with the fast handler.
185 *    The kernel stack pointer is not changed when entering the fixup handler.
186 *
187 *  - Fixup handlers can jump to the default kernel and user exception
188 *    handlers. Before it jumps, though, it has to setup a exception frame
189 *    on stack. Because the default handler resets the register fixup handler
190 *    the fixup handler must make sure that the default handler returns to
191 *    it instead of the exception address, so it can re-register itself as
192 *    the fixup handler.
193 *
194 * In case of a critical condition where the kernel cannot recover, we jump
195 * to unrecoverable_exception with the following entry conditions.
196 * All registers a0...a15 are unchanged from the last exception, except:
197 *
198 *	a0:	   last address before we jumped to the unrecoverable_exception.
199 *	excsave_1: a0
200 *
201 *
202 * See the handle_alloca_user and spill_registers routines for example clients.
203 *
204 * FIXME: Note: we currently don't allow signal handling coming from a double
205 *        exception, so the item markt with (*) is not required.
206 */
207
208	.section .DoubleExceptionVector.text, "ax"
209
210ENTRY(_DoubleExceptionVector)
211
212	xsr	a3, excsave1
213	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
214
215	/* Check for kernel double exception (usually fatal). */
216
217	rsr	a2, ps
218	_bbsi.l	a2, PS_UM_BIT, 1f
219	j	.Lksp
220
221	.align	4
222	.literal_position
2231:
224	/* Check if we are currently handling a window exception. */
225	/* Note: We don't need to indicate that we enter a critical section. */
226
227	xsr	a0, depc		# get DEPC, save a0
228
229#ifdef SUPPORT_WINDOWED
230	movi	a2, WINDOW_VECTORS_VADDR
231	_bltu	a0, a2, .Lfixup
232	addi	a2, a2, WINDOW_VECTORS_SIZE
233	_bgeu	a0, a2, .Lfixup
234
235	/* Window overflow/underflow exception. Get stack pointer. */
236
237	l32i	a2, a3, EXC_TABLE_KSTK
238
239	/* Check for overflow/underflow exception, jump if overflow. */
240
241	bbci.l	a0, 6, _DoubleExceptionVector_WindowOverflow
242
243	/*
244	 * Restart window underflow exception.
245	 * Currently:
246	 *	depc = orig a0,
247	 *	a0 = orig DEPC,
248	 *	a2 = new sp based on KSTK from exc_table
249	 *	a3 = excsave_1
250	 *	excsave_1 = orig a3
251	 *
252	 * We return to the instruction in user space that caused the window
253	 * underflow exception. Therefore, we change window base to the value
254	 * before we entered the window underflow exception and prepare the
255	 * registers to return as if we were coming from a regular exception
256	 * by changing depc (in a0).
257	 * Note: We can trash the current window frame (a0...a3) and depc!
258	 */
259_DoubleExceptionVector_WindowUnderflow:
260	xsr	a3, excsave1
261	wsr	a2, depc		# save stack pointer temporarily
262	rsr	a0, ps
263	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
264	wsr	a0, windowbase
265	rsync
266
267	/* We are now in the previous window frame. Save registers again. */
268
269	xsr	a2, depc		# save a2 and get stack pointer
270	s32i	a0, a2, PT_AREG0
271	xsr	a3, excsave1
272	rsr	a0, exccause
273	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
274	addx4	a0, a0, a3
275	xsr	a3, excsave1
276	l32i	a0, a0, EXC_TABLE_FAST_USER
277	jx	a0
278
279#else
280	j	.Lfixup
281#endif
282
283	/*
284	 * We only allow the ITLB miss exception if we are in kernel space.
285	 * All other exceptions are unexpected and thus unrecoverable!
286	 */
287
288#ifdef CONFIG_MMU
289	.extern fast_second_level_miss_double_kernel
290
291.Lksp:	/* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
292
293	rsr	a3, exccause
294	beqi	a3, EXCCAUSE_ITLB_MISS, 1f
295	addi	a3, a3, -EXCCAUSE_DTLB_MISS
296	bnez	a3, .Lunrecoverable
2971:	movi	a3, fast_second_level_miss_double_kernel
298	jx	a3
299#else
300.equ	.Lksp,	.Lunrecoverable
301#endif
302
303	/* Critical! We can't handle this situation. PANIC! */
304
305	.extern unrecoverable_exception
306
307.Lunrecoverable_fixup:
308	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
309	xsr	a0, depc
310
311.Lunrecoverable:
312	rsr	a3, excsave1
313	wsr	a0, excsave1
314	call0	unrecoverable_exception
315
316.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
317
318	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
319
320	/* Enter critical section. */
321
322	l32i	a2, a3, EXC_TABLE_FIXUP
323	s32i	a3, a3, EXC_TABLE_FIXUP
324	beq	a2, a3, .Lunrecoverable_fixup	# critical section
325	beqz	a2, .Ldflt			# no handler was registered
326
327	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
328
329	jx	a2
330
331.Ldflt:	/* Get stack pointer. */
332
333	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
334	addi	a2, a2, -PT_USER_SIZE
335
336	/* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
337
338	s32i	a0, a2, PT_DEPC
339	l32i	a0, a3, EXC_TABLE_DOUBLE_SAVE
340	xsr	a0, depc
341	s32i	a0, a2, PT_AREG0
342
343	/* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
344
345	rsr	a0, exccause
346	addx4	a0, a0, a3
347	xsr	a3, excsave1
348	l32i	a0, a0, EXC_TABLE_FAST_USER
349	jx	a0
350
351#ifdef SUPPORT_WINDOWED
352	/*
353	 * Restart window OVERFLOW exception.
354	 * Currently:
355	 *	depc = orig a0,
356	 *	a0 = orig DEPC,
357	 *	a2 = new sp based on KSTK from exc_table
358	 *	a3 = EXCSAVE_1
359	 *	excsave_1 = orig a3
360	 *
361	 * We return to the instruction in user space that caused the window
362	 * overflow exception. Therefore, we change window base to the value
363	 * before we entered the window overflow exception and prepare the
364	 * registers to return as if we were coming from a regular exception
365	 * by changing DEPC (in a0).
366	 *
367	 * NOTE: We CANNOT trash the current window frame (a0...a3), but we
368	 * can clobber depc.
369	 *
370	 * The tricky part here is that overflow8 and overflow12 handlers
371	 * save a0, then clobber a0.  To restart the handler, we have to restore
372	 * a0 if the double exception was past the point where a0 was clobbered.
373	 *
374	 * To keep things simple, we take advantage of the fact all overflow
375	 * handlers save a0 in their very first instruction.  If DEPC was past
376	 * that instruction, we can safely restore a0 from where it was saved
377	 * on the stack.
378	 *
379	 * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
380	 */
381_DoubleExceptionVector_WindowOverflow:
382	extui	a2, a0, 0, 6	# get offset into 64-byte vector handler
383	beqz	a2, 1f		# if at start of vector, don't restore
384
385	addi	a0, a0, -128
386	bbsi.l	a0, 8, 1f	# don't restore except for overflow 8 and 12
387
388	/*
389	 * This fixup handler is for the extremely unlikely case where the
390	 * overflow handler's reference thru a0 gets a hardware TLB refill
391	 * that bumps out the (distinct, aliasing) TLB entry that mapped its
392	 * prior references thru a9/a13, and where our reference now thru
393	 * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
394	 */
395	movi	a2, window_overflow_restore_a0_fixup
396	s32i	a2, a3, EXC_TABLE_FIXUP
397	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
398	xsr	a3, excsave1
399
400	bbsi.l	a0, 7, 2f
401
402	/*
403	 * Restore a0 as saved by _WindowOverflow8().
404	 */
405
406	l32e	a0, a9, -16
407	wsr	a0, depc	# replace the saved a0
408	j	3f
409
4102:
411	/*
412	 * Restore a0 as saved by _WindowOverflow12().
413	 */
414
415	l32e	a0, a13, -16
416	wsr	a0, depc	# replace the saved a0
4173:
418	xsr	a3, excsave1
419	movi	a0, 0
420	s32i	a0, a3, EXC_TABLE_FIXUP
421	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
4221:
423	/*
424	 * Restore WindowBase while leaving all address registers restored.
425	 * We have to use ROTW for this, because WSR.WINDOWBASE requires
426	 * an address register (which would prevent restore).
427	 *
428	 * Window Base goes from 0 ... 7 (Module 8)
429	 * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
430	 */
431
432	rsr	a0, ps
433	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
434	rsr	a2, windowbase
435	sub	a0, a2, a0
436	extui	a0, a0, 0, 3
437
438	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
439	xsr	a3, excsave1
440	beqi	a0, 1, .L1pane
441	beqi	a0, 3, .L3pane
442
443	rsr	a0, depc
444	rotw	-2
445
446	/*
447	 * We are now in the user code's original window frame.
448	 * Process the exception as a user exception as if it was
449	 * taken by the user code.
450	 *
451	 * This is similar to the user exception vector,
452	 * except that PT_DEPC isn't set to EXCCAUSE.
453	 */
4541:
455	xsr	a3, excsave1
456	wsr	a2, depc
457	l32i	a2, a3, EXC_TABLE_KSTK
458	s32i	a0, a2, PT_AREG0
459	rsr	a0, exccause
460
461	s32i	a0, a2, PT_DEPC
462
463_DoubleExceptionVector_handle_exception:
464	addi	a0, a0, -EXCCAUSE_UNALIGNED
465	beqz	a0, 2f
466	addx4	a0, a0, a3
467	l32i	a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
468	xsr	a3, excsave1
469	jx	a0
4702:
471	movi	a0, user_exception
472	xsr	a3, excsave1
473	jx	a0
474
475.L1pane:
476	rsr	a0, depc
477	rotw	-1
478	j	1b
479
480.L3pane:
481	rsr	a0, depc
482	rotw	-3
483	j	1b
484#endif
485
486ENDPROC(_DoubleExceptionVector)
487
488#ifdef SUPPORT_WINDOWED
489
490/*
491 * Fixup handler for TLB miss in double exception handler for window owerflow.
492 * We get here with windowbase set to the window that was being spilled and
493 * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
494 * (bit set) window.
495 *
496 * We do the following here:
497 * - go to the original window retaining a0 value;
498 * - set up exception stack to return back to appropriate a0 restore code
499 *   (we'll need to rotate window back and there's no place to save this
500 *    information, use different return address for that);
501 * - handle the exception;
502 * - go to the window that was being spilled;
503 * - set up window_overflow_restore_a0_fixup as a fixup routine;
504 * - reload a0;
505 * - restore the original window;
506 * - reset the default fixup routine;
507 * - return to user. By the time we get to this fixup handler all information
508 *   about the conditions of the original double exception that happened in
509 *   the window overflow handler is lost, so we just return to userspace to
510 *   retry overflow from start.
511 *
512 * a0: value of depc, original value in depc
513 * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
514 * a3: exctable, original value in excsave1
515 */
516
517	__XTENSA_HANDLER
518	.literal_position
519
520ENTRY(window_overflow_restore_a0_fixup)
521
522	rsr	a0, ps
523	extui	a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
524	rsr	a2, windowbase
525	sub	a0, a2, a0
526	extui	a0, a0, 0, 3
527	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
528	xsr	a3, excsave1
529
530	_beqi	a0, 1, .Lhandle_1
531	_beqi	a0, 3, .Lhandle_3
532
533	.macro	overflow_fixup_handle_exception_pane n
534
535	rsr	a0, depc
536	rotw	-\n
537
538	xsr	a3, excsave1
539	wsr	a2, depc
540	l32i	a2, a3, EXC_TABLE_KSTK
541	s32i	a0, a2, PT_AREG0
542
543	movi	a0, .Lrestore_\n
544	s32i	a0, a2, PT_DEPC
545	rsr	a0, exccause
546	j	_DoubleExceptionVector_handle_exception
547
548	.endm
549
550	overflow_fixup_handle_exception_pane 2
551.Lhandle_1:
552	overflow_fixup_handle_exception_pane 1
553.Lhandle_3:
554	overflow_fixup_handle_exception_pane 3
555
556	.macro	overflow_fixup_restore_a0_pane n
557
558	rotw	\n
559	/* Need to preserve a0 value here to be able to handle exception
560	 * that may occur on a0 reload from stack. It may occur because
561	 * TLB miss handler may not be atomic and pointer to page table
562	 * may be lost before we get here. There are no free registers,
563	 * so we need to use EXC_TABLE_DOUBLE_SAVE area.
564	 */
565	xsr	a3, excsave1
566	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
567	movi	a2, window_overflow_restore_a0_fixup
568	s32i	a2, a3, EXC_TABLE_FIXUP
569	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
570	xsr	a3, excsave1
571	bbsi.l	a0, 7, 1f
572	l32e	a0, a9, -16
573	j	2f
5741:
575	l32e	a0, a13, -16
5762:
577	rotw	-\n
578
579	.endm
580
581.Lrestore_2:
582	overflow_fixup_restore_a0_pane 2
583
584.Lset_default_fixup:
585	xsr	a3, excsave1
586	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
587	movi	a2, 0
588	s32i	a2, a3, EXC_TABLE_FIXUP
589	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
590	xsr	a3, excsave1
591	rfe
592
593.Lrestore_1:
594	overflow_fixup_restore_a0_pane 1
595	j	.Lset_default_fixup
596.Lrestore_3:
597	overflow_fixup_restore_a0_pane 3
598	j	.Lset_default_fixup
599
600ENDPROC(window_overflow_restore_a0_fixup)
601
602#endif
603
604/*
605 * Debug interrupt vector
606 *
607 * There is not much space here, so simply jump to another handler.
608 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
609 */
610
611	.section .DebugInterruptVector.text, "ax"
612
613ENTRY(_DebugInterruptVector)
614
615	xsr	a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
616	s32i	a0, a3, DT_DEBUG_SAVE
617	l32i	a0, a3, DT_DEBUG_EXCEPTION
618	jx	a0
619
620ENDPROC(_DebugInterruptVector)
621
622
623
624/*
625 * Medium priority level interrupt vectors
626 *
627 * Each takes less than 16 (0x10) bytes, no literals, by placing
628 * the extra 8 bytes that would otherwise be required in the window
629 * vectors area where there is space.  With relocatable vectors,
630 * all vectors are within ~ 4 kB range of each other, so we can
631 * simply jump (J) to another vector without having to use JX.
632 *
633 * common_exception code gets current IRQ level in PS.INTLEVEL
634 * and preserves it for the IRQ handling time.
635 */
636
637	.macro	irq_entry_level level
638
639	.if	XCHAL_EXCM_LEVEL >= \level
640	.section .Level\level\()InterruptVector.text, "ax"
641ENTRY(_Level\level\()InterruptVector)
642	wsr	a0, excsave2
643	rsr	a0, epc\level
644	wsr	a0, epc1
645	.if	\level <= LOCKLEVEL
646	movi	a0, EXCCAUSE_LEVEL1_INTERRUPT
647	.else
648	movi	a0, EXCCAUSE_MAPPED_NMI
649	.endif
650	wsr	a0, exccause
651	rsr	a0, eps\level
652					# branch to user or kernel vector
653	j	_SimulateUserKernelVectorException
654	.endif
655
656	.endm
657
658	irq_entry_level 2
659	irq_entry_level 3
660	irq_entry_level 4
661	irq_entry_level 5
662	irq_entry_level 6
663
664#if XCHAL_EXCM_LEVEL >= 2
665	/*
666	 *  Continuation of medium priority interrupt dispatch code.
667	 *  On entry here, a0 contains PS, and EPC2 contains saved a0:
668	 */
669	__XTENSA_HANDLER
670	.align 4
671_SimulateUserKernelVectorException:
672	addi	a0, a0, (1 << PS_EXCM_BIT)
673#if !XTENSA_FAKE_NMI
674	wsr	a0, ps
675#endif
676	bbsi.l	a0, PS_UM_BIT, 1f	# branch if user mode
677	xsr	a0, excsave2		# restore a0
678	j	_KernelExceptionVector	# simulate kernel vector exception
6791:	xsr	a0, excsave2		# restore a0
680	j	_UserExceptionVector	# simulate user vector exception
681#endif
682
683
684/* Window overflow and underflow handlers.
685 * The handlers must be 64 bytes apart, first starting with the underflow
686 * handlers underflow-4 to underflow-12, then the overflow handlers
687 * overflow-4 to overflow-12.
688 *
689 * Note: We rerun the underflow handlers if we hit an exception, so
690 *	 we try to access any page that would cause a page fault early.
691 */
692
693#define ENTRY_ALIGN64(name)	\
694	.globl name;		\
695	.align 64;		\
696	name:
697
698	.section		.WindowVectors.text, "ax"
699
700
701#ifdef SUPPORT_WINDOWED
702
703/* 4-Register Window Overflow Vector (Handler) */
704
705ENTRY_ALIGN64(_WindowOverflow4)
706
707	s32e	a0, a5, -16
708	s32e	a1, a5, -12
709	s32e	a2, a5,  -8
710	s32e	a3, a5,  -4
711	rfwo
712
713ENDPROC(_WindowOverflow4)
714
715/* 4-Register Window Underflow Vector (Handler) */
716
717ENTRY_ALIGN64(_WindowUnderflow4)
718
719	l32e	a0, a5, -16
720	l32e	a1, a5, -12
721	l32e	a2, a5,  -8
722	l32e	a3, a5,  -4
723	rfwu
724
725ENDPROC(_WindowUnderflow4)
726
727/* 8-Register Window Overflow Vector (Handler) */
728
729ENTRY_ALIGN64(_WindowOverflow8)
730
731	s32e	a0, a9, -16
732	l32e	a0, a1, -12
733	s32e	a2, a9,  -8
734	s32e	a1, a9, -12
735	s32e	a3, a9,  -4
736	s32e	a4, a0, -32
737	s32e	a5, a0, -28
738	s32e	a6, a0, -24
739	s32e	a7, a0, -20
740	rfwo
741
742ENDPROC(_WindowOverflow8)
743
744/* 8-Register Window Underflow Vector (Handler) */
745
746ENTRY_ALIGN64(_WindowUnderflow8)
747
748	l32e	a1, a9, -12
749	l32e	a0, a9, -16
750	l32e	a7, a1, -12
751	l32e	a2, a9,  -8
752	l32e	a4, a7, -32
753	l32e	a3, a9,  -4
754	l32e	a5, a7, -28
755	l32e	a6, a7, -24
756	l32e	a7, a7, -20
757	rfwu
758
759ENDPROC(_WindowUnderflow8)
760
761/* 12-Register Window Overflow Vector (Handler) */
762
763ENTRY_ALIGN64(_WindowOverflow12)
764
765	s32e	a0,  a13, -16
766	l32e	a0,  a1,  -12
767	s32e	a1,  a13, -12
768	s32e	a2,  a13,  -8
769	s32e	a3,  a13,  -4
770	s32e	a4,  a0,  -48
771	s32e	a5,  a0,  -44
772	s32e	a6,  a0,  -40
773	s32e	a7,  a0,  -36
774	s32e	a8,  a0,  -32
775	s32e	a9,  a0,  -28
776	s32e	a10, a0,  -24
777	s32e	a11, a0,  -20
778	rfwo
779
780ENDPROC(_WindowOverflow12)
781
782/* 12-Register Window Underflow Vector (Handler) */
783
784ENTRY_ALIGN64(_WindowUnderflow12)
785
786	l32e	a1,  a13, -12
787	l32e	a0,  a13, -16
788	l32e	a11, a1,  -12
789	l32e	a2,  a13,  -8
790	l32e	a4,  a11, -48
791	l32e	a8,  a11, -32
792	l32e	a3,  a13,  -4
793	l32e	a5,  a11, -44
794	l32e	a6,  a11, -40
795	l32e	a7,  a11, -36
796	l32e	a9,  a11, -28
797	l32e	a10, a11, -24
798	l32e	a11, a11, -20
799	rfwu
800
801ENDPROC(_WindowUnderflow12)
802
803#endif
804
805	.text
806