xref: /linux/arch/x86/mm/tlb.c (revision e2be04c7f9958dde770eeb8b30e829ca969b37bb)
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16 
17 /*
18  *	TLB flushing, formerly SMP-only
19  *		c/o Linus Torvalds.
20  *
21  *	These mean you can really definitely utterly forget about
22  *	writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *	More scalable flush, from Andi Kleen
27  *
28  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30 
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32 
33 
34 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
35 			    u16 *new_asid, bool *need_flush)
36 {
37 	u16 asid;
38 
39 	if (!static_cpu_has(X86_FEATURE_PCID)) {
40 		*new_asid = 0;
41 		*need_flush = true;
42 		return;
43 	}
44 
45 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
46 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
47 		    next->context.ctx_id)
48 			continue;
49 
50 		*new_asid = asid;
51 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
52 			       next_tlb_gen);
53 		return;
54 	}
55 
56 	/*
57 	 * We don't currently own an ASID slot on this CPU.
58 	 * Allocate a slot.
59 	 */
60 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
61 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
62 		*new_asid = 0;
63 		this_cpu_write(cpu_tlbstate.next_asid, 1);
64 	}
65 	*need_flush = true;
66 }
67 
68 void leave_mm(int cpu)
69 {
70 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
71 
72 	/*
73 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
74 	 * If so, our callers still expect us to flush the TLB, but there
75 	 * aren't any user TLB entries in init_mm to worry about.
76 	 *
77 	 * This needs to happen before any other sanity checks due to
78 	 * intel_idle's shenanigans.
79 	 */
80 	if (loaded_mm == &init_mm)
81 		return;
82 
83 	/* Warn if we're not lazy. */
84 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
85 
86 	switch_mm(NULL, &init_mm, NULL);
87 }
88 
89 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
90 	       struct task_struct *tsk)
91 {
92 	unsigned long flags;
93 
94 	local_irq_save(flags);
95 	switch_mm_irqs_off(prev, next, tsk);
96 	local_irq_restore(flags);
97 }
98 
99 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
100 			struct task_struct *tsk)
101 {
102 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
103 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
104 	unsigned cpu = smp_processor_id();
105 	u64 next_tlb_gen;
106 
107 	/*
108 	 * NB: The scheduler will call us with prev == next when switching
109 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
110 	 * When this happens, we don't assume that CR3 (and hence
111 	 * cpu_tlbstate.loaded_mm) matches next.
112 	 *
113 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
114 	 */
115 
116 	/* We don't want flush_tlb_func_* to run concurrently with us. */
117 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
118 		WARN_ON_ONCE(!irqs_disabled());
119 
120 	/*
121 	 * Verify that CR3 is what we think it is.  This will catch
122 	 * hypothetical buggy code that directly switches to swapper_pg_dir
123 	 * without going through leave_mm() / switch_mm_irqs_off() or that
124 	 * does something like write_cr3(read_cr3_pa()).
125 	 *
126 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
127 	 * isn't free.
128 	 */
129 #ifdef CONFIG_DEBUG_VM
130 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
131 		/*
132 		 * If we were to BUG here, we'd be very likely to kill
133 		 * the system so hard that we don't see the call trace.
134 		 * Try to recover instead by ignoring the error and doing
135 		 * a global flush to minimize the chance of corruption.
136 		 *
137 		 * (This is far from being a fully correct recovery.
138 		 *  Architecturally, the CPU could prefetch something
139 		 *  back into an incorrect ASID slot and leave it there
140 		 *  to cause trouble down the road.  It's better than
141 		 *  nothing, though.)
142 		 */
143 		__flush_tlb_all();
144 	}
145 #endif
146 	this_cpu_write(cpu_tlbstate.is_lazy, false);
147 
148 	if (real_prev == next) {
149 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
150 			   next->context.ctx_id);
151 
152 		/*
153 		 * We don't currently support having a real mm loaded without
154 		 * our cpu set in mm_cpumask().  We have all the bookkeeping
155 		 * in place to figure out whether we would need to flush
156 		 * if our cpu were cleared in mm_cpumask(), but we don't
157 		 * currently use it.
158 		 */
159 		if (WARN_ON_ONCE(real_prev != &init_mm &&
160 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
161 			cpumask_set_cpu(cpu, mm_cpumask(next));
162 
163 		return;
164 	} else {
165 		u16 new_asid;
166 		bool need_flush;
167 
168 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
169 			/*
170 			 * If our current stack is in vmalloc space and isn't
171 			 * mapped in the new pgd, we'll double-fault.  Forcibly
172 			 * map it.
173 			 */
174 			unsigned int index = pgd_index(current_stack_pointer);
175 			pgd_t *pgd = next->pgd + index;
176 
177 			if (unlikely(pgd_none(*pgd)))
178 				set_pgd(pgd, init_mm.pgd[index]);
179 		}
180 
181 		/* Stop remote flushes for the previous mm */
182 		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
183 				real_prev != &init_mm);
184 		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
185 
186 		/*
187 		 * Start remote flushes and then read tlb_gen.
188 		 */
189 		cpumask_set_cpu(cpu, mm_cpumask(next));
190 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
191 
192 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
193 
194 		if (need_flush) {
195 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
196 			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
197 			write_cr3(build_cr3(next, new_asid));
198 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
199 					TLB_FLUSH_ALL);
200 		} else {
201 			/* The new ASID is already up to date. */
202 			write_cr3(build_cr3_noflush(next, new_asid));
203 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
204 		}
205 
206 		this_cpu_write(cpu_tlbstate.loaded_mm, next);
207 		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
208 	}
209 
210 	load_mm_cr4(next);
211 	switch_ldt(real_prev, next);
212 }
213 
214 /*
215  * Please ignore the name of this function.  It should be called
216  * switch_to_kernel_thread().
217  *
218  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
219  * kernel thread or other context without an mm.  Acceptable implementations
220  * include doing nothing whatsoever, switching to init_mm, or various clever
221  * lazy tricks to try to minimize TLB flushes.
222  *
223  * The scheduler reserves the right to call enter_lazy_tlb() several times
224  * in a row.  It will notify us that we're going back to a real mm by
225  * calling switch_mm_irqs_off().
226  */
227 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
228 {
229 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
230 		return;
231 
232 	if (tlb_defer_switch_to_init_mm()) {
233 		/*
234 		 * There's a significant optimization that may be possible
235 		 * here.  We have accurate enough TLB flush tracking that we
236 		 * don't need to maintain coherence of TLB per se when we're
237 		 * lazy.  We do, however, need to maintain coherence of
238 		 * paging-structure caches.  We could, in principle, leave our
239 		 * old mm loaded and only switch to init_mm when
240 		 * tlb_remove_page() happens.
241 		 */
242 		this_cpu_write(cpu_tlbstate.is_lazy, true);
243 	} else {
244 		switch_mm(NULL, &init_mm, NULL);
245 	}
246 }
247 
248 /*
249  * Call this when reinitializing a CPU.  It fixes the following potential
250  * problems:
251  *
252  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
253  *   because the CPU was taken down and came back up with CR3's PCID
254  *   bits clear.  CPU hotplug can do this.
255  *
256  * - The TLB contains junk in slots corresponding to inactive ASIDs.
257  *
258  * - The CPU went so far out to lunch that it may have missed a TLB
259  *   flush.
260  */
261 void initialize_tlbstate_and_flush(void)
262 {
263 	int i;
264 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
265 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
266 	unsigned long cr3 = __read_cr3();
267 
268 	/* Assert that CR3 already references the right mm. */
269 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
270 
271 	/*
272 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
273 	 * doesn't work like other CR4 bits because it can only be set from
274 	 * long mode.)
275 	 */
276 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
277 		!(cr4_read_shadow() & X86_CR4_PCIDE));
278 
279 	/* Force ASID 0 and force a TLB flush. */
280 	write_cr3(build_cr3(mm, 0));
281 
282 	/* Reinitialize tlbstate. */
283 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
284 	this_cpu_write(cpu_tlbstate.next_asid, 1);
285 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
286 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
287 
288 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
289 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
290 }
291 
292 /*
293  * flush_tlb_func_common()'s memory ordering requirement is that any
294  * TLB fills that happen after we flush the TLB are ordered after we
295  * read active_mm's tlb_gen.  We don't need any explicit barriers
296  * because all x86 flush operations are serializing and the
297  * atomic64_read operation won't be reordered by the compiler.
298  */
299 static void flush_tlb_func_common(const struct flush_tlb_info *f,
300 				  bool local, enum tlb_flush_reason reason)
301 {
302 	/*
303 	 * We have three different tlb_gen values in here.  They are:
304 	 *
305 	 * - mm_tlb_gen:     the latest generation.
306 	 * - local_tlb_gen:  the generation that this CPU has already caught
307 	 *                   up to.
308 	 * - f->new_tlb_gen: the generation that the requester of the flush
309 	 *                   wants us to catch up to.
310 	 */
311 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
312 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
313 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
314 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
315 
316 	/* This code cannot presently handle being reentered. */
317 	VM_WARN_ON(!irqs_disabled());
318 
319 	if (unlikely(loaded_mm == &init_mm))
320 		return;
321 
322 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
323 		   loaded_mm->context.ctx_id);
324 
325 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
326 		/*
327 		 * We're in lazy mode.  We need to at least flush our
328 		 * paging-structure cache to avoid speculatively reading
329 		 * garbage into our TLB.  Since switching to init_mm is barely
330 		 * slower than a minimal flush, just switch to init_mm.
331 		 */
332 		switch_mm_irqs_off(NULL, &init_mm, NULL);
333 		return;
334 	}
335 
336 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
337 		/*
338 		 * There's nothing to do: we're already up to date.  This can
339 		 * happen if two concurrent flushes happen -- the first flush to
340 		 * be handled can catch us all the way up, leaving no work for
341 		 * the second flush.
342 		 */
343 		trace_tlb_flush(reason, 0);
344 		return;
345 	}
346 
347 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
348 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
349 
350 	/*
351 	 * If we get to this point, we know that our TLB is out of date.
352 	 * This does not strictly imply that we need to flush (it's
353 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
354 	 * going to need to flush in the very near future, so we might
355 	 * as well get it over with.
356 	 *
357 	 * The only question is whether to do a full or partial flush.
358 	 *
359 	 * We do a partial flush if requested and two extra conditions
360 	 * are met:
361 	 *
362 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
363 	 *    we've always done all needed flushes to catch up to
364 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
365 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
366 	 *    us up to date for tlb_gen 3 is the partial flush we're
367 	 *    processing.
368 	 *
369 	 *    As an example of why this check is needed, suppose that there
370 	 *    are two concurrent flushes.  The first is a full flush that
371 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
372 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
373 	 *    processed on this CPU in reverse order, we'll see
374 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
375 	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
376 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
377 	 *    1 without the full flush that's needed for tlb_gen 2.
378 	 *
379 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
380 	 *    Partial TLB flushes are not all that much cheaper than full TLB
381 	 *    flushes, so it seems unlikely that it would be a performance win
382 	 *    to do a partial flush if that won't bring our TLB fully up to
383 	 *    date.  By doing a full flush instead, we can increase
384 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
385 	 *    avoid another flush in the very near future.
386 	 */
387 	if (f->end != TLB_FLUSH_ALL &&
388 	    f->new_tlb_gen == local_tlb_gen + 1 &&
389 	    f->new_tlb_gen == mm_tlb_gen) {
390 		/* Partial flush */
391 		unsigned long addr;
392 		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
393 
394 		addr = f->start;
395 		while (addr < f->end) {
396 			__flush_tlb_single(addr);
397 			addr += PAGE_SIZE;
398 		}
399 		if (local)
400 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
401 		trace_tlb_flush(reason, nr_pages);
402 	} else {
403 		/* Full flush. */
404 		local_flush_tlb();
405 		if (local)
406 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
407 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
408 	}
409 
410 	/* Both paths above update our state to mm_tlb_gen. */
411 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
412 }
413 
414 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
415 {
416 	const struct flush_tlb_info *f = info;
417 
418 	flush_tlb_func_common(f, true, reason);
419 }
420 
421 static void flush_tlb_func_remote(void *info)
422 {
423 	const struct flush_tlb_info *f = info;
424 
425 	inc_irq_stat(irq_tlb_count);
426 
427 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
428 		return;
429 
430 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
431 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
432 }
433 
434 void native_flush_tlb_others(const struct cpumask *cpumask,
435 			     const struct flush_tlb_info *info)
436 {
437 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
438 	if (info->end == TLB_FLUSH_ALL)
439 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
440 	else
441 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
442 				(info->end - info->start) >> PAGE_SHIFT);
443 
444 	if (is_uv_system()) {
445 		/*
446 		 * This whole special case is confused.  UV has a "Broadcast
447 		 * Assist Unit", which seems to be a fancy way to send IPIs.
448 		 * Back when x86 used an explicit TLB flush IPI, UV was
449 		 * optimized to use its own mechanism.  These days, x86 uses
450 		 * smp_call_function_many(), but UV still uses a manual IPI,
451 		 * and that IPI's action is out of date -- it does a manual
452 		 * flush instead of calling flush_tlb_func_remote().  This
453 		 * means that the percpu tlb_gen variables won't be updated
454 		 * and we'll do pointless flushes on future context switches.
455 		 *
456 		 * Rather than hooking native_flush_tlb_others() here, I think
457 		 * that UV should be updated so that smp_call_function_many(),
458 		 * etc, are optimal on UV.
459 		 */
460 		unsigned int cpu;
461 
462 		cpu = smp_processor_id();
463 		cpumask = uv_flush_tlb_others(cpumask, info);
464 		if (cpumask)
465 			smp_call_function_many(cpumask, flush_tlb_func_remote,
466 					       (void *)info, 1);
467 		return;
468 	}
469 	smp_call_function_many(cpumask, flush_tlb_func_remote,
470 			       (void *)info, 1);
471 }
472 
473 /*
474  * See Documentation/x86/tlb.txt for details.  We choose 33
475  * because it is large enough to cover the vast majority (at
476  * least 95%) of allocations, and is small enough that we are
477  * confident it will not cause too much overhead.  Each single
478  * flush is about 100 ns, so this caps the maximum overhead at
479  * _about_ 3,000 ns.
480  *
481  * This is in units of pages.
482  */
483 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
484 
485 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
486 				unsigned long end, unsigned long vmflag)
487 {
488 	int cpu;
489 
490 	struct flush_tlb_info info = {
491 		.mm = mm,
492 	};
493 
494 	cpu = get_cpu();
495 
496 	/* This is also a barrier that synchronizes with switch_mm(). */
497 	info.new_tlb_gen = inc_mm_tlb_gen(mm);
498 
499 	/* Should we flush just the requested range? */
500 	if ((end != TLB_FLUSH_ALL) &&
501 	    !(vmflag & VM_HUGETLB) &&
502 	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
503 		info.start = start;
504 		info.end = end;
505 	} else {
506 		info.start = 0UL;
507 		info.end = TLB_FLUSH_ALL;
508 	}
509 
510 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
511 		VM_WARN_ON(irqs_disabled());
512 		local_irq_disable();
513 		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
514 		local_irq_enable();
515 	}
516 
517 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
518 		flush_tlb_others(mm_cpumask(mm), &info);
519 
520 	put_cpu();
521 }
522 
523 
524 static void do_flush_tlb_all(void *info)
525 {
526 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
527 	__flush_tlb_all();
528 }
529 
530 void flush_tlb_all(void)
531 {
532 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
533 	on_each_cpu(do_flush_tlb_all, NULL, 1);
534 }
535 
536 static void do_kernel_range_flush(void *info)
537 {
538 	struct flush_tlb_info *f = info;
539 	unsigned long addr;
540 
541 	/* flush range by one by one 'invlpg' */
542 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
543 		__flush_tlb_single(addr);
544 }
545 
546 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
547 {
548 
549 	/* Balance as user space task's flush, a bit conservative */
550 	if (end == TLB_FLUSH_ALL ||
551 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
552 		on_each_cpu(do_flush_tlb_all, NULL, 1);
553 	} else {
554 		struct flush_tlb_info info;
555 		info.start = start;
556 		info.end = end;
557 		on_each_cpu(do_kernel_range_flush, &info, 1);
558 	}
559 }
560 
561 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
562 {
563 	struct flush_tlb_info info = {
564 		.mm = NULL,
565 		.start = 0UL,
566 		.end = TLB_FLUSH_ALL,
567 	};
568 
569 	int cpu = get_cpu();
570 
571 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
572 		VM_WARN_ON(irqs_disabled());
573 		local_irq_disable();
574 		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
575 		local_irq_enable();
576 	}
577 
578 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
579 		flush_tlb_others(&batch->cpumask, &info);
580 
581 	cpumask_clear(&batch->cpumask);
582 
583 	put_cpu();
584 }
585 
586 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
587 			     size_t count, loff_t *ppos)
588 {
589 	char buf[32];
590 	unsigned int len;
591 
592 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
593 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
594 }
595 
596 static ssize_t tlbflush_write_file(struct file *file,
597 		 const char __user *user_buf, size_t count, loff_t *ppos)
598 {
599 	char buf[32];
600 	ssize_t len;
601 	int ceiling;
602 
603 	len = min(count, sizeof(buf) - 1);
604 	if (copy_from_user(buf, user_buf, len))
605 		return -EFAULT;
606 
607 	buf[len] = '\0';
608 	if (kstrtoint(buf, 0, &ceiling))
609 		return -EINVAL;
610 
611 	if (ceiling < 0)
612 		return -EINVAL;
613 
614 	tlb_single_page_flush_ceiling = ceiling;
615 	return count;
616 }
617 
618 static const struct file_operations fops_tlbflush = {
619 	.read = tlbflush_read_file,
620 	.write = tlbflush_write_file,
621 	.llseek = default_llseek,
622 };
623 
624 static int __init create_tlb_single_page_flush_ceiling(void)
625 {
626 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
627 			    arch_debugfs_dir, NULL, &fops_tlbflush);
628 	return 0;
629 }
630 late_initcall(create_tlb_single_page_flush_ceiling);
631