xref: /linux/arch/x86/kvm/xen.c (revision cbdb1f163af2bb90d01be1f0263df1d8d5c9d9d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 #include "lapic.h"
13 
14 #include <linux/eventfd.h>
15 #include <linux/kvm_host.h>
16 #include <linux/sched/stat.h>
17 
18 #include <trace/events/kvm.h>
19 #include <xen/interface/xen.h>
20 #include <xen/interface/vcpu.h>
21 #include <xen/interface/version.h>
22 #include <xen/interface/event_channel.h>
23 #include <xen/interface/sched.h>
24 
25 #include "trace.h"
26 
27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
30 
31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
32 
33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
34 {
35 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
36 	struct pvclock_wall_clock *wc;
37 	gpa_t gpa = gfn_to_gpa(gfn);
38 	u32 *wc_sec_hi;
39 	u32 wc_version;
40 	u64 wall_nsec;
41 	int ret = 0;
42 	int idx = srcu_read_lock(&kvm->srcu);
43 
44 	if (gfn == KVM_XEN_INVALID_GFN) {
45 		kvm_gpc_deactivate(gpc);
46 		goto out;
47 	}
48 
49 	do {
50 		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
51 		if (ret)
52 			goto out;
53 
54 		/*
55 		 * This code mirrors kvm_write_wall_clock() except that it writes
56 		 * directly through the pfn cache and doesn't mark the page dirty.
57 		 */
58 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
59 
60 		/* It could be invalid again already, so we need to check */
61 		read_lock_irq(&gpc->lock);
62 
63 		if (gpc->valid)
64 			break;
65 
66 		read_unlock_irq(&gpc->lock);
67 	} while (1);
68 
69 	/* Paranoia checks on the 32-bit struct layout */
70 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
71 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
72 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
73 
74 #ifdef CONFIG_X86_64
75 	/* Paranoia checks on the 64-bit struct layout */
76 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
77 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
78 
79 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
80 		struct shared_info *shinfo = gpc->khva;
81 
82 		wc_sec_hi = &shinfo->wc_sec_hi;
83 		wc = &shinfo->wc;
84 	} else
85 #endif
86 	{
87 		struct compat_shared_info *shinfo = gpc->khva;
88 
89 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
90 		wc = &shinfo->wc;
91 	}
92 
93 	/* Increment and ensure an odd value */
94 	wc_version = wc->version = (wc->version + 1) | 1;
95 	smp_wmb();
96 
97 	wc->nsec = do_div(wall_nsec,  1000000000);
98 	wc->sec = (u32)wall_nsec;
99 	*wc_sec_hi = wall_nsec >> 32;
100 	smp_wmb();
101 
102 	wc->version = wc_version + 1;
103 	read_unlock_irq(&gpc->lock);
104 
105 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
106 
107 out:
108 	srcu_read_unlock(&kvm->srcu, idx);
109 	return ret;
110 }
111 
112 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
113 {
114 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
115 		struct kvm_xen_evtchn e;
116 
117 		e.vcpu_id = vcpu->vcpu_id;
118 		e.vcpu_idx = vcpu->vcpu_idx;
119 		e.port = vcpu->arch.xen.timer_virq;
120 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
121 
122 		kvm_xen_set_evtchn(&e, vcpu->kvm);
123 
124 		vcpu->arch.xen.timer_expires = 0;
125 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
126 	}
127 }
128 
129 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
130 {
131 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
132 					     arch.xen.timer);
133 	if (atomic_read(&vcpu->arch.xen.timer_pending))
134 		return HRTIMER_NORESTART;
135 
136 	atomic_inc(&vcpu->arch.xen.timer_pending);
137 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
138 	kvm_vcpu_kick(vcpu);
139 
140 	return HRTIMER_NORESTART;
141 }
142 
143 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
144 {
145 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
146 	vcpu->arch.xen.timer_expires = guest_abs;
147 
148 	if (delta_ns <= 0) {
149 		xen_timer_callback(&vcpu->arch.xen.timer);
150 	} else {
151 		ktime_t ktime_now = ktime_get();
152 		hrtimer_start(&vcpu->arch.xen.timer,
153 			      ktime_add_ns(ktime_now, delta_ns),
154 			      HRTIMER_MODE_ABS_HARD);
155 	}
156 }
157 
158 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
159 {
160 	hrtimer_cancel(&vcpu->arch.xen.timer);
161 	vcpu->arch.xen.timer_expires = 0;
162 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
163 }
164 
165 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
166 {
167 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
168 		     HRTIMER_MODE_ABS_HARD);
169 	vcpu->arch.xen.timer.function = xen_timer_callback;
170 }
171 
172 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
173 {
174 	struct kvm_vcpu_xen *vx = &v->arch.xen;
175 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
176 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
177 	size_t user_len, user_len1, user_len2;
178 	struct vcpu_runstate_info rs;
179 	unsigned long flags;
180 	size_t times_ofs;
181 	uint8_t *update_bit = NULL;
182 	uint64_t entry_time;
183 	uint64_t *rs_times;
184 	int *rs_state;
185 
186 	/*
187 	 * The only difference between 32-bit and 64-bit versions of the
188 	 * runstate struct is the alignment of uint64_t in 32-bit, which
189 	 * means that the 64-bit version has an additional 4 bytes of
190 	 * padding after the first field 'state'. Let's be really really
191 	 * paranoid about that, and matching it with our internal data
192 	 * structures that we memcpy into it...
193 	 */
194 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
195 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
196 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
197 #ifdef CONFIG_X86_64
198 	/*
199 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
200 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
201 	 */
202 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
204 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
205 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
206 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
207 #endif
208 	/*
209 	 * The state field is in the same place at the start of both structs,
210 	 * and is the same size (int) as vx->current_runstate.
211 	 */
212 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
213 		     offsetof(struct compat_vcpu_runstate_info, state));
214 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
215 		     sizeof(vx->current_runstate));
216 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
217 		     sizeof(vx->current_runstate));
218 
219 	/*
220 	 * The state_entry_time field is 64 bits in both versions, and the
221 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
222 	 * is little-endian means that it's in the last *byte* of the word.
223 	 * That detail is important later.
224 	 */
225 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
226 		     sizeof(uint64_t));
227 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
228 		     sizeof(uint64_t));
229 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
230 
231 	/*
232 	 * The time array is four 64-bit quantities in both versions, matching
233 	 * the vx->runstate_times and immediately following state_entry_time.
234 	 */
235 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
236 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
237 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
238 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
239 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
240 		     sizeof_field(struct compat_vcpu_runstate_info, time));
241 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
242 		     sizeof(vx->runstate_times));
243 
244 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
245 		user_len = sizeof(struct vcpu_runstate_info);
246 		times_ofs = offsetof(struct vcpu_runstate_info,
247 				     state_entry_time);
248 	} else {
249 		user_len = sizeof(struct compat_vcpu_runstate_info);
250 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
251 				     state_entry_time);
252 	}
253 
254 	/*
255 	 * There are basically no alignment constraints. The guest can set it
256 	 * up so it crosses from one page to the next, and at arbitrary byte
257 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
258 	 * anyway, even if the overall struct had been 64-bit aligned).
259 	 */
260 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
261 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
262 		user_len2 = user_len - user_len1;
263 	} else {
264 		user_len1 = user_len;
265 		user_len2 = 0;
266 	}
267 	BUG_ON(user_len1 + user_len2 != user_len);
268 
269  retry:
270 	/*
271 	 * Attempt to obtain the GPC lock on *both* (if there are two)
272 	 * gfn_to_pfn caches that cover the region.
273 	 */
274 	read_lock_irqsave(&gpc1->lock, flags);
275 	while (!kvm_gpc_check(gpc1, user_len1)) {
276 		read_unlock_irqrestore(&gpc1->lock, flags);
277 
278 		/* When invoked from kvm_sched_out() we cannot sleep */
279 		if (atomic)
280 			return;
281 
282 		if (kvm_gpc_refresh(gpc1, user_len1))
283 			return;
284 
285 		read_lock_irqsave(&gpc1->lock, flags);
286 	}
287 
288 	if (likely(!user_len2)) {
289 		/*
290 		 * Set up three pointers directly to the runstate_info
291 		 * struct in the guest (via the GPC).
292 		 *
293 		 *  • @rs_state   → state field
294 		 *  • @rs_times   → state_entry_time field.
295 		 *  • @update_bit → last byte of state_entry_time, which
296 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
297 		 */
298 		rs_state = gpc1->khva;
299 		rs_times = gpc1->khva + times_ofs;
300 		if (v->kvm->arch.xen.runstate_update_flag)
301 			update_bit = ((void *)(&rs_times[1])) - 1;
302 	} else {
303 		/*
304 		 * The guest's runstate_info is split across two pages and we
305 		 * need to hold and validate both GPCs simultaneously. We can
306 		 * declare a lock ordering GPC1 > GPC2 because nothing else
307 		 * takes them more than one at a time.
308 		 */
309 		read_lock(&gpc2->lock);
310 
311 		if (!kvm_gpc_check(gpc2, user_len2)) {
312 			read_unlock(&gpc2->lock);
313 			read_unlock_irqrestore(&gpc1->lock, flags);
314 
315 			/* When invoked from kvm_sched_out() we cannot sleep */
316 			if (atomic)
317 				return;
318 
319 			/*
320 			 * Use kvm_gpc_activate() here because if the runstate
321 			 * area was configured in 32-bit mode and only extends
322 			 * to the second page now because the guest changed to
323 			 * 64-bit mode, the second GPC won't have been set up.
324 			 */
325 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
326 					     user_len2))
327 				return;
328 
329 			/*
330 			 * We dropped the lock on GPC1 so we have to go all the
331 			 * way back and revalidate that too.
332 			 */
333 			goto retry;
334 		}
335 
336 		/*
337 		 * In this case, the runstate_info struct will be assembled on
338 		 * the kernel stack (compat or not as appropriate) and will
339 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
340 		 * rs pointers accordingly.
341 		 */
342 		rs_times = &rs.state_entry_time;
343 
344 		/*
345 		 * The rs_state pointer points to the start of what we'll
346 		 * copy to the guest, which in the case of a compat guest
347 		 * is the 32-bit field that the compiler thinks is padding.
348 		 */
349 		rs_state = ((void *)rs_times) - times_ofs;
350 
351 		/*
352 		 * The update_bit is still directly in the guest memory,
353 		 * via one GPC or the other.
354 		 */
355 		if (v->kvm->arch.xen.runstate_update_flag) {
356 			if (user_len1 >= times_ofs + sizeof(uint64_t))
357 				update_bit = gpc1->khva + times_ofs +
358 					sizeof(uint64_t) - 1;
359 			else
360 				update_bit = gpc2->khva + times_ofs +
361 					sizeof(uint64_t) - 1 - user_len1;
362 		}
363 
364 #ifdef CONFIG_X86_64
365 		/*
366 		 * Don't leak kernel memory through the padding in the 64-bit
367 		 * version of the struct.
368 		 */
369 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
370 #endif
371 	}
372 
373 	/*
374 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
375 	 * state_entry_time field, directly in the guest. We need to set
376 	 * that (and write-barrier) before writing to the rest of the
377 	 * structure, and clear it last. Just as Xen does, we address the
378 	 * single *byte* in which it resides because it might be in a
379 	 * different cache line to the rest of the 64-bit word, due to
380 	 * the (lack of) alignment constraints.
381 	 */
382 	entry_time = vx->runstate_entry_time;
383 	if (update_bit) {
384 		entry_time |= XEN_RUNSTATE_UPDATE;
385 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
386 		smp_wmb();
387 	}
388 
389 	/*
390 	 * Now assemble the actual structure, either on our kernel stack
391 	 * or directly in the guest according to how the rs_state and
392 	 * rs_times pointers were set up above.
393 	 */
394 	*rs_state = vx->current_runstate;
395 	rs_times[0] = entry_time;
396 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
397 
398 	/* For the split case, we have to then copy it to the guest. */
399 	if (user_len2) {
400 		memcpy(gpc1->khva, rs_state, user_len1);
401 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
402 	}
403 	smp_wmb();
404 
405 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
406 	if (update_bit) {
407 		entry_time &= ~XEN_RUNSTATE_UPDATE;
408 		*update_bit = entry_time >> 56;
409 		smp_wmb();
410 	}
411 
412 	if (user_len2)
413 		read_unlock(&gpc2->lock);
414 
415 	read_unlock_irqrestore(&gpc1->lock, flags);
416 
417 	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
418 	if (user_len2)
419 		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
420 }
421 
422 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
423 {
424 	struct kvm_vcpu_xen *vx = &v->arch.xen;
425 	u64 now = get_kvmclock_ns(v->kvm);
426 	u64 delta_ns = now - vx->runstate_entry_time;
427 	u64 run_delay = current->sched_info.run_delay;
428 
429 	if (unlikely(!vx->runstate_entry_time))
430 		vx->current_runstate = RUNSTATE_offline;
431 
432 	/*
433 	 * Time waiting for the scheduler isn't "stolen" if the
434 	 * vCPU wasn't running anyway.
435 	 */
436 	if (vx->current_runstate == RUNSTATE_running) {
437 		u64 steal_ns = run_delay - vx->last_steal;
438 
439 		delta_ns -= steal_ns;
440 
441 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
442 	}
443 	vx->last_steal = run_delay;
444 
445 	vx->runstate_times[vx->current_runstate] += delta_ns;
446 	vx->current_runstate = state;
447 	vx->runstate_entry_time = now;
448 
449 	if (vx->runstate_cache.active)
450 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
451 }
452 
453 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
454 {
455 	struct kvm_lapic_irq irq = { };
456 	int r;
457 
458 	irq.dest_id = v->vcpu_id;
459 	irq.vector = v->arch.xen.upcall_vector;
460 	irq.dest_mode = APIC_DEST_PHYSICAL;
461 	irq.shorthand = APIC_DEST_NOSHORT;
462 	irq.delivery_mode = APIC_DM_FIXED;
463 	irq.level = 1;
464 
465 	/* The fast version will always work for physical unicast */
466 	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
467 }
468 
469 /*
470  * On event channel delivery, the vcpu_info may not have been accessible.
471  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
472  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
473  * Do so now that we can sleep in the context of the vCPU to bring the
474  * page in, and refresh the pfn cache for it.
475  */
476 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
477 {
478 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
479 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
480 	unsigned long flags;
481 
482 	if (!evtchn_pending_sel)
483 		return;
484 
485 	/*
486 	 * Yes, this is an open-coded loop. But that's just what put_user()
487 	 * does anyway. Page it in and retry the instruction. We're just a
488 	 * little more honest about it.
489 	 */
490 	read_lock_irqsave(&gpc->lock, flags);
491 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
492 		read_unlock_irqrestore(&gpc->lock, flags);
493 
494 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
495 			return;
496 
497 		read_lock_irqsave(&gpc->lock, flags);
498 	}
499 
500 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
501 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
502 		struct vcpu_info *vi = gpc->khva;
503 
504 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
505 			     "notq %0\n"
506 			     LOCK_PREFIX "andq %0, %2\n"
507 			     : "=r" (evtchn_pending_sel),
508 			       "+m" (vi->evtchn_pending_sel),
509 			       "+m" (v->arch.xen.evtchn_pending_sel)
510 			     : "0" (evtchn_pending_sel));
511 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
512 	} else {
513 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
514 		struct compat_vcpu_info *vi = gpc->khva;
515 
516 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
517 			     "notl %0\n"
518 			     LOCK_PREFIX "andl %0, %2\n"
519 			     : "=r" (evtchn_pending_sel32),
520 			       "+m" (vi->evtchn_pending_sel),
521 			       "+m" (v->arch.xen.evtchn_pending_sel)
522 			     : "0" (evtchn_pending_sel32));
523 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
524 	}
525 	read_unlock_irqrestore(&gpc->lock, flags);
526 
527 	/* For the per-vCPU lapic vector, deliver it as MSI. */
528 	if (v->arch.xen.upcall_vector)
529 		kvm_xen_inject_vcpu_vector(v);
530 
531 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
532 }
533 
534 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
535 {
536 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
537 	unsigned long flags;
538 	u8 rc = 0;
539 
540 	/*
541 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
542 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
543 	 */
544 
545 	/* No need for compat handling here */
546 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
547 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
548 	BUILD_BUG_ON(sizeof(rc) !=
549 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
550 	BUILD_BUG_ON(sizeof(rc) !=
551 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
552 
553 	read_lock_irqsave(&gpc->lock, flags);
554 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
555 		read_unlock_irqrestore(&gpc->lock, flags);
556 
557 		/*
558 		 * This function gets called from kvm_vcpu_block() after setting the
559 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
560 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
561 		 * at that point, just return 1 in order to trigger an immediate wake,
562 		 * and we'll end up getting called again from a context where we *can*
563 		 * fault in the page and wait for it.
564 		 */
565 		if (in_atomic() || !task_is_running(current))
566 			return 1;
567 
568 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
569 			/*
570 			 * If this failed, userspace has screwed up the
571 			 * vcpu_info mapping. No interrupts for you.
572 			 */
573 			return 0;
574 		}
575 		read_lock_irqsave(&gpc->lock, flags);
576 	}
577 
578 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
579 	read_unlock_irqrestore(&gpc->lock, flags);
580 	return rc;
581 }
582 
583 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
584 {
585 	int r = -ENOENT;
586 
587 
588 	switch (data->type) {
589 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
590 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
591 			r = -EINVAL;
592 		} else {
593 			mutex_lock(&kvm->lock);
594 			kvm->arch.xen.long_mode = !!data->u.long_mode;
595 			mutex_unlock(&kvm->lock);
596 			r = 0;
597 		}
598 		break;
599 
600 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
601 		mutex_lock(&kvm->lock);
602 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
603 		mutex_unlock(&kvm->lock);
604 		break;
605 
606 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
607 		if (data->u.vector && data->u.vector < 0x10)
608 			r = -EINVAL;
609 		else {
610 			mutex_lock(&kvm->lock);
611 			kvm->arch.xen.upcall_vector = data->u.vector;
612 			mutex_unlock(&kvm->lock);
613 			r = 0;
614 		}
615 		break;
616 
617 	case KVM_XEN_ATTR_TYPE_EVTCHN:
618 		r = kvm_xen_setattr_evtchn(kvm, data);
619 		break;
620 
621 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
622 		mutex_lock(&kvm->lock);
623 		kvm->arch.xen.xen_version = data->u.xen_version;
624 		mutex_unlock(&kvm->lock);
625 		r = 0;
626 		break;
627 
628 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
629 		if (!sched_info_on()) {
630 			r = -EOPNOTSUPP;
631 			break;
632 		}
633 		mutex_lock(&kvm->lock);
634 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
635 		mutex_unlock(&kvm->lock);
636 		r = 0;
637 		break;
638 
639 	default:
640 		break;
641 	}
642 
643 	return r;
644 }
645 
646 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
647 {
648 	int r = -ENOENT;
649 
650 	mutex_lock(&kvm->lock);
651 
652 	switch (data->type) {
653 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
654 		data->u.long_mode = kvm->arch.xen.long_mode;
655 		r = 0;
656 		break;
657 
658 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
659 		if (kvm->arch.xen.shinfo_cache.active)
660 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
661 		else
662 			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
663 		r = 0;
664 		break;
665 
666 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
667 		data->u.vector = kvm->arch.xen.upcall_vector;
668 		r = 0;
669 		break;
670 
671 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
672 		data->u.xen_version = kvm->arch.xen.xen_version;
673 		r = 0;
674 		break;
675 
676 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
677 		if (!sched_info_on()) {
678 			r = -EOPNOTSUPP;
679 			break;
680 		}
681 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
682 		r = 0;
683 		break;
684 
685 	default:
686 		break;
687 	}
688 
689 	mutex_unlock(&kvm->lock);
690 	return r;
691 }
692 
693 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
694 {
695 	int idx, r = -ENOENT;
696 
697 	mutex_lock(&vcpu->kvm->lock);
698 	idx = srcu_read_lock(&vcpu->kvm->srcu);
699 
700 	switch (data->type) {
701 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
702 		/* No compat necessary here. */
703 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
704 			     sizeof(struct compat_vcpu_info));
705 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
706 			     offsetof(struct compat_vcpu_info, time));
707 
708 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
709 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
710 			r = 0;
711 			break;
712 		}
713 
714 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
715 				     data->u.gpa, sizeof(struct vcpu_info));
716 		if (!r)
717 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
718 
719 		break;
720 
721 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
722 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
723 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
724 			r = 0;
725 			break;
726 		}
727 
728 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
729 				     data->u.gpa,
730 				     sizeof(struct pvclock_vcpu_time_info));
731 		if (!r)
732 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
733 		break;
734 
735 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
736 		size_t sz, sz1, sz2;
737 
738 		if (!sched_info_on()) {
739 			r = -EOPNOTSUPP;
740 			break;
741 		}
742 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
743 			r = 0;
744 		deactivate_out:
745 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
746 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
747 			break;
748 		}
749 
750 		/*
751 		 * If the guest switches to 64-bit mode after setting the runstate
752 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
753 		 * will cope.
754 		 */
755 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
756 			sz = sizeof(struct vcpu_runstate_info);
757 		else
758 			sz = sizeof(struct compat_vcpu_runstate_info);
759 
760 		/* How much fits in the (first) page? */
761 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
762 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
763 				     data->u.gpa, sz1);
764 		if (r)
765 			goto deactivate_out;
766 
767 		/* Either map the second page, or deactivate the second GPC */
768 		if (sz1 >= sz) {
769 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
770 		} else {
771 			sz2 = sz - sz1;
772 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
773 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
774 					     data->u.gpa + sz1, sz2);
775 			if (r)
776 				goto deactivate_out;
777 		}
778 
779 		kvm_xen_update_runstate_guest(vcpu, false);
780 		break;
781 	}
782 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
783 		if (!sched_info_on()) {
784 			r = -EOPNOTSUPP;
785 			break;
786 		}
787 		if (data->u.runstate.state > RUNSTATE_offline) {
788 			r = -EINVAL;
789 			break;
790 		}
791 
792 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
793 		r = 0;
794 		break;
795 
796 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
797 		if (!sched_info_on()) {
798 			r = -EOPNOTSUPP;
799 			break;
800 		}
801 		if (data->u.runstate.state > RUNSTATE_offline) {
802 			r = -EINVAL;
803 			break;
804 		}
805 		if (data->u.runstate.state_entry_time !=
806 		    (data->u.runstate.time_running +
807 		     data->u.runstate.time_runnable +
808 		     data->u.runstate.time_blocked +
809 		     data->u.runstate.time_offline)) {
810 			r = -EINVAL;
811 			break;
812 		}
813 		if (get_kvmclock_ns(vcpu->kvm) <
814 		    data->u.runstate.state_entry_time) {
815 			r = -EINVAL;
816 			break;
817 		}
818 
819 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
820 		vcpu->arch.xen.runstate_entry_time =
821 			data->u.runstate.state_entry_time;
822 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
823 			data->u.runstate.time_running;
824 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
825 			data->u.runstate.time_runnable;
826 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
827 			data->u.runstate.time_blocked;
828 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
829 			data->u.runstate.time_offline;
830 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
831 		r = 0;
832 		break;
833 
834 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
835 		if (!sched_info_on()) {
836 			r = -EOPNOTSUPP;
837 			break;
838 		}
839 		if (data->u.runstate.state > RUNSTATE_offline &&
840 		    data->u.runstate.state != (u64)-1) {
841 			r = -EINVAL;
842 			break;
843 		}
844 		/* The adjustment must add up */
845 		if (data->u.runstate.state_entry_time !=
846 		    (data->u.runstate.time_running +
847 		     data->u.runstate.time_runnable +
848 		     data->u.runstate.time_blocked +
849 		     data->u.runstate.time_offline)) {
850 			r = -EINVAL;
851 			break;
852 		}
853 
854 		if (get_kvmclock_ns(vcpu->kvm) <
855 		    (vcpu->arch.xen.runstate_entry_time +
856 		     data->u.runstate.state_entry_time)) {
857 			r = -EINVAL;
858 			break;
859 		}
860 
861 		vcpu->arch.xen.runstate_entry_time +=
862 			data->u.runstate.state_entry_time;
863 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
864 			data->u.runstate.time_running;
865 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
866 			data->u.runstate.time_runnable;
867 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
868 			data->u.runstate.time_blocked;
869 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
870 			data->u.runstate.time_offline;
871 
872 		if (data->u.runstate.state <= RUNSTATE_offline)
873 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
874 		else if (vcpu->arch.xen.runstate_cache.active)
875 			kvm_xen_update_runstate_guest(vcpu, false);
876 		r = 0;
877 		break;
878 
879 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
880 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
881 			r = -EINVAL;
882 		else {
883 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
884 			r = 0;
885 		}
886 		break;
887 
888 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
889 		if (data->u.timer.port &&
890 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
891 			r = -EINVAL;
892 			break;
893 		}
894 
895 		if (!vcpu->arch.xen.timer.function)
896 			kvm_xen_init_timer(vcpu);
897 
898 		/* Stop the timer (if it's running) before changing the vector */
899 		kvm_xen_stop_timer(vcpu);
900 		vcpu->arch.xen.timer_virq = data->u.timer.port;
901 
902 		/* Start the timer if the new value has a valid vector+expiry. */
903 		if (data->u.timer.port && data->u.timer.expires_ns)
904 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
905 					    data->u.timer.expires_ns -
906 					    get_kvmclock_ns(vcpu->kvm));
907 
908 		r = 0;
909 		break;
910 
911 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
912 		if (data->u.vector && data->u.vector < 0x10)
913 			r = -EINVAL;
914 		else {
915 			vcpu->arch.xen.upcall_vector = data->u.vector;
916 			r = 0;
917 		}
918 		break;
919 
920 	default:
921 		break;
922 	}
923 
924 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
925 	mutex_unlock(&vcpu->kvm->lock);
926 	return r;
927 }
928 
929 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
930 {
931 	int r = -ENOENT;
932 
933 	mutex_lock(&vcpu->kvm->lock);
934 
935 	switch (data->type) {
936 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
937 		if (vcpu->arch.xen.vcpu_info_cache.active)
938 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
939 		else
940 			data->u.gpa = KVM_XEN_INVALID_GPA;
941 		r = 0;
942 		break;
943 
944 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
945 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
946 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
947 		else
948 			data->u.gpa = KVM_XEN_INVALID_GPA;
949 		r = 0;
950 		break;
951 
952 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
953 		if (!sched_info_on()) {
954 			r = -EOPNOTSUPP;
955 			break;
956 		}
957 		if (vcpu->arch.xen.runstate_cache.active) {
958 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
959 			r = 0;
960 		}
961 		break;
962 
963 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
964 		if (!sched_info_on()) {
965 			r = -EOPNOTSUPP;
966 			break;
967 		}
968 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
969 		r = 0;
970 		break;
971 
972 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
973 		if (!sched_info_on()) {
974 			r = -EOPNOTSUPP;
975 			break;
976 		}
977 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
978 		data->u.runstate.state_entry_time =
979 			vcpu->arch.xen.runstate_entry_time;
980 		data->u.runstate.time_running =
981 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
982 		data->u.runstate.time_runnable =
983 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
984 		data->u.runstate.time_blocked =
985 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
986 		data->u.runstate.time_offline =
987 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
988 		r = 0;
989 		break;
990 
991 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
992 		r = -EINVAL;
993 		break;
994 
995 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
996 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
997 		r = 0;
998 		break;
999 
1000 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1001 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1002 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1003 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1004 		r = 0;
1005 		break;
1006 
1007 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1008 		data->u.vector = vcpu->arch.xen.upcall_vector;
1009 		r = 0;
1010 		break;
1011 
1012 	default:
1013 		break;
1014 	}
1015 
1016 	mutex_unlock(&vcpu->kvm->lock);
1017 	return r;
1018 }
1019 
1020 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1021 {
1022 	struct kvm *kvm = vcpu->kvm;
1023 	u32 page_num = data & ~PAGE_MASK;
1024 	u64 page_addr = data & PAGE_MASK;
1025 	bool lm = is_long_mode(vcpu);
1026 
1027 	/* Latch long_mode for shared_info pages etc. */
1028 	vcpu->kvm->arch.xen.long_mode = lm;
1029 
1030 	/*
1031 	 * If Xen hypercall intercept is enabled, fill the hypercall
1032 	 * page with VMCALL/VMMCALL instructions since that's what
1033 	 * we catch. Else the VMM has provided the hypercall pages
1034 	 * with instructions of its own choosing, so use those.
1035 	 */
1036 	if (kvm_xen_hypercall_enabled(kvm)) {
1037 		u8 instructions[32];
1038 		int i;
1039 
1040 		if (page_num)
1041 			return 1;
1042 
1043 		/* mov imm32, %eax */
1044 		instructions[0] = 0xb8;
1045 
1046 		/* vmcall / vmmcall */
1047 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1048 
1049 		/* ret */
1050 		instructions[8] = 0xc3;
1051 
1052 		/* int3 to pad */
1053 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1054 
1055 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1056 			*(u32 *)&instructions[1] = i;
1057 			if (kvm_vcpu_write_guest(vcpu,
1058 						 page_addr + (i * sizeof(instructions)),
1059 						 instructions, sizeof(instructions)))
1060 				return 1;
1061 		}
1062 	} else {
1063 		/*
1064 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1065 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1066 		 */
1067 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1068 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1069 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1070 				  : kvm->arch.xen_hvm_config.blob_size_32;
1071 		u8 *page;
1072 		int ret;
1073 
1074 		if (page_num >= blob_size)
1075 			return 1;
1076 
1077 		blob_addr += page_num * PAGE_SIZE;
1078 
1079 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1080 		if (IS_ERR(page))
1081 			return PTR_ERR(page);
1082 
1083 		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1084 		kfree(page);
1085 		if (ret)
1086 			return 1;
1087 	}
1088 	return 0;
1089 }
1090 
1091 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1092 {
1093 	/* Only some feature flags need to be *enabled* by userspace */
1094 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1095 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1096 
1097 	if (xhc->flags & ~permitted_flags)
1098 		return -EINVAL;
1099 
1100 	/*
1101 	 * With hypercall interception the kernel generates its own
1102 	 * hypercall page so it must not be provided.
1103 	 */
1104 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1105 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1106 	     xhc->blob_size_32 || xhc->blob_size_64))
1107 		return -EINVAL;
1108 
1109 	mutex_lock(&kvm->lock);
1110 
1111 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1112 		static_branch_inc(&kvm_xen_enabled.key);
1113 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1114 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1115 
1116 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1117 
1118 	mutex_unlock(&kvm->lock);
1119 	return 0;
1120 }
1121 
1122 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1123 {
1124 	kvm_rax_write(vcpu, result);
1125 	return kvm_skip_emulated_instruction(vcpu);
1126 }
1127 
1128 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1129 {
1130 	struct kvm_run *run = vcpu->run;
1131 
1132 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1133 		return 1;
1134 
1135 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1136 }
1137 
1138 static inline int max_evtchn_port(struct kvm *kvm)
1139 {
1140 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1141 		return EVTCHN_2L_NR_CHANNELS;
1142 	else
1143 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1144 }
1145 
1146 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1147 			       evtchn_port_t *ports)
1148 {
1149 	struct kvm *kvm = vcpu->kvm;
1150 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1151 	unsigned long *pending_bits;
1152 	unsigned long flags;
1153 	bool ret = true;
1154 	int idx, i;
1155 
1156 	idx = srcu_read_lock(&kvm->srcu);
1157 	read_lock_irqsave(&gpc->lock, flags);
1158 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1159 		goto out_rcu;
1160 
1161 	ret = false;
1162 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1163 		struct shared_info *shinfo = gpc->khva;
1164 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1165 	} else {
1166 		struct compat_shared_info *shinfo = gpc->khva;
1167 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1168 	}
1169 
1170 	for (i = 0; i < nr_ports; i++) {
1171 		if (test_bit(ports[i], pending_bits)) {
1172 			ret = true;
1173 			break;
1174 		}
1175 	}
1176 
1177  out_rcu:
1178 	read_unlock_irqrestore(&gpc->lock, flags);
1179 	srcu_read_unlock(&kvm->srcu, idx);
1180 
1181 	return ret;
1182 }
1183 
1184 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1185 				 u64 param, u64 *r)
1186 {
1187 	struct sched_poll sched_poll;
1188 	evtchn_port_t port, *ports;
1189 	struct x86_exception e;
1190 	int i;
1191 
1192 	if (!lapic_in_kernel(vcpu) ||
1193 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1194 		return false;
1195 
1196 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1197 		struct compat_sched_poll sp32;
1198 
1199 		/* Sanity check that the compat struct definition is correct */
1200 		BUILD_BUG_ON(sizeof(sp32) != 16);
1201 
1202 		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1203 			*r = -EFAULT;
1204 			return true;
1205 		}
1206 
1207 		/*
1208 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1209 		 * are uint32_t, so once it's converted no further compat
1210 		 * handling is needed.
1211 		 */
1212 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1213 		sched_poll.nr_ports = sp32.nr_ports;
1214 		sched_poll.timeout = sp32.timeout;
1215 	} else {
1216 		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1217 					sizeof(sched_poll), &e)) {
1218 			*r = -EFAULT;
1219 			return true;
1220 		}
1221 	}
1222 
1223 	if (unlikely(sched_poll.nr_ports > 1)) {
1224 		/* Xen (unofficially) limits number of pollers to 128 */
1225 		if (sched_poll.nr_ports > 128) {
1226 			*r = -EINVAL;
1227 			return true;
1228 		}
1229 
1230 		ports = kmalloc_array(sched_poll.nr_ports,
1231 				      sizeof(*ports), GFP_KERNEL);
1232 		if (!ports) {
1233 			*r = -ENOMEM;
1234 			return true;
1235 		}
1236 	} else
1237 		ports = &port;
1238 
1239 	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1240 				sched_poll.nr_ports * sizeof(*ports), &e)) {
1241 		*r = -EFAULT;
1242 		return true;
1243 	}
1244 
1245 	for (i = 0; i < sched_poll.nr_ports; i++) {
1246 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1247 			*r = -EINVAL;
1248 			goto out;
1249 		}
1250 	}
1251 
1252 	if (sched_poll.nr_ports == 1)
1253 		vcpu->arch.xen.poll_evtchn = port;
1254 	else
1255 		vcpu->arch.xen.poll_evtchn = -1;
1256 
1257 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1258 
1259 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1260 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1261 
1262 		if (sched_poll.timeout)
1263 			mod_timer(&vcpu->arch.xen.poll_timer,
1264 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1265 
1266 		kvm_vcpu_halt(vcpu);
1267 
1268 		if (sched_poll.timeout)
1269 			del_timer(&vcpu->arch.xen.poll_timer);
1270 
1271 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1272 	}
1273 
1274 	vcpu->arch.xen.poll_evtchn = 0;
1275 	*r = 0;
1276 out:
1277 	/* Really, this is only needed in case of timeout */
1278 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1279 
1280 	if (unlikely(sched_poll.nr_ports > 1))
1281 		kfree(ports);
1282 	return true;
1283 }
1284 
1285 static void cancel_evtchn_poll(struct timer_list *t)
1286 {
1287 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1288 
1289 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1290 	kvm_vcpu_kick(vcpu);
1291 }
1292 
1293 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1294 				   int cmd, u64 param, u64 *r)
1295 {
1296 	switch (cmd) {
1297 	case SCHEDOP_poll:
1298 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1299 			return true;
1300 		fallthrough;
1301 	case SCHEDOP_yield:
1302 		kvm_vcpu_on_spin(vcpu, true);
1303 		*r = 0;
1304 		return true;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	return false;
1310 }
1311 
1312 struct compat_vcpu_set_singleshot_timer {
1313     uint64_t timeout_abs_ns;
1314     uint32_t flags;
1315 } __attribute__((packed));
1316 
1317 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1318 				  int vcpu_id, u64 param, u64 *r)
1319 {
1320 	struct vcpu_set_singleshot_timer oneshot;
1321 	struct x86_exception e;
1322 	s64 delta;
1323 
1324 	if (!kvm_xen_timer_enabled(vcpu))
1325 		return false;
1326 
1327 	switch (cmd) {
1328 	case VCPUOP_set_singleshot_timer:
1329 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1330 			*r = -EINVAL;
1331 			return true;
1332 		}
1333 
1334 		/*
1335 		 * The only difference for 32-bit compat is the 4 bytes of
1336 		 * padding after the interesting part of the structure. So
1337 		 * for a faithful emulation of Xen we have to *try* to copy
1338 		 * the padding and return -EFAULT if we can't. Otherwise we
1339 		 * might as well just have copied the 12-byte 32-bit struct.
1340 		 */
1341 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1342 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1343 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1344 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1345 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1346 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1347 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1348 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1349 
1350 		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1351 					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1352 			*r = -EFAULT;
1353 			return true;
1354 		}
1355 
1356 		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1357 		if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1358 			*r = -ETIME;
1359 			return true;
1360 		}
1361 
1362 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1363 		*r = 0;
1364 		return true;
1365 
1366 	case VCPUOP_stop_singleshot_timer:
1367 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1368 			*r = -EINVAL;
1369 			return true;
1370 		}
1371 		kvm_xen_stop_timer(vcpu);
1372 		*r = 0;
1373 		return true;
1374 	}
1375 
1376 	return false;
1377 }
1378 
1379 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1380 				       u64 *r)
1381 {
1382 	if (!kvm_xen_timer_enabled(vcpu))
1383 		return false;
1384 
1385 	if (timeout) {
1386 		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1387 		int64_t delta = timeout - guest_now;
1388 
1389 		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1390 		 * checks for negative absolute timeout values (caused by
1391 		 * integer overflow), and for values about 13 days in the
1392 		 * future (2^50ns) which would be caused by jiffies
1393 		 * overflow. For those cases, it sets the timeout 100ms in
1394 		 * the future (not *too* soon, since if a guest really did
1395 		 * set a long timeout on purpose we don't want to keep
1396 		 * churning CPU time by waking it up).
1397 		 */
1398 		if (unlikely((int64_t)timeout < 0 ||
1399 			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1400 			delta = 100 * NSEC_PER_MSEC;
1401 			timeout = guest_now + delta;
1402 		}
1403 
1404 		kvm_xen_start_timer(vcpu, timeout, delta);
1405 	} else {
1406 		kvm_xen_stop_timer(vcpu);
1407 	}
1408 
1409 	*r = 0;
1410 	return true;
1411 }
1412 
1413 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1414 {
1415 	bool longmode;
1416 	u64 input, params[6], r = -ENOSYS;
1417 	bool handled = false;
1418 	u8 cpl;
1419 
1420 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1421 
1422 	/* Hyper-V hypercalls get bit 31 set in EAX */
1423 	if ((input & 0x80000000) &&
1424 	    kvm_hv_hypercall_enabled(vcpu))
1425 		return kvm_hv_hypercall(vcpu);
1426 
1427 	longmode = is_64_bit_hypercall(vcpu);
1428 	if (!longmode) {
1429 		params[0] = (u32)kvm_rbx_read(vcpu);
1430 		params[1] = (u32)kvm_rcx_read(vcpu);
1431 		params[2] = (u32)kvm_rdx_read(vcpu);
1432 		params[3] = (u32)kvm_rsi_read(vcpu);
1433 		params[4] = (u32)kvm_rdi_read(vcpu);
1434 		params[5] = (u32)kvm_rbp_read(vcpu);
1435 	}
1436 #ifdef CONFIG_X86_64
1437 	else {
1438 		params[0] = (u64)kvm_rdi_read(vcpu);
1439 		params[1] = (u64)kvm_rsi_read(vcpu);
1440 		params[2] = (u64)kvm_rdx_read(vcpu);
1441 		params[3] = (u64)kvm_r10_read(vcpu);
1442 		params[4] = (u64)kvm_r8_read(vcpu);
1443 		params[5] = (u64)kvm_r9_read(vcpu);
1444 	}
1445 #endif
1446 	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1447 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1448 				params[3], params[4], params[5]);
1449 
1450 	/*
1451 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1452 	 * are permitted in guest userspace can be handled by the VMM.
1453 	 */
1454 	if (unlikely(cpl > 0))
1455 		goto handle_in_userspace;
1456 
1457 	switch (input) {
1458 	case __HYPERVISOR_xen_version:
1459 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1460 			r = vcpu->kvm->arch.xen.xen_version;
1461 			handled = true;
1462 		}
1463 		break;
1464 	case __HYPERVISOR_event_channel_op:
1465 		if (params[0] == EVTCHNOP_send)
1466 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1467 		break;
1468 	case __HYPERVISOR_sched_op:
1469 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1470 						 params[1], &r);
1471 		break;
1472 	case __HYPERVISOR_vcpu_op:
1473 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1474 						params[2], &r);
1475 		break;
1476 	case __HYPERVISOR_set_timer_op: {
1477 		u64 timeout = params[0];
1478 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1479 		if (!longmode)
1480 			timeout |= params[1] << 32;
1481 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1482 		break;
1483 	}
1484 	default:
1485 		break;
1486 	}
1487 
1488 	if (handled)
1489 		return kvm_xen_hypercall_set_result(vcpu, r);
1490 
1491 handle_in_userspace:
1492 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1493 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1494 	vcpu->run->xen.u.hcall.longmode = longmode;
1495 	vcpu->run->xen.u.hcall.cpl = cpl;
1496 	vcpu->run->xen.u.hcall.input = input;
1497 	vcpu->run->xen.u.hcall.params[0] = params[0];
1498 	vcpu->run->xen.u.hcall.params[1] = params[1];
1499 	vcpu->run->xen.u.hcall.params[2] = params[2];
1500 	vcpu->run->xen.u.hcall.params[3] = params[3];
1501 	vcpu->run->xen.u.hcall.params[4] = params[4];
1502 	vcpu->run->xen.u.hcall.params[5] = params[5];
1503 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1504 	vcpu->arch.complete_userspace_io =
1505 		kvm_xen_hypercall_complete_userspace;
1506 
1507 	return 0;
1508 }
1509 
1510 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1511 {
1512 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1513 
1514 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1515 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1516 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1517 		kvm_vcpu_kick(vcpu);
1518 	}
1519 }
1520 
1521 /*
1522  * The return value from this function is propagated to kvm_set_irq() API,
1523  * so it returns:
1524  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1525  *  = 0   Interrupt was coalesced (previous irq is still pending)
1526  *  > 0   Number of CPUs interrupt was delivered to
1527  *
1528  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1529  * only check on its return value is a comparison with -EWOULDBLOCK'.
1530  */
1531 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1532 {
1533 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1534 	struct kvm_vcpu *vcpu;
1535 	unsigned long *pending_bits, *mask_bits;
1536 	unsigned long flags;
1537 	int port_word_bit;
1538 	bool kick_vcpu = false;
1539 	int vcpu_idx, idx, rc;
1540 
1541 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1542 	if (vcpu_idx >= 0)
1543 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1544 	else {
1545 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1546 		if (!vcpu)
1547 			return -EINVAL;
1548 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1549 	}
1550 
1551 	if (!vcpu->arch.xen.vcpu_info_cache.active)
1552 		return -EINVAL;
1553 
1554 	if (xe->port >= max_evtchn_port(kvm))
1555 		return -EINVAL;
1556 
1557 	rc = -EWOULDBLOCK;
1558 
1559 	idx = srcu_read_lock(&kvm->srcu);
1560 
1561 	read_lock_irqsave(&gpc->lock, flags);
1562 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1563 		goto out_rcu;
1564 
1565 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1566 		struct shared_info *shinfo = gpc->khva;
1567 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1568 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1569 		port_word_bit = xe->port / 64;
1570 	} else {
1571 		struct compat_shared_info *shinfo = gpc->khva;
1572 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1573 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1574 		port_word_bit = xe->port / 32;
1575 	}
1576 
1577 	/*
1578 	 * If this port wasn't already set, and if it isn't masked, then
1579 	 * we try to set the corresponding bit in the in-kernel shadow of
1580 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1581 	 * already set, then we kick the vCPU in question to write to the
1582 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1583 	 */
1584 	if (test_and_set_bit(xe->port, pending_bits)) {
1585 		rc = 0; /* It was already raised */
1586 	} else if (test_bit(xe->port, mask_bits)) {
1587 		rc = -ENOTCONN; /* Masked */
1588 		kvm_xen_check_poller(vcpu, xe->port);
1589 	} else {
1590 		rc = 1; /* Delivered to the bitmap in shared_info. */
1591 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1592 		read_unlock_irqrestore(&gpc->lock, flags);
1593 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1594 
1595 		read_lock_irqsave(&gpc->lock, flags);
1596 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1597 			/*
1598 			 * Could not access the vcpu_info. Set the bit in-kernel
1599 			 * and prod the vCPU to deliver it for itself.
1600 			 */
1601 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1602 				kick_vcpu = true;
1603 			goto out_rcu;
1604 		}
1605 
1606 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1607 			struct vcpu_info *vcpu_info = gpc->khva;
1608 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1609 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1610 				kick_vcpu = true;
1611 			}
1612 		} else {
1613 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1614 			if (!test_and_set_bit(port_word_bit,
1615 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1616 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1617 				kick_vcpu = true;
1618 			}
1619 		}
1620 
1621 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1622 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1623 			kvm_xen_inject_vcpu_vector(vcpu);
1624 			kick_vcpu = false;
1625 		}
1626 	}
1627 
1628  out_rcu:
1629 	read_unlock_irqrestore(&gpc->lock, flags);
1630 	srcu_read_unlock(&kvm->srcu, idx);
1631 
1632 	if (kick_vcpu) {
1633 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1634 		kvm_vcpu_kick(vcpu);
1635 	}
1636 
1637 	return rc;
1638 }
1639 
1640 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1641 {
1642 	bool mm_borrowed = false;
1643 	int rc;
1644 
1645 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1646 	if (rc != -EWOULDBLOCK)
1647 		return rc;
1648 
1649 	if (current->mm != kvm->mm) {
1650 		/*
1651 		 * If not on a thread which already belongs to this KVM,
1652 		 * we'd better be in the irqfd workqueue.
1653 		 */
1654 		if (WARN_ON_ONCE(current->mm))
1655 			return -EINVAL;
1656 
1657 		kthread_use_mm(kvm->mm);
1658 		mm_borrowed = true;
1659 	}
1660 
1661 	/*
1662 	 * For the irqfd workqueue, using the main kvm->lock mutex is
1663 	 * fine since this function is invoked from kvm_set_irq() with
1664 	 * no other lock held, no srcu. In future if it will be called
1665 	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
1666 	 * then it may need to switch to using a leaf-node mutex for
1667 	 * serializing the shared_info mapping.
1668 	 */
1669 	mutex_lock(&kvm->lock);
1670 
1671 	/*
1672 	 * It is theoretically possible for the page to be unmapped
1673 	 * and the MMU notifier to invalidate the shared_info before
1674 	 * we even get to use it. In that case, this looks like an
1675 	 * infinite loop. It was tempting to do it via the userspace
1676 	 * HVA instead... but that just *hides* the fact that it's
1677 	 * an infinite loop, because if a fault occurs and it waits
1678 	 * for the page to come back, it can *still* immediately
1679 	 * fault and have to wait again, repeatedly.
1680 	 *
1681 	 * Conversely, the page could also have been reinstated by
1682 	 * another thread before we even obtain the mutex above, so
1683 	 * check again *first* before remapping it.
1684 	 */
1685 	do {
1686 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1687 		int idx;
1688 
1689 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1690 		if (rc != -EWOULDBLOCK)
1691 			break;
1692 
1693 		idx = srcu_read_lock(&kvm->srcu);
1694 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1695 		srcu_read_unlock(&kvm->srcu, idx);
1696 	} while(!rc);
1697 
1698 	mutex_unlock(&kvm->lock);
1699 
1700 	if (mm_borrowed)
1701 		kthread_unuse_mm(kvm->mm);
1702 
1703 	return rc;
1704 }
1705 
1706 /* This is the version called from kvm_set_irq() as the .set function */
1707 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1708 			 int irq_source_id, int level, bool line_status)
1709 {
1710 	if (!level)
1711 		return -EINVAL;
1712 
1713 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1714 }
1715 
1716 /*
1717  * Set up an event channel interrupt from the KVM IRQ routing table.
1718  * Used for e.g. PIRQ from passed through physical devices.
1719  */
1720 int kvm_xen_setup_evtchn(struct kvm *kvm,
1721 			 struct kvm_kernel_irq_routing_entry *e,
1722 			 const struct kvm_irq_routing_entry *ue)
1723 
1724 {
1725 	struct kvm_vcpu *vcpu;
1726 
1727 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1728 		return -EINVAL;
1729 
1730 	/* We only support 2 level event channels for now */
1731 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1732 		return -EINVAL;
1733 
1734 	/*
1735 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1736 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1737 	 * to find it. Do that once at setup time, instead of every time.
1738 	 * But beware that on live update / live migration, the routing
1739 	 * table might be reinstated before the vCPU threads have finished
1740 	 * recreating their vCPUs.
1741 	 */
1742 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1743 	if (vcpu)
1744 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1745 	else
1746 		e->xen_evtchn.vcpu_idx = -1;
1747 
1748 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1749 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1750 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1751 	e->set = evtchn_set_fn;
1752 
1753 	return 0;
1754 }
1755 
1756 /*
1757  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1758  */
1759 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1760 {
1761 	struct kvm_xen_evtchn e;
1762 	int ret;
1763 
1764 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1765 		return -EINVAL;
1766 
1767 	/* We only support 2 level event channels for now */
1768 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1769 		return -EINVAL;
1770 
1771 	e.port = uxe->port;
1772 	e.vcpu_id = uxe->vcpu;
1773 	e.vcpu_idx = -1;
1774 	e.priority = uxe->priority;
1775 
1776 	ret = kvm_xen_set_evtchn(&e, kvm);
1777 
1778 	/*
1779 	 * None of that 'return 1 if it actually got delivered' nonsense.
1780 	 * We don't care if it was masked (-ENOTCONN) either.
1781 	 */
1782 	if (ret > 0 || ret == -ENOTCONN)
1783 		ret = 0;
1784 
1785 	return ret;
1786 }
1787 
1788 /*
1789  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1790  */
1791 struct evtchnfd {
1792 	u32 send_port;
1793 	u32 type;
1794 	union {
1795 		struct kvm_xen_evtchn port;
1796 		struct {
1797 			u32 port; /* zero */
1798 			struct eventfd_ctx *ctx;
1799 		} eventfd;
1800 	} deliver;
1801 };
1802 
1803 /*
1804  * Update target vCPU or priority for a registered sending channel.
1805  */
1806 static int kvm_xen_eventfd_update(struct kvm *kvm,
1807 				  struct kvm_xen_hvm_attr *data)
1808 {
1809 	u32 port = data->u.evtchn.send_port;
1810 	struct evtchnfd *evtchnfd;
1811 	int ret;
1812 
1813 	/* Protect writes to evtchnfd as well as the idr lookup.  */
1814 	mutex_lock(&kvm->lock);
1815 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1816 
1817 	ret = -ENOENT;
1818 	if (!evtchnfd)
1819 		goto out_unlock;
1820 
1821 	/* For an UPDATE, nothing may change except the priority/vcpu */
1822 	ret = -EINVAL;
1823 	if (evtchnfd->type != data->u.evtchn.type)
1824 		goto out_unlock;
1825 
1826 	/*
1827 	 * Port cannot change, and if it's zero that was an eventfd
1828 	 * which can't be changed either.
1829 	 */
1830 	if (!evtchnfd->deliver.port.port ||
1831 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1832 		goto out_unlock;
1833 
1834 	/* We only support 2 level event channels for now */
1835 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1836 		goto out_unlock;
1837 
1838 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1839 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1840 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1841 		evtchnfd->deliver.port.vcpu_idx = -1;
1842 	}
1843 	ret = 0;
1844 out_unlock:
1845 	mutex_unlock(&kvm->lock);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * Configure the target (eventfd or local port delivery) for sending on
1851  * a given event channel.
1852  */
1853 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1854 				  struct kvm_xen_hvm_attr *data)
1855 {
1856 	u32 port = data->u.evtchn.send_port;
1857 	struct eventfd_ctx *eventfd = NULL;
1858 	struct evtchnfd *evtchnfd;
1859 	int ret = -EINVAL;
1860 
1861 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1862 	if (!evtchnfd)
1863 		return -ENOMEM;
1864 
1865 	switch(data->u.evtchn.type) {
1866 	case EVTCHNSTAT_ipi:
1867 		/* IPI  must map back to the same port# */
1868 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1869 			goto out_noeventfd; /* -EINVAL */
1870 		break;
1871 
1872 	case EVTCHNSTAT_interdomain:
1873 		if (data->u.evtchn.deliver.port.port) {
1874 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1875 				goto out_noeventfd; /* -EINVAL */
1876 		} else {
1877 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1878 			if (IS_ERR(eventfd)) {
1879 				ret = PTR_ERR(eventfd);
1880 				goto out_noeventfd;
1881 			}
1882 		}
1883 		break;
1884 
1885 	case EVTCHNSTAT_virq:
1886 	case EVTCHNSTAT_closed:
1887 	case EVTCHNSTAT_unbound:
1888 	case EVTCHNSTAT_pirq:
1889 	default: /* Unknown event channel type */
1890 		goto out; /* -EINVAL */
1891 	}
1892 
1893 	evtchnfd->send_port = data->u.evtchn.send_port;
1894 	evtchnfd->type = data->u.evtchn.type;
1895 	if (eventfd) {
1896 		evtchnfd->deliver.eventfd.ctx = eventfd;
1897 	} else {
1898 		/* We only support 2 level event channels for now */
1899 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1900 			goto out; /* -EINVAL; */
1901 
1902 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1903 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1904 		evtchnfd->deliver.port.vcpu_idx = -1;
1905 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1906 	}
1907 
1908 	mutex_lock(&kvm->lock);
1909 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1910 			GFP_KERNEL);
1911 	mutex_unlock(&kvm->lock);
1912 	if (ret >= 0)
1913 		return 0;
1914 
1915 	if (ret == -ENOSPC)
1916 		ret = -EEXIST;
1917 out:
1918 	if (eventfd)
1919 		eventfd_ctx_put(eventfd);
1920 out_noeventfd:
1921 	kfree(evtchnfd);
1922 	return ret;
1923 }
1924 
1925 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1926 {
1927 	struct evtchnfd *evtchnfd;
1928 
1929 	mutex_lock(&kvm->lock);
1930 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1931 	mutex_unlock(&kvm->lock);
1932 
1933 	if (!evtchnfd)
1934 		return -ENOENT;
1935 
1936 	synchronize_srcu(&kvm->srcu);
1937 	if (!evtchnfd->deliver.port.port)
1938 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1939 	kfree(evtchnfd);
1940 	return 0;
1941 }
1942 
1943 static int kvm_xen_eventfd_reset(struct kvm *kvm)
1944 {
1945 	struct evtchnfd *evtchnfd, **all_evtchnfds;
1946 	int i;
1947 	int n = 0;
1948 
1949 	mutex_lock(&kvm->lock);
1950 
1951 	/*
1952 	 * Because synchronize_srcu() cannot be called inside the
1953 	 * critical section, first collect all the evtchnfd objects
1954 	 * in an array as they are removed from evtchn_ports.
1955 	 */
1956 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
1957 		n++;
1958 
1959 	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
1960 	if (!all_evtchnfds) {
1961 		mutex_unlock(&kvm->lock);
1962 		return -ENOMEM;
1963 	}
1964 
1965 	n = 0;
1966 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1967 		all_evtchnfds[n++] = evtchnfd;
1968 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1969 	}
1970 	mutex_unlock(&kvm->lock);
1971 
1972 	synchronize_srcu(&kvm->srcu);
1973 
1974 	while (n--) {
1975 		evtchnfd = all_evtchnfds[n];
1976 		if (!evtchnfd->deliver.port.port)
1977 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1978 		kfree(evtchnfd);
1979 	}
1980 	kfree(all_evtchnfds);
1981 
1982 	return 0;
1983 }
1984 
1985 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1986 {
1987 	u32 port = data->u.evtchn.send_port;
1988 
1989 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
1990 		return kvm_xen_eventfd_reset(kvm);
1991 
1992 	if (!port || port >= max_evtchn_port(kvm))
1993 		return -EINVAL;
1994 
1995 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
1996 		return kvm_xen_eventfd_deassign(kvm, port);
1997 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
1998 		return kvm_xen_eventfd_update(kvm, data);
1999 	if (data->u.evtchn.flags)
2000 		return -EINVAL;
2001 
2002 	return kvm_xen_eventfd_assign(kvm, data);
2003 }
2004 
2005 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2006 {
2007 	struct evtchnfd *evtchnfd;
2008 	struct evtchn_send send;
2009 	struct x86_exception e;
2010 
2011 	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2012 	BUILD_BUG_ON(sizeof(send) != 4);
2013 	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2014 		*r = -EFAULT;
2015 		return true;
2016 	}
2017 
2018 	/*
2019 	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2020 	 * is protected by RCU.
2021 	 */
2022 	rcu_read_lock();
2023 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2024 	rcu_read_unlock();
2025 	if (!evtchnfd)
2026 		return false;
2027 
2028 	if (evtchnfd->deliver.port.port) {
2029 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2030 		if (ret < 0 && ret != -ENOTCONN)
2031 			return false;
2032 	} else {
2033 		eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
2034 	}
2035 
2036 	*r = 0;
2037 	return true;
2038 }
2039 
2040 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2041 {
2042 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2043 	vcpu->arch.xen.poll_evtchn = 0;
2044 
2045 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2046 
2047 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2048 		     KVM_HOST_USES_PFN);
2049 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2050 		     KVM_HOST_USES_PFN);
2051 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2052 		     KVM_HOST_USES_PFN);
2053 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2054 		     KVM_HOST_USES_PFN);
2055 }
2056 
2057 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2058 {
2059 	if (kvm_xen_timer_enabled(vcpu))
2060 		kvm_xen_stop_timer(vcpu);
2061 
2062 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2063 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2064 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2065 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2066 
2067 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2068 }
2069 
2070 void kvm_xen_init_vm(struct kvm *kvm)
2071 {
2072 	idr_init(&kvm->arch.xen.evtchn_ports);
2073 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2074 }
2075 
2076 void kvm_xen_destroy_vm(struct kvm *kvm)
2077 {
2078 	struct evtchnfd *evtchnfd;
2079 	int i;
2080 
2081 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2082 
2083 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2084 		if (!evtchnfd->deliver.port.port)
2085 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2086 		kfree(evtchnfd);
2087 	}
2088 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2089 
2090 	if (kvm->arch.xen_hvm_config.msr)
2091 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2092 }
2093