xref: /linux/arch/x86/kvm/vmx/pmu_intel.c (revision cffaefd15a8f423cdee5d8eac15d267bc92de314)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM PMU support for Intel CPUs
4  *
5  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "nested.h"
21 #include "pmu.h"
22 
23 /*
24  * Perf's "BASE" is wildly misleading, architectural PMUs use bits 31:16 of ECX
25  * to encode the "type" of counter to read, i.e. this is not a "base".  And to
26  * further confuse things, non-architectural PMUs use bit 31 as a flag for
27  * "fast" reads, whereas the "type" is an explicit value.
28  */
29 #define INTEL_RDPMC_GP		0
30 #define INTEL_RDPMC_FIXED	INTEL_PMC_FIXED_RDPMC_BASE
31 
32 #define INTEL_RDPMC_TYPE_MASK	GENMASK(31, 16)
33 #define INTEL_RDPMC_INDEX_MASK	GENMASK(15, 0)
34 
35 #define MSR_PMC_FULL_WIDTH_BIT      (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0)
36 
37 static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
38 {
39 	struct kvm_pmc *pmc;
40 	u64 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl;
41 	int i;
42 
43 	pmu->fixed_ctr_ctrl = data;
44 	for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
45 		u8 new_ctrl = fixed_ctrl_field(data, i);
46 		u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i);
47 
48 		if (old_ctrl == new_ctrl)
49 			continue;
50 
51 		pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i);
52 
53 		__set_bit(KVM_FIXED_PMC_BASE_IDX + i, pmu->pmc_in_use);
54 		kvm_pmu_request_counter_reprogram(pmc);
55 	}
56 }
57 
58 static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu,
59 					    unsigned int idx, u64 *mask)
60 {
61 	unsigned int type = idx & INTEL_RDPMC_TYPE_MASK;
62 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
63 	struct kvm_pmc *counters;
64 	unsigned int num_counters;
65 	u64 bitmask;
66 
67 	/*
68 	 * The encoding of ECX for RDPMC is different for architectural versus
69 	 * non-architecturals PMUs (PMUs with version '0').  For architectural
70 	 * PMUs, bits 31:16 specify the PMC type and bits 15:0 specify the PMC
71 	 * index.  For non-architectural PMUs, bit 31 is a "fast" flag, and
72 	 * bits 30:0 specify the PMC index.
73 	 *
74 	 * Yell and reject attempts to read PMCs for a non-architectural PMU,
75 	 * as KVM doesn't support such PMUs.
76 	 */
77 	if (WARN_ON_ONCE(!pmu->version))
78 		return NULL;
79 
80 	/*
81 	 * General Purpose (GP) PMCs are supported on all PMUs, and fixed PMCs
82 	 * are supported on all architectural PMUs, i.e. on all virtual PMUs
83 	 * supported by KVM.  Note, KVM only emulates fixed PMCs for PMU v2+,
84 	 * but the type itself is still valid, i.e. let RDPMC fail due to
85 	 * accessing a non-existent counter.  Reject attempts to read all other
86 	 * types, which are unknown/unsupported.
87 	 */
88 	switch (type) {
89 	case INTEL_RDPMC_FIXED:
90 		counters = pmu->fixed_counters;
91 		num_counters = pmu->nr_arch_fixed_counters;
92 		bitmask = pmu->counter_bitmask[KVM_PMC_FIXED];
93 		break;
94 	case INTEL_RDPMC_GP:
95 		counters = pmu->gp_counters;
96 		num_counters = pmu->nr_arch_gp_counters;
97 		bitmask = pmu->counter_bitmask[KVM_PMC_GP];
98 		break;
99 	default:
100 		return NULL;
101 	}
102 
103 	idx &= INTEL_RDPMC_INDEX_MASK;
104 	if (idx >= num_counters)
105 		return NULL;
106 
107 	*mask &= bitmask;
108 	return &counters[array_index_nospec(idx, num_counters)];
109 }
110 
111 static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu)
112 {
113 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
114 		return 0;
115 
116 	return vcpu->arch.perf_capabilities;
117 }
118 
119 static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu)
120 {
121 	return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0;
122 }
123 
124 static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr)
125 {
126 	if (!fw_writes_is_enabled(pmu_to_vcpu(pmu)))
127 		return NULL;
128 
129 	return get_gp_pmc(pmu, msr, MSR_IA32_PMC0);
130 }
131 
132 static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index)
133 {
134 	struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu);
135 	bool ret = false;
136 
137 	if (!intel_pmu_lbr_is_enabled(vcpu))
138 		return ret;
139 
140 	ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) ||
141 		(index >= records->from && index < records->from + records->nr) ||
142 		(index >= records->to && index < records->to + records->nr);
143 
144 	if (!ret && records->info)
145 		ret = (index >= records->info && index < records->info + records->nr);
146 
147 	return ret;
148 }
149 
150 static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
151 {
152 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
153 	u64 perf_capabilities;
154 	int ret;
155 
156 	switch (msr) {
157 	case MSR_CORE_PERF_FIXED_CTR_CTRL:
158 		return kvm_pmu_has_perf_global_ctrl(pmu);
159 	case MSR_IA32_PEBS_ENABLE:
160 		ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT;
161 		break;
162 	case MSR_IA32_DS_AREA:
163 		ret = guest_cpuid_has(vcpu, X86_FEATURE_DS);
164 		break;
165 	case MSR_PEBS_DATA_CFG:
166 		perf_capabilities = vcpu_get_perf_capabilities(vcpu);
167 		ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) &&
168 			((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3);
169 		break;
170 	default:
171 		ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) ||
172 			get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) ||
173 			get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) ||
174 			intel_pmu_is_valid_lbr_msr(vcpu, msr);
175 		break;
176 	}
177 
178 	return ret;
179 }
180 
181 static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr)
182 {
183 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
184 	struct kvm_pmc *pmc;
185 
186 	pmc = get_fixed_pmc(pmu, msr);
187 	pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0);
188 	pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0);
189 
190 	return pmc;
191 }
192 
193 static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu)
194 {
195 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
196 
197 	if (lbr_desc->event) {
198 		perf_event_release_kernel(lbr_desc->event);
199 		lbr_desc->event = NULL;
200 		vcpu_to_pmu(vcpu)->event_count--;
201 	}
202 }
203 
204 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu)
205 {
206 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
207 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
208 	struct perf_event *event;
209 
210 	/*
211 	 * The perf_event_attr is constructed in the minimum efficient way:
212 	 * - set 'pinned = true' to make it task pinned so that if another
213 	 *   cpu pinned event reclaims LBR, the event->oncpu will be set to -1;
214 	 * - set '.exclude_host = true' to record guest branches behavior;
215 	 *
216 	 * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf
217 	 *   schedule the event without a real HW counter but a fake one;
218 	 *   check is_guest_lbr_event() and __intel_get_event_constraints();
219 	 *
220 	 * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and
221 	 *   'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
222 	 *   PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack
223 	 *   event, which helps KVM to save/restore guest LBR records
224 	 *   during host context switches and reduces quite a lot overhead,
225 	 *   check branch_user_callstack() and intel_pmu_lbr_sched_task();
226 	 */
227 	struct perf_event_attr attr = {
228 		.type = PERF_TYPE_RAW,
229 		.size = sizeof(attr),
230 		.config = INTEL_FIXED_VLBR_EVENT,
231 		.sample_type = PERF_SAMPLE_BRANCH_STACK,
232 		.pinned = true,
233 		.exclude_host = true,
234 		.branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
235 					PERF_SAMPLE_BRANCH_USER,
236 	};
237 
238 	if (unlikely(lbr_desc->event)) {
239 		__set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
240 		return 0;
241 	}
242 
243 	event = perf_event_create_kernel_counter(&attr, -1,
244 						current, NULL, NULL);
245 	if (IS_ERR(event)) {
246 		pr_debug_ratelimited("%s: failed %ld\n",
247 					__func__, PTR_ERR(event));
248 		return PTR_ERR(event);
249 	}
250 	lbr_desc->event = event;
251 	pmu->event_count++;
252 	__set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
253 	return 0;
254 }
255 
256 /*
257  * It's safe to access LBR msrs from guest when they have not
258  * been passthrough since the host would help restore or reset
259  * the LBR msrs records when the guest LBR event is scheduled in.
260  */
261 static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu,
262 				     struct msr_data *msr_info, bool read)
263 {
264 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
265 	u32 index = msr_info->index;
266 
267 	if (!intel_pmu_is_valid_lbr_msr(vcpu, index))
268 		return false;
269 
270 	if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0)
271 		goto dummy;
272 
273 	/*
274 	 * Disable irq to ensure the LBR feature doesn't get reclaimed by the
275 	 * host at the time the value is read from the msr, and this avoids the
276 	 * host LBR value to be leaked to the guest. If LBR has been reclaimed,
277 	 * return 0 on guest reads.
278 	 */
279 	local_irq_disable();
280 	if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) {
281 		if (read)
282 			rdmsrl(index, msr_info->data);
283 		else
284 			wrmsrl(index, msr_info->data);
285 		__set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
286 		local_irq_enable();
287 		return true;
288 	}
289 	clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
290 	local_irq_enable();
291 
292 dummy:
293 	if (read)
294 		msr_info->data = 0;
295 	return true;
296 }
297 
298 static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
299 {
300 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
301 	struct kvm_pmc *pmc;
302 	u32 msr = msr_info->index;
303 
304 	switch (msr) {
305 	case MSR_CORE_PERF_FIXED_CTR_CTRL:
306 		msr_info->data = pmu->fixed_ctr_ctrl;
307 		break;
308 	case MSR_IA32_PEBS_ENABLE:
309 		msr_info->data = pmu->pebs_enable;
310 		break;
311 	case MSR_IA32_DS_AREA:
312 		msr_info->data = pmu->ds_area;
313 		break;
314 	case MSR_PEBS_DATA_CFG:
315 		msr_info->data = pmu->pebs_data_cfg;
316 		break;
317 	default:
318 		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
319 		    (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
320 			u64 val = pmc_read_counter(pmc);
321 			msr_info->data =
322 				val & pmu->counter_bitmask[KVM_PMC_GP];
323 			break;
324 		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
325 			u64 val = pmc_read_counter(pmc);
326 			msr_info->data =
327 				val & pmu->counter_bitmask[KVM_PMC_FIXED];
328 			break;
329 		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
330 			msr_info->data = pmc->eventsel;
331 			break;
332 		} else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) {
333 			break;
334 		}
335 		return 1;
336 	}
337 
338 	return 0;
339 }
340 
341 static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
342 {
343 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
344 	struct kvm_pmc *pmc;
345 	u32 msr = msr_info->index;
346 	u64 data = msr_info->data;
347 	u64 reserved_bits, diff;
348 
349 	switch (msr) {
350 	case MSR_CORE_PERF_FIXED_CTR_CTRL:
351 		if (data & pmu->fixed_ctr_ctrl_mask)
352 			return 1;
353 
354 		if (pmu->fixed_ctr_ctrl != data)
355 			reprogram_fixed_counters(pmu, data);
356 		break;
357 	case MSR_IA32_PEBS_ENABLE:
358 		if (data & pmu->pebs_enable_mask)
359 			return 1;
360 
361 		if (pmu->pebs_enable != data) {
362 			diff = pmu->pebs_enable ^ data;
363 			pmu->pebs_enable = data;
364 			reprogram_counters(pmu, diff);
365 		}
366 		break;
367 	case MSR_IA32_DS_AREA:
368 		if (is_noncanonical_address(data, vcpu))
369 			return 1;
370 
371 		pmu->ds_area = data;
372 		break;
373 	case MSR_PEBS_DATA_CFG:
374 		if (data & pmu->pebs_data_cfg_mask)
375 			return 1;
376 
377 		pmu->pebs_data_cfg = data;
378 		break;
379 	default:
380 		if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
381 		    (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
382 			if ((msr & MSR_PMC_FULL_WIDTH_BIT) &&
383 			    (data & ~pmu->counter_bitmask[KVM_PMC_GP]))
384 				return 1;
385 
386 			if (!msr_info->host_initiated &&
387 			    !(msr & MSR_PMC_FULL_WIDTH_BIT))
388 				data = (s64)(s32)data;
389 			pmc_write_counter(pmc, data);
390 			break;
391 		} else if ((pmc = get_fixed_pmc(pmu, msr))) {
392 			pmc_write_counter(pmc, data);
393 			break;
394 		} else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
395 			reserved_bits = pmu->reserved_bits;
396 			if ((pmc->idx == 2) &&
397 			    (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED))
398 				reserved_bits ^= HSW_IN_TX_CHECKPOINTED;
399 			if (data & reserved_bits)
400 				return 1;
401 
402 			if (data != pmc->eventsel) {
403 				pmc->eventsel = data;
404 				kvm_pmu_request_counter_reprogram(pmc);
405 			}
406 			break;
407 		} else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) {
408 			break;
409 		}
410 		/* Not a known PMU MSR. */
411 		return 1;
412 	}
413 
414 	return 0;
415 }
416 
417 /*
418  * Map fixed counter events to architectural general purpose event encodings.
419  * Perf doesn't provide APIs to allow KVM to directly program a fixed counter,
420  * and so KVM instead programs the architectural event to effectively request
421  * the fixed counter.  Perf isn't guaranteed to use a fixed counter and may
422  * instead program the encoding into a general purpose counter, e.g. if a
423  * different perf_event is already utilizing the requested counter, but the end
424  * result is the same (ignoring the fact that using a general purpose counter
425  * will likely exacerbate counter contention).
426  *
427  * Forcibly inlined to allow asserting on @index at build time, and there should
428  * never be more than one user.
429  */
430 static __always_inline u64 intel_get_fixed_pmc_eventsel(unsigned int index)
431 {
432 	const enum perf_hw_id fixed_pmc_perf_ids[] = {
433 		[0] = PERF_COUNT_HW_INSTRUCTIONS,
434 		[1] = PERF_COUNT_HW_CPU_CYCLES,
435 		[2] = PERF_COUNT_HW_REF_CPU_CYCLES,
436 	};
437 	u64 eventsel;
438 
439 	BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_perf_ids) != KVM_PMC_MAX_FIXED);
440 	BUILD_BUG_ON(index >= KVM_PMC_MAX_FIXED);
441 
442 	/*
443 	 * Yell if perf reports support for a fixed counter but perf doesn't
444 	 * have a known encoding for the associated general purpose event.
445 	 */
446 	eventsel = perf_get_hw_event_config(fixed_pmc_perf_ids[index]);
447 	WARN_ON_ONCE(!eventsel && index < kvm_pmu_cap.num_counters_fixed);
448 	return eventsel;
449 }
450 
451 static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
452 {
453 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
454 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
455 	struct kvm_cpuid_entry2 *entry;
456 	union cpuid10_eax eax;
457 	union cpuid10_edx edx;
458 	u64 perf_capabilities;
459 	u64 counter_mask;
460 	int i;
461 
462 	memset(&lbr_desc->records, 0, sizeof(lbr_desc->records));
463 
464 	/*
465 	 * Setting passthrough of LBR MSRs is done only in the VM-Entry loop,
466 	 * and PMU refresh is disallowed after the vCPU has run, i.e. this code
467 	 * should never be reached while KVM is passing through MSRs.
468 	 */
469 	if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm))
470 		return;
471 
472 	entry = kvm_find_cpuid_entry(vcpu, 0xa);
473 	if (!entry)
474 		return;
475 
476 	eax.full = entry->eax;
477 	edx.full = entry->edx;
478 
479 	pmu->version = eax.split.version_id;
480 	if (!pmu->version)
481 		return;
482 
483 	pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
484 					 kvm_pmu_cap.num_counters_gp);
485 	eax.split.bit_width = min_t(int, eax.split.bit_width,
486 				    kvm_pmu_cap.bit_width_gp);
487 	pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
488 	eax.split.mask_length = min_t(int, eax.split.mask_length,
489 				      kvm_pmu_cap.events_mask_len);
490 	pmu->available_event_types = ~entry->ebx &
491 					((1ull << eax.split.mask_length) - 1);
492 
493 	if (pmu->version == 1) {
494 		pmu->nr_arch_fixed_counters = 0;
495 	} else {
496 		pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed,
497 						    kvm_pmu_cap.num_counters_fixed);
498 		edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed,
499 						  kvm_pmu_cap.bit_width_fixed);
500 		pmu->counter_bitmask[KVM_PMC_FIXED] =
501 			((u64)1 << edx.split.bit_width_fixed) - 1;
502 	}
503 
504 	for (i = 0; i < pmu->nr_arch_fixed_counters; i++)
505 		pmu->fixed_ctr_ctrl_mask &= ~(0xbull << (i * 4));
506 	counter_mask = ~(((1ull << pmu->nr_arch_gp_counters) - 1) |
507 		(((1ull << pmu->nr_arch_fixed_counters) - 1) << KVM_FIXED_PMC_BASE_IDX));
508 	pmu->global_ctrl_mask = counter_mask;
509 
510 	/*
511 	 * GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET)
512 	 * share reserved bit definitions.  The kernel just happens to use
513 	 * OVF_CTRL for the names.
514 	 */
515 	pmu->global_status_mask = pmu->global_ctrl_mask
516 			& ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF |
517 			    MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD);
518 	if (vmx_pt_mode_is_host_guest())
519 		pmu->global_status_mask &=
520 				~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI;
521 
522 	entry = kvm_find_cpuid_entry_index(vcpu, 7, 0);
523 	if (entry &&
524 	    (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
525 	    (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) {
526 		pmu->reserved_bits ^= HSW_IN_TX;
527 		pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
528 	}
529 
530 	bitmap_set(pmu->all_valid_pmc_idx,
531 		0, pmu->nr_arch_gp_counters);
532 	bitmap_set(pmu->all_valid_pmc_idx,
533 		INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters);
534 
535 	perf_capabilities = vcpu_get_perf_capabilities(vcpu);
536 	if (cpuid_model_is_consistent(vcpu) &&
537 	    (perf_capabilities & PMU_CAP_LBR_FMT))
538 		x86_perf_get_lbr(&lbr_desc->records);
539 	else
540 		lbr_desc->records.nr = 0;
541 
542 	if (lbr_desc->records.nr)
543 		bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1);
544 
545 	if (perf_capabilities & PERF_CAP_PEBS_FORMAT) {
546 		if (perf_capabilities & PERF_CAP_PEBS_BASELINE) {
547 			pmu->pebs_enable_mask = counter_mask;
548 			pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE;
549 			for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
550 				pmu->fixed_ctr_ctrl_mask &=
551 					~(1ULL << (KVM_FIXED_PMC_BASE_IDX + i * 4));
552 			}
553 			pmu->pebs_data_cfg_mask = ~0xff00000full;
554 		} else {
555 			pmu->pebs_enable_mask =
556 				~((1ull << pmu->nr_arch_gp_counters) - 1);
557 		}
558 	}
559 }
560 
561 static void intel_pmu_init(struct kvm_vcpu *vcpu)
562 {
563 	int i;
564 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
565 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
566 
567 	for (i = 0; i < KVM_INTEL_PMC_MAX_GENERIC; i++) {
568 		pmu->gp_counters[i].type = KVM_PMC_GP;
569 		pmu->gp_counters[i].vcpu = vcpu;
570 		pmu->gp_counters[i].idx = i;
571 		pmu->gp_counters[i].current_config = 0;
572 	}
573 
574 	for (i = 0; i < KVM_PMC_MAX_FIXED; i++) {
575 		pmu->fixed_counters[i].type = KVM_PMC_FIXED;
576 		pmu->fixed_counters[i].vcpu = vcpu;
577 		pmu->fixed_counters[i].idx = i + KVM_FIXED_PMC_BASE_IDX;
578 		pmu->fixed_counters[i].current_config = 0;
579 		pmu->fixed_counters[i].eventsel = intel_get_fixed_pmc_eventsel(i);
580 	}
581 
582 	lbr_desc->records.nr = 0;
583 	lbr_desc->event = NULL;
584 	lbr_desc->msr_passthrough = false;
585 }
586 
587 static void intel_pmu_reset(struct kvm_vcpu *vcpu)
588 {
589 	intel_pmu_release_guest_lbr_event(vcpu);
590 }
591 
592 /*
593  * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4.
594  *
595  * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and
596  * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL.
597  *
598  * Guest needs to re-enable LBR to resume branches recording.
599  */
600 static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu)
601 {
602 	u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL);
603 
604 	if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) {
605 		data &= ~DEBUGCTLMSR_LBR;
606 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
607 	}
608 }
609 
610 static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
611 {
612 	u8 version = vcpu_to_pmu(vcpu)->version;
613 
614 	if (!intel_pmu_lbr_is_enabled(vcpu))
615 		return;
616 
617 	if (version > 1 && version < 4)
618 		intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu);
619 }
620 
621 static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set)
622 {
623 	struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu);
624 	int i;
625 
626 	for (i = 0; i < lbr->nr; i++) {
627 		vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set);
628 		vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set);
629 		if (lbr->info)
630 			vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set);
631 	}
632 
633 	vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set);
634 	vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set);
635 }
636 
637 static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
638 {
639 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
640 
641 	if (!lbr_desc->msr_passthrough)
642 		return;
643 
644 	vmx_update_intercept_for_lbr_msrs(vcpu, true);
645 	lbr_desc->msr_passthrough = false;
646 }
647 
648 static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
649 {
650 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
651 
652 	if (lbr_desc->msr_passthrough)
653 		return;
654 
655 	vmx_update_intercept_for_lbr_msrs(vcpu, false);
656 	lbr_desc->msr_passthrough = true;
657 }
658 
659 /*
660  * Higher priority host perf events (e.g. cpu pinned) could reclaim the
661  * pmu resources (e.g. LBR) that were assigned to the guest. This is
662  * usually done via ipi calls (more details in perf_install_in_context).
663  *
664  * Before entering the non-root mode (with irq disabled here), double
665  * confirm that the pmu features enabled to the guest are not reclaimed
666  * by higher priority host events. Otherwise, disallow vcpu's access to
667  * the reclaimed features.
668  */
669 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu)
670 {
671 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
672 	struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
673 
674 	if (!lbr_desc->event) {
675 		vmx_disable_lbr_msrs_passthrough(vcpu);
676 		if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)
677 			goto warn;
678 		if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use))
679 			goto warn;
680 		return;
681 	}
682 
683 	if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) {
684 		vmx_disable_lbr_msrs_passthrough(vcpu);
685 		__clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
686 		goto warn;
687 	} else
688 		vmx_enable_lbr_msrs_passthrough(vcpu);
689 
690 	return;
691 
692 warn:
693 	pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id);
694 }
695 
696 static void intel_pmu_cleanup(struct kvm_vcpu *vcpu)
697 {
698 	if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR))
699 		intel_pmu_release_guest_lbr_event(vcpu);
700 }
701 
702 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu)
703 {
704 	struct kvm_pmc *pmc = NULL;
705 	int bit, hw_idx;
706 
707 	kvm_for_each_pmc(pmu, pmc, bit, (unsigned long *)&pmu->global_ctrl) {
708 		if (!pmc_speculative_in_use(pmc) ||
709 		    !pmc_is_globally_enabled(pmc) || !pmc->perf_event)
710 			continue;
711 
712 		/*
713 		 * A negative index indicates the event isn't mapped to a
714 		 * physical counter in the host, e.g. due to contention.
715 		 */
716 		hw_idx = pmc->perf_event->hw.idx;
717 		if (hw_idx != pmc->idx && hw_idx > -1)
718 			pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx);
719 	}
720 }
721 
722 struct kvm_pmu_ops intel_pmu_ops __initdata = {
723 	.rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc,
724 	.msr_idx_to_pmc = intel_msr_idx_to_pmc,
725 	.is_valid_msr = intel_is_valid_msr,
726 	.get_msr = intel_pmu_get_msr,
727 	.set_msr = intel_pmu_set_msr,
728 	.refresh = intel_pmu_refresh,
729 	.init = intel_pmu_init,
730 	.reset = intel_pmu_reset,
731 	.deliver_pmi = intel_pmu_deliver_pmi,
732 	.cleanup = intel_pmu_cleanup,
733 	.EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT,
734 	.MAX_NR_GP_COUNTERS = KVM_INTEL_PMC_MAX_GENERIC,
735 	.MIN_NR_GP_COUNTERS = 1,
736 };
737