xref: /linux/arch/x86/kvm/i8254.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affilates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32 
33 #define pr_fmt(fmt) "pit: " fmt
34 
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 #include <linux/workqueue.h>
38 
39 #include "irq.h"
40 #include "i8254.h"
41 
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47 
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52 
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56 	union {
57 		u64 ll;
58 		struct {
59 			u32 low, high;
60 		} l;
61 	} u, res;
62 	u64 rl, rh;
63 
64 	u.ll = a;
65 	rl = (u64)u.l.low * (u64)b;
66 	rh = (u64)u.l.high * (u64)b;
67 	rh += (rl >> 32);
68 	res.l.high = div64_u64(rh, c);
69 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 	return res.ll;
71 }
72 
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75 	struct kvm_kpit_channel_state *c =
76 		&kvm->arch.vpit->pit_state.channels[channel];
77 
78 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79 
80 	switch (c->mode) {
81 	default:
82 	case 0:
83 	case 4:
84 		/* XXX: just disable/enable counting */
85 		break;
86 	case 1:
87 	case 2:
88 	case 3:
89 	case 5:
90 		/* Restart counting on rising edge. */
91 		if (c->gate < val)
92 			c->count_load_time = ktime_get();
93 		break;
94 	}
95 
96 	c->gate = val;
97 }
98 
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102 
103 	return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105 
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108 	s64 elapsed;
109 	ktime_t remaining;
110 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111 
112 	if (!ps->pit_timer.period)
113 		return 0;
114 
115 	/*
116 	 * The Counter does not stop when it reaches zero. In
117 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 	 * the highest count, either FFFF hex for binary counting
119 	 * or 9999 for BCD counting, and continues counting.
120 	 * Modes 2 and 3 are periodic; the Counter reloads
121 	 * itself with the initial count and continues counting
122 	 * from there.
123 	 */
124 	remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
125 	elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
126 	elapsed = mod_64(elapsed, ps->pit_timer.period);
127 
128 	return elapsed;
129 }
130 
131 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132 			int channel)
133 {
134 	if (channel == 0)
135 		return __kpit_elapsed(kvm);
136 
137 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
138 }
139 
140 static int pit_get_count(struct kvm *kvm, int channel)
141 {
142 	struct kvm_kpit_channel_state *c =
143 		&kvm->arch.vpit->pit_state.channels[channel];
144 	s64 d, t;
145 	int counter;
146 
147 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148 
149 	t = kpit_elapsed(kvm, c, channel);
150 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151 
152 	switch (c->mode) {
153 	case 0:
154 	case 1:
155 	case 4:
156 	case 5:
157 		counter = (c->count - d) & 0xffff;
158 		break;
159 	case 3:
160 		/* XXX: may be incorrect for odd counts */
161 		counter = c->count - (mod_64((2 * d), c->count));
162 		break;
163 	default:
164 		counter = c->count - mod_64(d, c->count);
165 		break;
166 	}
167 	return counter;
168 }
169 
170 static int pit_get_out(struct kvm *kvm, int channel)
171 {
172 	struct kvm_kpit_channel_state *c =
173 		&kvm->arch.vpit->pit_state.channels[channel];
174 	s64 d, t;
175 	int out;
176 
177 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178 
179 	t = kpit_elapsed(kvm, c, channel);
180 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181 
182 	switch (c->mode) {
183 	default:
184 	case 0:
185 		out = (d >= c->count);
186 		break;
187 	case 1:
188 		out = (d < c->count);
189 		break;
190 	case 2:
191 		out = ((mod_64(d, c->count) == 0) && (d != 0));
192 		break;
193 	case 3:
194 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195 		break;
196 	case 4:
197 	case 5:
198 		out = (d == c->count);
199 		break;
200 	}
201 
202 	return out;
203 }
204 
205 static void pit_latch_count(struct kvm *kvm, int channel)
206 {
207 	struct kvm_kpit_channel_state *c =
208 		&kvm->arch.vpit->pit_state.channels[channel];
209 
210 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211 
212 	if (!c->count_latched) {
213 		c->latched_count = pit_get_count(kvm, channel);
214 		c->count_latched = c->rw_mode;
215 	}
216 }
217 
218 static void pit_latch_status(struct kvm *kvm, int channel)
219 {
220 	struct kvm_kpit_channel_state *c =
221 		&kvm->arch.vpit->pit_state.channels[channel];
222 
223 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224 
225 	if (!c->status_latched) {
226 		/* TODO: Return NULL COUNT (bit 6). */
227 		c->status = ((pit_get_out(kvm, channel) << 7) |
228 				(c->rw_mode << 4) |
229 				(c->mode << 1) |
230 				c->bcd);
231 		c->status_latched = 1;
232 	}
233 }
234 
235 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
236 {
237 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
238 
239 	if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
240 		return atomic_read(&pit->pit_state.pit_timer.pending);
241 	return 0;
242 }
243 
244 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
245 {
246 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
247 						 irq_ack_notifier);
248 	int value;
249 
250 	spin_lock(&ps->inject_lock);
251 	value = atomic_dec_return(&ps->pit_timer.pending);
252 	if (value < 0)
253 		/* spurious acks can be generated if, for example, the
254 		 * PIC is being reset.  Handle it gracefully here
255 		 */
256 		atomic_inc(&ps->pit_timer.pending);
257 	else if (value > 0)
258 		/* in this case, we had multiple outstanding pit interrupts
259 		 * that we needed to inject.  Reinject
260 		 */
261 		queue_work(ps->pit->wq, &ps->pit->expired);
262 	ps->irq_ack = 1;
263 	spin_unlock(&ps->inject_lock);
264 }
265 
266 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
267 {
268 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
269 	struct hrtimer *timer;
270 
271 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
272 		return;
273 
274 	timer = &pit->pit_state.pit_timer.timer;
275 	if (hrtimer_cancel(timer))
276 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
277 }
278 
279 static void destroy_pit_timer(struct kvm_pit *pit)
280 {
281 	hrtimer_cancel(&pit->pit_state.pit_timer.timer);
282 	cancel_work_sync(&pit->expired);
283 }
284 
285 static bool kpit_is_periodic(struct kvm_timer *ktimer)
286 {
287 	struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
288 						 pit_timer);
289 	return ps->is_periodic;
290 }
291 
292 static struct kvm_timer_ops kpit_ops = {
293 	.is_periodic = kpit_is_periodic,
294 };
295 
296 static void pit_do_work(struct work_struct *work)
297 {
298 	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
299 	struct kvm *kvm = pit->kvm;
300 	struct kvm_vcpu *vcpu;
301 	int i;
302 	struct kvm_kpit_state *ps = &pit->pit_state;
303 	int inject = 0;
304 
305 	/* Try to inject pending interrupts when
306 	 * last one has been acked.
307 	 */
308 	spin_lock(&ps->inject_lock);
309 	if (ps->irq_ack) {
310 		ps->irq_ack = 0;
311 		inject = 1;
312 	}
313 	spin_unlock(&ps->inject_lock);
314 	if (inject) {
315 		kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
316 		kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
317 
318 		/*
319 		 * Provides NMI watchdog support via Virtual Wire mode.
320 		 * The route is: PIT -> PIC -> LVT0 in NMI mode.
321 		 *
322 		 * Note: Our Virtual Wire implementation is simplified, only
323 		 * propagating PIT interrupts to all VCPUs when they have set
324 		 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
325 		 * VCPU0, and only if its LVT0 is in EXTINT mode.
326 		 */
327 		if (kvm->arch.vapics_in_nmi_mode > 0)
328 			kvm_for_each_vcpu(i, vcpu, kvm)
329 				kvm_apic_nmi_wd_deliver(vcpu);
330 	}
331 }
332 
333 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
334 {
335 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
336 	struct kvm_pit *pt = ktimer->kvm->arch.vpit;
337 
338 	if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
339 		atomic_inc(&ktimer->pending);
340 		queue_work(pt->wq, &pt->expired);
341 	}
342 
343 	if (ktimer->t_ops->is_periodic(ktimer)) {
344 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
345 		return HRTIMER_RESTART;
346 	} else
347 		return HRTIMER_NORESTART;
348 }
349 
350 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
351 {
352 	struct kvm_timer *pt = &ps->pit_timer;
353 	s64 interval;
354 
355 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
356 
357 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
358 
359 	/* TODO The new value only affected after the retriggered */
360 	hrtimer_cancel(&pt->timer);
361 	cancel_work_sync(&ps->pit->expired);
362 	pt->period = interval;
363 	ps->is_periodic = is_period;
364 
365 	pt->timer.function = pit_timer_fn;
366 	pt->t_ops = &kpit_ops;
367 	pt->kvm = ps->pit->kvm;
368 
369 	atomic_set(&pt->pending, 0);
370 	ps->irq_ack = 1;
371 
372 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
373 		      HRTIMER_MODE_ABS);
374 }
375 
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
377 {
378 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
379 
380 	WARN_ON(!mutex_is_locked(&ps->lock));
381 
382 	pr_debug("load_count val is %d, channel is %d\n", val, channel);
383 
384 	/*
385 	 * The largest possible initial count is 0; this is equivalent
386 	 * to 216 for binary counting and 104 for BCD counting.
387 	 */
388 	if (val == 0)
389 		val = 0x10000;
390 
391 	ps->channels[channel].count = val;
392 
393 	if (channel != 0) {
394 		ps->channels[channel].count_load_time = ktime_get();
395 		return;
396 	}
397 
398 	/* Two types of timer
399 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
400 	switch (ps->channels[0].mode) {
401 	case 0:
402 	case 1:
403         /* FIXME: enhance mode 4 precision */
404 	case 4:
405 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
406 			create_pit_timer(ps, val, 0);
407 		}
408 		break;
409 	case 2:
410 	case 3:
411 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
412 			create_pit_timer(ps, val, 1);
413 		}
414 		break;
415 	default:
416 		destroy_pit_timer(kvm->arch.vpit);
417 	}
418 }
419 
420 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
421 {
422 	u8 saved_mode;
423 	if (hpet_legacy_start) {
424 		/* save existing mode for later reenablement */
425 		saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
426 		kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
427 		pit_load_count(kvm, channel, val);
428 		kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
429 	} else {
430 		pit_load_count(kvm, channel, val);
431 	}
432 }
433 
434 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
435 {
436 	return container_of(dev, struct kvm_pit, dev);
437 }
438 
439 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
440 {
441 	return container_of(dev, struct kvm_pit, speaker_dev);
442 }
443 
444 static inline int pit_in_range(gpa_t addr)
445 {
446 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
447 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
448 }
449 
450 static int pit_ioport_write(struct kvm_io_device *this,
451 			    gpa_t addr, int len, const void *data)
452 {
453 	struct kvm_pit *pit = dev_to_pit(this);
454 	struct kvm_kpit_state *pit_state = &pit->pit_state;
455 	struct kvm *kvm = pit->kvm;
456 	int channel, access;
457 	struct kvm_kpit_channel_state *s;
458 	u32 val = *(u32 *) data;
459 	if (!pit_in_range(addr))
460 		return -EOPNOTSUPP;
461 
462 	val  &= 0xff;
463 	addr &= KVM_PIT_CHANNEL_MASK;
464 
465 	mutex_lock(&pit_state->lock);
466 
467 	if (val != 0)
468 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469 			 (unsigned int)addr, len, val);
470 
471 	if (addr == 3) {
472 		channel = val >> 6;
473 		if (channel == 3) {
474 			/* Read-Back Command. */
475 			for (channel = 0; channel < 3; channel++) {
476 				s = &pit_state->channels[channel];
477 				if (val & (2 << channel)) {
478 					if (!(val & 0x20))
479 						pit_latch_count(kvm, channel);
480 					if (!(val & 0x10))
481 						pit_latch_status(kvm, channel);
482 				}
483 			}
484 		} else {
485 			/* Select Counter <channel>. */
486 			s = &pit_state->channels[channel];
487 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
488 			if (access == 0) {
489 				pit_latch_count(kvm, channel);
490 			} else {
491 				s->rw_mode = access;
492 				s->read_state = access;
493 				s->write_state = access;
494 				s->mode = (val >> 1) & 7;
495 				if (s->mode > 5)
496 					s->mode -= 4;
497 				s->bcd = val & 1;
498 			}
499 		}
500 	} else {
501 		/* Write Count. */
502 		s = &pit_state->channels[addr];
503 		switch (s->write_state) {
504 		default:
505 		case RW_STATE_LSB:
506 			pit_load_count(kvm, addr, val);
507 			break;
508 		case RW_STATE_MSB:
509 			pit_load_count(kvm, addr, val << 8);
510 			break;
511 		case RW_STATE_WORD0:
512 			s->write_latch = val;
513 			s->write_state = RW_STATE_WORD1;
514 			break;
515 		case RW_STATE_WORD1:
516 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
517 			s->write_state = RW_STATE_WORD0;
518 			break;
519 		}
520 	}
521 
522 	mutex_unlock(&pit_state->lock);
523 	return 0;
524 }
525 
526 static int pit_ioport_read(struct kvm_io_device *this,
527 			   gpa_t addr, int len, void *data)
528 {
529 	struct kvm_pit *pit = dev_to_pit(this);
530 	struct kvm_kpit_state *pit_state = &pit->pit_state;
531 	struct kvm *kvm = pit->kvm;
532 	int ret, count;
533 	struct kvm_kpit_channel_state *s;
534 	if (!pit_in_range(addr))
535 		return -EOPNOTSUPP;
536 
537 	addr &= KVM_PIT_CHANNEL_MASK;
538 	if (addr == 3)
539 		return 0;
540 
541 	s = &pit_state->channels[addr];
542 
543 	mutex_lock(&pit_state->lock);
544 
545 	if (s->status_latched) {
546 		s->status_latched = 0;
547 		ret = s->status;
548 	} else if (s->count_latched) {
549 		switch (s->count_latched) {
550 		default:
551 		case RW_STATE_LSB:
552 			ret = s->latched_count & 0xff;
553 			s->count_latched = 0;
554 			break;
555 		case RW_STATE_MSB:
556 			ret = s->latched_count >> 8;
557 			s->count_latched = 0;
558 			break;
559 		case RW_STATE_WORD0:
560 			ret = s->latched_count & 0xff;
561 			s->count_latched = RW_STATE_MSB;
562 			break;
563 		}
564 	} else {
565 		switch (s->read_state) {
566 		default:
567 		case RW_STATE_LSB:
568 			count = pit_get_count(kvm, addr);
569 			ret = count & 0xff;
570 			break;
571 		case RW_STATE_MSB:
572 			count = pit_get_count(kvm, addr);
573 			ret = (count >> 8) & 0xff;
574 			break;
575 		case RW_STATE_WORD0:
576 			count = pit_get_count(kvm, addr);
577 			ret = count & 0xff;
578 			s->read_state = RW_STATE_WORD1;
579 			break;
580 		case RW_STATE_WORD1:
581 			count = pit_get_count(kvm, addr);
582 			ret = (count >> 8) & 0xff;
583 			s->read_state = RW_STATE_WORD0;
584 			break;
585 		}
586 	}
587 
588 	if (len > sizeof(ret))
589 		len = sizeof(ret);
590 	memcpy(data, (char *)&ret, len);
591 
592 	mutex_unlock(&pit_state->lock);
593 	return 0;
594 }
595 
596 static int speaker_ioport_write(struct kvm_io_device *this,
597 				gpa_t addr, int len, const void *data)
598 {
599 	struct kvm_pit *pit = speaker_to_pit(this);
600 	struct kvm_kpit_state *pit_state = &pit->pit_state;
601 	struct kvm *kvm = pit->kvm;
602 	u32 val = *(u32 *) data;
603 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
604 		return -EOPNOTSUPP;
605 
606 	mutex_lock(&pit_state->lock);
607 	pit_state->speaker_data_on = (val >> 1) & 1;
608 	pit_set_gate(kvm, 2, val & 1);
609 	mutex_unlock(&pit_state->lock);
610 	return 0;
611 }
612 
613 static int speaker_ioport_read(struct kvm_io_device *this,
614 			       gpa_t addr, int len, void *data)
615 {
616 	struct kvm_pit *pit = speaker_to_pit(this);
617 	struct kvm_kpit_state *pit_state = &pit->pit_state;
618 	struct kvm *kvm = pit->kvm;
619 	unsigned int refresh_clock;
620 	int ret;
621 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
622 		return -EOPNOTSUPP;
623 
624 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
625 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
626 
627 	mutex_lock(&pit_state->lock);
628 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
629 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
630 	if (len > sizeof(ret))
631 		len = sizeof(ret);
632 	memcpy(data, (char *)&ret, len);
633 	mutex_unlock(&pit_state->lock);
634 	return 0;
635 }
636 
637 void kvm_pit_reset(struct kvm_pit *pit)
638 {
639 	int i;
640 	struct kvm_kpit_channel_state *c;
641 
642 	mutex_lock(&pit->pit_state.lock);
643 	pit->pit_state.flags = 0;
644 	for (i = 0; i < 3; i++) {
645 		c = &pit->pit_state.channels[i];
646 		c->mode = 0xff;
647 		c->gate = (i != 2);
648 		pit_load_count(pit->kvm, i, 0);
649 	}
650 	mutex_unlock(&pit->pit_state.lock);
651 
652 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
653 	pit->pit_state.irq_ack = 1;
654 }
655 
656 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
657 {
658 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
659 
660 	if (!mask) {
661 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
662 		pit->pit_state.irq_ack = 1;
663 	}
664 }
665 
666 static const struct kvm_io_device_ops pit_dev_ops = {
667 	.read     = pit_ioport_read,
668 	.write    = pit_ioport_write,
669 };
670 
671 static const struct kvm_io_device_ops speaker_dev_ops = {
672 	.read     = speaker_ioport_read,
673 	.write    = speaker_ioport_write,
674 };
675 
676 /* Caller must hold slots_lock */
677 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
678 {
679 	struct kvm_pit *pit;
680 	struct kvm_kpit_state *pit_state;
681 	int ret;
682 
683 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
684 	if (!pit)
685 		return NULL;
686 
687 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
688 	if (pit->irq_source_id < 0) {
689 		kfree(pit);
690 		return NULL;
691 	}
692 
693 	mutex_init(&pit->pit_state.lock);
694 	mutex_lock(&pit->pit_state.lock);
695 	spin_lock_init(&pit->pit_state.inject_lock);
696 
697 	pit->wq = create_singlethread_workqueue("kvm-pit-wq");
698 	if (!pit->wq) {
699 		mutex_unlock(&pit->pit_state.lock);
700 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
701 		kfree(pit);
702 		return NULL;
703 	}
704 	INIT_WORK(&pit->expired, pit_do_work);
705 
706 	kvm->arch.vpit = pit;
707 	pit->kvm = kvm;
708 
709 	pit_state = &pit->pit_state;
710 	pit_state->pit = pit;
711 	hrtimer_init(&pit_state->pit_timer.timer,
712 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
713 	pit_state->irq_ack_notifier.gsi = 0;
714 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
715 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
716 	pit_state->pit_timer.reinject = true;
717 	mutex_unlock(&pit->pit_state.lock);
718 
719 	kvm_pit_reset(pit);
720 
721 	pit->mask_notifier.func = pit_mask_notifer;
722 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
723 
724 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
725 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
726 	if (ret < 0)
727 		goto fail;
728 
729 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
730 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
731 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
732 						&pit->speaker_dev);
733 		if (ret < 0)
734 			goto fail_unregister;
735 	}
736 
737 	return pit;
738 
739 fail_unregister:
740 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741 
742 fail:
743 	kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
744 	kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
745 	kvm_free_irq_source_id(kvm, pit->irq_source_id);
746 	destroy_workqueue(pit->wq);
747 	kfree(pit);
748 	return NULL;
749 }
750 
751 void kvm_free_pit(struct kvm *kvm)
752 {
753 	struct hrtimer *timer;
754 
755 	if (kvm->arch.vpit) {
756 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
757 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
758 					      &kvm->arch.vpit->speaker_dev);
759 		kvm_unregister_irq_mask_notifier(kvm, 0,
760 					       &kvm->arch.vpit->mask_notifier);
761 		kvm_unregister_irq_ack_notifier(kvm,
762 				&kvm->arch.vpit->pit_state.irq_ack_notifier);
763 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
764 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
765 		hrtimer_cancel(timer);
766 		cancel_work_sync(&kvm->arch.vpit->expired);
767 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
768 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
769 		destroy_workqueue(kvm->arch.vpit->wq);
770 		kfree(kvm->arch.vpit);
771 	}
772 }
773