xref: /linux/arch/x86/kernel/kgdb.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45 #include <linux/hw_breakpoint.h>
46 
47 #include <asm/debugreg.h>
48 #include <asm/apicdef.h>
49 #include <asm/system.h>
50 #include <asm/apic.h>
51 
52 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
53 {
54 #ifdef CONFIG_X86_32
55 	{ "ax", 4, offsetof(struct pt_regs, ax) },
56 	{ "cx", 4, offsetof(struct pt_regs, cx) },
57 	{ "dx", 4, offsetof(struct pt_regs, dx) },
58 	{ "bx", 4, offsetof(struct pt_regs, bx) },
59 	{ "sp", 4, offsetof(struct pt_regs, sp) },
60 	{ "bp", 4, offsetof(struct pt_regs, bp) },
61 	{ "si", 4, offsetof(struct pt_regs, si) },
62 	{ "di", 4, offsetof(struct pt_regs, di) },
63 	{ "ip", 4, offsetof(struct pt_regs, ip) },
64 	{ "flags", 4, offsetof(struct pt_regs, flags) },
65 	{ "cs", 4, offsetof(struct pt_regs, cs) },
66 	{ "ss", 4, offsetof(struct pt_regs, ss) },
67 	{ "ds", 4, offsetof(struct pt_regs, ds) },
68 	{ "es", 4, offsetof(struct pt_regs, es) },
69 	{ "fs", 4, -1 },
70 	{ "gs", 4, -1 },
71 #else
72 	{ "ax", 8, offsetof(struct pt_regs, ax) },
73 	{ "bx", 8, offsetof(struct pt_regs, bx) },
74 	{ "cx", 8, offsetof(struct pt_regs, cx) },
75 	{ "dx", 8, offsetof(struct pt_regs, dx) },
76 	{ "si", 8, offsetof(struct pt_regs, dx) },
77 	{ "di", 8, offsetof(struct pt_regs, di) },
78 	{ "bp", 8, offsetof(struct pt_regs, bp) },
79 	{ "sp", 8, offsetof(struct pt_regs, sp) },
80 	{ "r8", 8, offsetof(struct pt_regs, r8) },
81 	{ "r9", 8, offsetof(struct pt_regs, r9) },
82 	{ "r10", 8, offsetof(struct pt_regs, r10) },
83 	{ "r11", 8, offsetof(struct pt_regs, r11) },
84 	{ "r12", 8, offsetof(struct pt_regs, r12) },
85 	{ "r13", 8, offsetof(struct pt_regs, r13) },
86 	{ "r14", 8, offsetof(struct pt_regs, r14) },
87 	{ "r15", 8, offsetof(struct pt_regs, r15) },
88 	{ "ip", 8, offsetof(struct pt_regs, ip) },
89 	{ "flags", 4, offsetof(struct pt_regs, flags) },
90 	{ "cs", 4, offsetof(struct pt_regs, cs) },
91 	{ "ss", 4, offsetof(struct pt_regs, ss) },
92 #endif
93 };
94 
95 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
96 {
97 	if (
98 #ifdef CONFIG_X86_32
99 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
100 #endif
101 	    regno == GDB_SP || regno == GDB_ORIG_AX)
102 		return 0;
103 
104 	if (dbg_reg_def[regno].offset != -1)
105 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
106 		       dbg_reg_def[regno].size);
107 	return 0;
108 }
109 
110 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
111 {
112 	if (regno == GDB_ORIG_AX) {
113 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
114 		return "orig_ax";
115 	}
116 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
117 		return NULL;
118 
119 	if (dbg_reg_def[regno].offset != -1)
120 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
121 		       dbg_reg_def[regno].size);
122 
123 	switch (regno) {
124 #ifdef CONFIG_X86_32
125 	case GDB_SS:
126 		if (!user_mode_vm(regs))
127 			*(unsigned long *)mem = __KERNEL_DS;
128 		break;
129 	case GDB_SP:
130 		if (!user_mode_vm(regs))
131 			*(unsigned long *)mem = kernel_stack_pointer(regs);
132 		break;
133 	case GDB_GS:
134 	case GDB_FS:
135 		*(unsigned long *)mem = 0xFFFF;
136 		break;
137 #endif
138 	}
139 	return dbg_reg_def[regno].name;
140 }
141 
142 /**
143  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
144  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
145  *	@p: The &struct task_struct of the desired process.
146  *
147  *	Convert the register values of the sleeping process in @p to
148  *	the format that GDB expects.
149  *	This function is called when kgdb does not have access to the
150  *	&struct pt_regs and therefore it should fill the gdb registers
151  *	@gdb_regs with what has	been saved in &struct thread_struct
152  *	thread field during switch_to.
153  */
154 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
155 {
156 #ifndef CONFIG_X86_32
157 	u32 *gdb_regs32 = (u32 *)gdb_regs;
158 #endif
159 	gdb_regs[GDB_AX]	= 0;
160 	gdb_regs[GDB_BX]	= 0;
161 	gdb_regs[GDB_CX]	= 0;
162 	gdb_regs[GDB_DX]	= 0;
163 	gdb_regs[GDB_SI]	= 0;
164 	gdb_regs[GDB_DI]	= 0;
165 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
166 #ifdef CONFIG_X86_32
167 	gdb_regs[GDB_DS]	= __KERNEL_DS;
168 	gdb_regs[GDB_ES]	= __KERNEL_DS;
169 	gdb_regs[GDB_PS]	= 0;
170 	gdb_regs[GDB_CS]	= __KERNEL_CS;
171 	gdb_regs[GDB_PC]	= p->thread.ip;
172 	gdb_regs[GDB_SS]	= __KERNEL_DS;
173 	gdb_regs[GDB_FS]	= 0xFFFF;
174 	gdb_regs[GDB_GS]	= 0xFFFF;
175 #else
176 	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
177 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
178 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
179 	gdb_regs[GDB_PC]	= 0;
180 	gdb_regs[GDB_R8]	= 0;
181 	gdb_regs[GDB_R9]	= 0;
182 	gdb_regs[GDB_R10]	= 0;
183 	gdb_regs[GDB_R11]	= 0;
184 	gdb_regs[GDB_R12]	= 0;
185 	gdb_regs[GDB_R13]	= 0;
186 	gdb_regs[GDB_R14]	= 0;
187 	gdb_regs[GDB_R15]	= 0;
188 #endif
189 	gdb_regs[GDB_SP]	= p->thread.sp;
190 }
191 
192 static struct hw_breakpoint {
193 	unsigned		enabled;
194 	unsigned long		addr;
195 	int			len;
196 	int			type;
197 	struct perf_event	* __percpu *pev;
198 } breakinfo[HBP_NUM];
199 
200 static unsigned long early_dr7;
201 
202 static void kgdb_correct_hw_break(void)
203 {
204 	int breakno;
205 
206 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
207 		struct perf_event *bp;
208 		struct arch_hw_breakpoint *info;
209 		int val;
210 		int cpu = raw_smp_processor_id();
211 		if (!breakinfo[breakno].enabled)
212 			continue;
213 		if (dbg_is_early) {
214 			set_debugreg(breakinfo[breakno].addr, breakno);
215 			early_dr7 |= encode_dr7(breakno,
216 						breakinfo[breakno].len,
217 						breakinfo[breakno].type);
218 			set_debugreg(early_dr7, 7);
219 			continue;
220 		}
221 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
222 		info = counter_arch_bp(bp);
223 		if (bp->attr.disabled != 1)
224 			continue;
225 		bp->attr.bp_addr = breakinfo[breakno].addr;
226 		bp->attr.bp_len = breakinfo[breakno].len;
227 		bp->attr.bp_type = breakinfo[breakno].type;
228 		info->address = breakinfo[breakno].addr;
229 		info->len = breakinfo[breakno].len;
230 		info->type = breakinfo[breakno].type;
231 		val = arch_install_hw_breakpoint(bp);
232 		if (!val)
233 			bp->attr.disabled = 0;
234 	}
235 	if (!dbg_is_early)
236 		hw_breakpoint_restore();
237 }
238 
239 static int hw_break_reserve_slot(int breakno)
240 {
241 	int cpu;
242 	int cnt = 0;
243 	struct perf_event **pevent;
244 
245 	if (dbg_is_early)
246 		return 0;
247 
248 	for_each_online_cpu(cpu) {
249 		cnt++;
250 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
251 		if (dbg_reserve_bp_slot(*pevent))
252 			goto fail;
253 	}
254 
255 	return 0;
256 
257 fail:
258 	for_each_online_cpu(cpu) {
259 		cnt--;
260 		if (!cnt)
261 			break;
262 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
263 		dbg_release_bp_slot(*pevent);
264 	}
265 	return -1;
266 }
267 
268 static int hw_break_release_slot(int breakno)
269 {
270 	struct perf_event **pevent;
271 	int cpu;
272 
273 	if (dbg_is_early)
274 		return 0;
275 
276 	for_each_online_cpu(cpu) {
277 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
278 		if (dbg_release_bp_slot(*pevent))
279 			/*
280 			 * The debugger is responisble for handing the retry on
281 			 * remove failure.
282 			 */
283 			return -1;
284 	}
285 	return 0;
286 }
287 
288 static int
289 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
290 {
291 	int i;
292 
293 	for (i = 0; i < HBP_NUM; i++)
294 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
295 			break;
296 	if (i == HBP_NUM)
297 		return -1;
298 
299 	if (hw_break_release_slot(i)) {
300 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
301 		return -1;
302 	}
303 	breakinfo[i].enabled = 0;
304 
305 	return 0;
306 }
307 
308 static void kgdb_remove_all_hw_break(void)
309 {
310 	int i;
311 	int cpu = raw_smp_processor_id();
312 	struct perf_event *bp;
313 
314 	for (i = 0; i < HBP_NUM; i++) {
315 		if (!breakinfo[i].enabled)
316 			continue;
317 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
318 		if (bp->attr.disabled == 1)
319 			continue;
320 		if (dbg_is_early)
321 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
322 						 breakinfo[i].type);
323 		else
324 			arch_uninstall_hw_breakpoint(bp);
325 		bp->attr.disabled = 1;
326 	}
327 }
328 
329 static int
330 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
331 {
332 	int i;
333 
334 	for (i = 0; i < HBP_NUM; i++)
335 		if (!breakinfo[i].enabled)
336 			break;
337 	if (i == HBP_NUM)
338 		return -1;
339 
340 	switch (bptype) {
341 	case BP_HARDWARE_BREAKPOINT:
342 		len = 1;
343 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
344 		break;
345 	case BP_WRITE_WATCHPOINT:
346 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
347 		break;
348 	case BP_ACCESS_WATCHPOINT:
349 		breakinfo[i].type = X86_BREAKPOINT_RW;
350 		break;
351 	default:
352 		return -1;
353 	}
354 	switch (len) {
355 	case 1:
356 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
357 		break;
358 	case 2:
359 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
360 		break;
361 	case 4:
362 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
363 		break;
364 #ifdef CONFIG_X86_64
365 	case 8:
366 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
367 		break;
368 #endif
369 	default:
370 		return -1;
371 	}
372 	breakinfo[i].addr = addr;
373 	if (hw_break_reserve_slot(i)) {
374 		breakinfo[i].addr = 0;
375 		return -1;
376 	}
377 	breakinfo[i].enabled = 1;
378 
379 	return 0;
380 }
381 
382 /**
383  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
384  *	@regs: Current &struct pt_regs.
385  *
386  *	This function will be called if the particular architecture must
387  *	disable hardware debugging while it is processing gdb packets or
388  *	handling exception.
389  */
390 void kgdb_disable_hw_debug(struct pt_regs *regs)
391 {
392 	int i;
393 	int cpu = raw_smp_processor_id();
394 	struct perf_event *bp;
395 
396 	/* Disable hardware debugging while we are in kgdb: */
397 	set_debugreg(0UL, 7);
398 	for (i = 0; i < HBP_NUM; i++) {
399 		if (!breakinfo[i].enabled)
400 			continue;
401 		if (dbg_is_early) {
402 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
403 						 breakinfo[i].type);
404 			continue;
405 		}
406 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
407 		if (bp->attr.disabled == 1)
408 			continue;
409 		arch_uninstall_hw_breakpoint(bp);
410 		bp->attr.disabled = 1;
411 	}
412 }
413 
414 #ifdef CONFIG_SMP
415 /**
416  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
417  *	@flags: Current IRQ state
418  *
419  *	On SMP systems, we need to get the attention of the other CPUs
420  *	and get them be in a known state.  This should do what is needed
421  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
422  *	the NMI approach is not used for rounding up all the CPUs. For example,
423  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
424  *	this case, we have to make sure that interrupts are enabled before
425  *	calling smp_call_function(). The argument to this function is
426  *	the flags that will be used when restoring the interrupts. There is
427  *	local_irq_save() call before kgdb_roundup_cpus().
428  *
429  *	On non-SMP systems, this is not called.
430  */
431 void kgdb_roundup_cpus(unsigned long flags)
432 {
433 	apic->send_IPI_allbutself(APIC_DM_NMI);
434 }
435 #endif
436 
437 /**
438  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
439  *	@vector: The error vector of the exception that happened.
440  *	@signo: The signal number of the exception that happened.
441  *	@err_code: The error code of the exception that happened.
442  *	@remcom_in_buffer: The buffer of the packet we have read.
443  *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
444  *	@regs: The &struct pt_regs of the current process.
445  *
446  *	This function MUST handle the 'c' and 's' command packets,
447  *	as well packets to set / remove a hardware breakpoint, if used.
448  *	If there are additional packets which the hardware needs to handle,
449  *	they are handled here.  The code should return -1 if it wants to
450  *	process more packets, and a %0 or %1 if it wants to exit from the
451  *	kgdb callback.
452  */
453 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
454 			       char *remcomInBuffer, char *remcomOutBuffer,
455 			       struct pt_regs *linux_regs)
456 {
457 	unsigned long addr;
458 	char *ptr;
459 
460 	switch (remcomInBuffer[0]) {
461 	case 'c':
462 	case 's':
463 		/* try to read optional parameter, pc unchanged if no parm */
464 		ptr = &remcomInBuffer[1];
465 		if (kgdb_hex2long(&ptr, &addr))
466 			linux_regs->ip = addr;
467 	case 'D':
468 	case 'k':
469 		/* clear the trace bit */
470 		linux_regs->flags &= ~X86_EFLAGS_TF;
471 		atomic_set(&kgdb_cpu_doing_single_step, -1);
472 
473 		/* set the trace bit if we're stepping */
474 		if (remcomInBuffer[0] == 's') {
475 			linux_regs->flags |= X86_EFLAGS_TF;
476 			atomic_set(&kgdb_cpu_doing_single_step,
477 				   raw_smp_processor_id());
478 		}
479 
480 		kgdb_correct_hw_break();
481 
482 		return 0;
483 	}
484 
485 	/* this means that we do not want to exit from the handler: */
486 	return -1;
487 }
488 
489 static inline int
490 single_step_cont(struct pt_regs *regs, struct die_args *args)
491 {
492 	/*
493 	 * Single step exception from kernel space to user space so
494 	 * eat the exception and continue the process:
495 	 */
496 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
497 			"resuming...\n");
498 	kgdb_arch_handle_exception(args->trapnr, args->signr,
499 				   args->err, "c", "", regs);
500 	/*
501 	 * Reset the BS bit in dr6 (pointed by args->err) to
502 	 * denote completion of processing
503 	 */
504 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
505 
506 	return NOTIFY_STOP;
507 }
508 
509 static int was_in_debug_nmi[NR_CPUS];
510 
511 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
512 {
513 	struct pt_regs *regs = args->regs;
514 
515 	switch (cmd) {
516 	case DIE_NMI:
517 		if (atomic_read(&kgdb_active) != -1) {
518 			/* KGDB CPU roundup */
519 			kgdb_nmicallback(raw_smp_processor_id(), regs);
520 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
521 			touch_nmi_watchdog();
522 			return NOTIFY_STOP;
523 		}
524 		return NOTIFY_DONE;
525 
526 	case DIE_NMI_IPI:
527 		/* Just ignore, we will handle the roundup on DIE_NMI. */
528 		return NOTIFY_DONE;
529 
530 	case DIE_NMIUNKNOWN:
531 		if (was_in_debug_nmi[raw_smp_processor_id()]) {
532 			was_in_debug_nmi[raw_smp_processor_id()] = 0;
533 			return NOTIFY_STOP;
534 		}
535 		return NOTIFY_DONE;
536 
537 	case DIE_NMIWATCHDOG:
538 		if (atomic_read(&kgdb_active) != -1) {
539 			/* KGDB CPU roundup: */
540 			kgdb_nmicallback(raw_smp_processor_id(), regs);
541 			return NOTIFY_STOP;
542 		}
543 		/* Enter debugger: */
544 		break;
545 
546 	case DIE_DEBUG:
547 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
548 			if (user_mode(regs))
549 				return single_step_cont(regs, args);
550 			break;
551 		} else if (test_thread_flag(TIF_SINGLESTEP))
552 			/* This means a user thread is single stepping
553 			 * a system call which should be ignored
554 			 */
555 			return NOTIFY_DONE;
556 		/* fall through */
557 	default:
558 		if (user_mode(regs))
559 			return NOTIFY_DONE;
560 	}
561 
562 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
563 		return NOTIFY_DONE;
564 
565 	/* Must touch watchdog before return to normal operation */
566 	touch_nmi_watchdog();
567 	return NOTIFY_STOP;
568 }
569 
570 int kgdb_ll_trap(int cmd, const char *str,
571 		 struct pt_regs *regs, long err, int trap, int sig)
572 {
573 	struct die_args args = {
574 		.regs	= regs,
575 		.str	= str,
576 		.err	= err,
577 		.trapnr	= trap,
578 		.signr	= sig,
579 
580 	};
581 
582 	if (!kgdb_io_module_registered)
583 		return NOTIFY_DONE;
584 
585 	return __kgdb_notify(&args, cmd);
586 }
587 
588 static int
589 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
590 {
591 	unsigned long flags;
592 	int ret;
593 
594 	local_irq_save(flags);
595 	ret = __kgdb_notify(ptr, cmd);
596 	local_irq_restore(flags);
597 
598 	return ret;
599 }
600 
601 static struct notifier_block kgdb_notifier = {
602 	.notifier_call	= kgdb_notify,
603 
604 	/*
605 	 * Lowest-prio notifier priority, we want to be notified last:
606 	 */
607 	.priority	= -INT_MAX,
608 };
609 
610 /**
611  *	kgdb_arch_init - Perform any architecture specific initalization.
612  *
613  *	This function will handle the initalization of any architecture
614  *	specific callbacks.
615  */
616 int kgdb_arch_init(void)
617 {
618 	return register_die_notifier(&kgdb_notifier);
619 }
620 
621 static void kgdb_hw_overflow_handler(struct perf_event *event, int nmi,
622 		struct perf_sample_data *data, struct pt_regs *regs)
623 {
624 	kgdb_ll_trap(DIE_DEBUG, "debug", regs, 0, 0, SIGTRAP);
625 }
626 
627 void kgdb_arch_late(void)
628 {
629 	int i, cpu;
630 	struct perf_event_attr attr;
631 	struct perf_event **pevent;
632 
633 	/*
634 	 * Pre-allocate the hw breakpoint structions in the non-atomic
635 	 * portion of kgdb because this operation requires mutexs to
636 	 * complete.
637 	 */
638 	hw_breakpoint_init(&attr);
639 	attr.bp_addr = (unsigned long)kgdb_arch_init;
640 	attr.bp_len = HW_BREAKPOINT_LEN_1;
641 	attr.bp_type = HW_BREAKPOINT_W;
642 	attr.disabled = 1;
643 	for (i = 0; i < HBP_NUM; i++) {
644 		if (breakinfo[i].pev)
645 			continue;
646 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL);
647 		if (IS_ERR(breakinfo[i].pev)) {
648 			printk(KERN_ERR "kgdb: Could not allocate hw"
649 			       "breakpoints\nDisabling the kernel debugger\n");
650 			breakinfo[i].pev = NULL;
651 			kgdb_arch_exit();
652 			return;
653 		}
654 		for_each_online_cpu(cpu) {
655 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
656 			pevent[0]->hw.sample_period = 1;
657 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
658 			if (pevent[0]->destroy != NULL) {
659 				pevent[0]->destroy = NULL;
660 				release_bp_slot(*pevent);
661 			}
662 		}
663 	}
664 }
665 
666 /**
667  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
668  *
669  *	This function will handle the uninitalization of any architecture
670  *	specific callbacks, for dynamic registration and unregistration.
671  */
672 void kgdb_arch_exit(void)
673 {
674 	int i;
675 	for (i = 0; i < 4; i++) {
676 		if (breakinfo[i].pev) {
677 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
678 			breakinfo[i].pev = NULL;
679 		}
680 	}
681 	unregister_die_notifier(&kgdb_notifier);
682 }
683 
684 /**
685  *
686  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
687  *	@exception: Exception vector number
688  *	@regs: Current &struct pt_regs.
689  *
690  *	On some architectures we need to skip a breakpoint exception when
691  *	it occurs after a breakpoint has been removed.
692  *
693  * Skip an int3 exception when it occurs after a breakpoint has been
694  * removed. Backtrack eip by 1 since the int3 would have caused it to
695  * increment by 1.
696  */
697 int kgdb_skipexception(int exception, struct pt_regs *regs)
698 {
699 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
700 		regs->ip -= 1;
701 		return 1;
702 	}
703 	return 0;
704 }
705 
706 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
707 {
708 	if (exception == 3)
709 		return instruction_pointer(regs) - 1;
710 	return instruction_pointer(regs);
711 }
712 
713 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
714 {
715 	regs->ip = ip;
716 }
717 
718 struct kgdb_arch arch_kgdb_ops = {
719 	/* Breakpoint instruction: */
720 	.gdb_bpt_instr		= { 0xcc },
721 	.flags			= KGDB_HW_BREAKPOINT,
722 	.set_hw_breakpoint	= kgdb_set_hw_break,
723 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
724 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
725 	.correct_hw_break	= kgdb_correct_hw_break,
726 };
727