xref: /linux/arch/x86/kernel/cpu/common.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69 #include <asm/tdx.h>
70 
71 #include "cpu.h"
72 
73 u32 elf_hwcap2 __read_mostly;
74 
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78 
79 static struct ppin_info {
80 	int	feature;
81 	int	msr_ppin_ctl;
82 	int	msr_ppin;
83 } ppin_info[] = {
84 	[X86_VENDOR_INTEL] = {
85 		.feature = X86_FEATURE_INTEL_PPIN,
86 		.msr_ppin_ctl = MSR_PPIN_CTL,
87 		.msr_ppin = MSR_PPIN
88 	},
89 	[X86_VENDOR_AMD] = {
90 		.feature = X86_FEATURE_AMD_PPIN,
91 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
92 		.msr_ppin = MSR_AMD_PPIN
93 	},
94 };
95 
96 static const struct x86_cpu_id ppin_cpuids[] = {
97 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
98 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
99 
100 	/* Legacy models without CPUID enumeration */
101 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
102 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
103 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
104 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
105 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
107 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
108 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
110 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
111 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
112 
113 	{}
114 };
115 
116 static void ppin_init(struct cpuinfo_x86 *c)
117 {
118 	const struct x86_cpu_id *id;
119 	unsigned long long val;
120 	struct ppin_info *info;
121 
122 	id = x86_match_cpu(ppin_cpuids);
123 	if (!id)
124 		return;
125 
126 	/*
127 	 * Testing the presence of the MSR is not enough. Need to check
128 	 * that the PPIN_CTL allows reading of the PPIN.
129 	 */
130 	info = (struct ppin_info *)id->driver_data;
131 
132 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
133 		goto clear_ppin;
134 
135 	if ((val & 3UL) == 1UL) {
136 		/* PPIN locked in disabled mode */
137 		goto clear_ppin;
138 	}
139 
140 	/* If PPIN is disabled, try to enable */
141 	if (!(val & 2UL)) {
142 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
143 		rdmsrl_safe(info->msr_ppin_ctl, &val);
144 	}
145 
146 	/* Is the enable bit set? */
147 	if (val & 2UL) {
148 		c->ppin = __rdmsr(info->msr_ppin);
149 		set_cpu_cap(c, info->feature);
150 		return;
151 	}
152 
153 clear_ppin:
154 	clear_cpu_cap(c, info->feature);
155 }
156 
157 static void default_init(struct cpuinfo_x86 *c)
158 {
159 #ifdef CONFIG_X86_64
160 	cpu_detect_cache_sizes(c);
161 #else
162 	/* Not much we can do here... */
163 	/* Check if at least it has cpuid */
164 	if (c->cpuid_level == -1) {
165 		/* No cpuid. It must be an ancient CPU */
166 		if (c->x86 == 4)
167 			strcpy(c->x86_model_id, "486");
168 		else if (c->x86 == 3)
169 			strcpy(c->x86_model_id, "386");
170 	}
171 #endif
172 }
173 
174 static const struct cpu_dev default_cpu = {
175 	.c_init		= default_init,
176 	.c_vendor	= "Unknown",
177 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
178 };
179 
180 static const struct cpu_dev *this_cpu = &default_cpu;
181 
182 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
183 #ifdef CONFIG_X86_64
184 	/*
185 	 * We need valid kernel segments for data and code in long mode too
186 	 * IRET will check the segment types  kkeil 2000/10/28
187 	 * Also sysret mandates a special GDT layout
188 	 *
189 	 * TLS descriptors are currently at a different place compared to i386.
190 	 * Hopefully nobody expects them at a fixed place (Wine?)
191 	 */
192 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
193 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
194 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
195 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
196 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
197 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
198 #else
199 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
200 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
201 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
202 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
203 	/*
204 	 * Segments used for calling PnP BIOS have byte granularity.
205 	 * They code segments and data segments have fixed 64k limits,
206 	 * the transfer segment sizes are set at run time.
207 	 */
208 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
209 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
210 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
211 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
213 	/*
214 	 * The APM segments have byte granularity and their bases
215 	 * are set at run time.  All have 64k limits.
216 	 */
217 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
218 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
219 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
220 
221 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
223 #endif
224 } };
225 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
226 
227 #ifdef CONFIG_X86_64
228 static int __init x86_nopcid_setup(char *s)
229 {
230 	/* nopcid doesn't accept parameters */
231 	if (s)
232 		return -EINVAL;
233 
234 	/* do not emit a message if the feature is not present */
235 	if (!boot_cpu_has(X86_FEATURE_PCID))
236 		return 0;
237 
238 	setup_clear_cpu_cap(X86_FEATURE_PCID);
239 	pr_info("nopcid: PCID feature disabled\n");
240 	return 0;
241 }
242 early_param("nopcid", x86_nopcid_setup);
243 #endif
244 
245 static int __init x86_noinvpcid_setup(char *s)
246 {
247 	/* noinvpcid doesn't accept parameters */
248 	if (s)
249 		return -EINVAL;
250 
251 	/* do not emit a message if the feature is not present */
252 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
253 		return 0;
254 
255 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
256 	pr_info("noinvpcid: INVPCID feature disabled\n");
257 	return 0;
258 }
259 early_param("noinvpcid", x86_noinvpcid_setup);
260 
261 #ifdef CONFIG_X86_32
262 static int cachesize_override = -1;
263 static int disable_x86_serial_nr = 1;
264 
265 static int __init cachesize_setup(char *str)
266 {
267 	get_option(&str, &cachesize_override);
268 	return 1;
269 }
270 __setup("cachesize=", cachesize_setup);
271 
272 /* Standard macro to see if a specific flag is changeable */
273 static inline int flag_is_changeable_p(u32 flag)
274 {
275 	u32 f1, f2;
276 
277 	/*
278 	 * Cyrix and IDT cpus allow disabling of CPUID
279 	 * so the code below may return different results
280 	 * when it is executed before and after enabling
281 	 * the CPUID. Add "volatile" to not allow gcc to
282 	 * optimize the subsequent calls to this function.
283 	 */
284 	asm volatile ("pushfl		\n\t"
285 		      "pushfl		\n\t"
286 		      "popl %0		\n\t"
287 		      "movl %0, %1	\n\t"
288 		      "xorl %2, %0	\n\t"
289 		      "pushl %0		\n\t"
290 		      "popfl		\n\t"
291 		      "pushfl		\n\t"
292 		      "popl %0		\n\t"
293 		      "popfl		\n\t"
294 
295 		      : "=&r" (f1), "=&r" (f2)
296 		      : "ir" (flag));
297 
298 	return ((f1^f2) & flag) != 0;
299 }
300 
301 /* Probe for the CPUID instruction */
302 int have_cpuid_p(void)
303 {
304 	return flag_is_changeable_p(X86_EFLAGS_ID);
305 }
306 
307 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
308 {
309 	unsigned long lo, hi;
310 
311 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
312 		return;
313 
314 	/* Disable processor serial number: */
315 
316 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
317 	lo |= 0x200000;
318 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
319 
320 	pr_notice("CPU serial number disabled.\n");
321 	clear_cpu_cap(c, X86_FEATURE_PN);
322 
323 	/* Disabling the serial number may affect the cpuid level */
324 	c->cpuid_level = cpuid_eax(0);
325 }
326 
327 static int __init x86_serial_nr_setup(char *s)
328 {
329 	disable_x86_serial_nr = 0;
330 	return 1;
331 }
332 __setup("serialnumber", x86_serial_nr_setup);
333 #else
334 static inline int flag_is_changeable_p(u32 flag)
335 {
336 	return 1;
337 }
338 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339 {
340 }
341 #endif
342 
343 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
344 {
345 	if (cpu_has(c, X86_FEATURE_SMEP))
346 		cr4_set_bits(X86_CR4_SMEP);
347 }
348 
349 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
350 {
351 	unsigned long eflags = native_save_fl();
352 
353 	/* This should have been cleared long ago */
354 	BUG_ON(eflags & X86_EFLAGS_AC);
355 
356 	if (cpu_has(c, X86_FEATURE_SMAP))
357 		cr4_set_bits(X86_CR4_SMAP);
358 }
359 
360 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
361 {
362 	/* Check the boot processor, plus build option for UMIP. */
363 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
364 		goto out;
365 
366 	/* Check the current processor's cpuid bits. */
367 	if (!cpu_has(c, X86_FEATURE_UMIP))
368 		goto out;
369 
370 	cr4_set_bits(X86_CR4_UMIP);
371 
372 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
373 
374 	return;
375 
376 out:
377 	/*
378 	 * Make sure UMIP is disabled in case it was enabled in a
379 	 * previous boot (e.g., via kexec).
380 	 */
381 	cr4_clear_bits(X86_CR4_UMIP);
382 }
383 
384 /* These bits should not change their value after CPU init is finished. */
385 static const unsigned long cr4_pinned_mask =
386 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
387 	X86_CR4_FSGSBASE | X86_CR4_CET;
388 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
389 static unsigned long cr4_pinned_bits __ro_after_init;
390 
391 void native_write_cr0(unsigned long val)
392 {
393 	unsigned long bits_missing = 0;
394 
395 set_register:
396 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
397 
398 	if (static_branch_likely(&cr_pinning)) {
399 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
400 			bits_missing = X86_CR0_WP;
401 			val |= bits_missing;
402 			goto set_register;
403 		}
404 		/* Warn after we've set the missing bits. */
405 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
406 	}
407 }
408 EXPORT_SYMBOL(native_write_cr0);
409 
410 void __no_profile native_write_cr4(unsigned long val)
411 {
412 	unsigned long bits_changed = 0;
413 
414 set_register:
415 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
416 
417 	if (static_branch_likely(&cr_pinning)) {
418 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
419 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
420 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
421 			goto set_register;
422 		}
423 		/* Warn after we've corrected the changed bits. */
424 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
425 			  bits_changed);
426 	}
427 }
428 #if IS_MODULE(CONFIG_LKDTM)
429 EXPORT_SYMBOL_GPL(native_write_cr4);
430 #endif
431 
432 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
433 {
434 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
435 
436 	lockdep_assert_irqs_disabled();
437 
438 	newval = (cr4 & ~clear) | set;
439 	if (newval != cr4) {
440 		this_cpu_write(cpu_tlbstate.cr4, newval);
441 		__write_cr4(newval);
442 	}
443 }
444 EXPORT_SYMBOL(cr4_update_irqsoff);
445 
446 /* Read the CR4 shadow. */
447 unsigned long cr4_read_shadow(void)
448 {
449 	return this_cpu_read(cpu_tlbstate.cr4);
450 }
451 EXPORT_SYMBOL_GPL(cr4_read_shadow);
452 
453 void cr4_init(void)
454 {
455 	unsigned long cr4 = __read_cr4();
456 
457 	if (boot_cpu_has(X86_FEATURE_PCID))
458 		cr4 |= X86_CR4_PCIDE;
459 	if (static_branch_likely(&cr_pinning))
460 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
461 
462 	__write_cr4(cr4);
463 
464 	/* Initialize cr4 shadow for this CPU. */
465 	this_cpu_write(cpu_tlbstate.cr4, cr4);
466 }
467 
468 /*
469  * Once CPU feature detection is finished (and boot params have been
470  * parsed), record any of the sensitive CR bits that are set, and
471  * enable CR pinning.
472  */
473 static void __init setup_cr_pinning(void)
474 {
475 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
476 	static_key_enable(&cr_pinning.key);
477 }
478 
479 static __init int x86_nofsgsbase_setup(char *arg)
480 {
481 	/* Require an exact match without trailing characters. */
482 	if (strlen(arg))
483 		return 0;
484 
485 	/* Do not emit a message if the feature is not present. */
486 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
487 		return 1;
488 
489 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
490 	pr_info("FSGSBASE disabled via kernel command line\n");
491 	return 1;
492 }
493 __setup("nofsgsbase", x86_nofsgsbase_setup);
494 
495 /*
496  * Protection Keys are not available in 32-bit mode.
497  */
498 static bool pku_disabled;
499 
500 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
501 {
502 	if (c == &boot_cpu_data) {
503 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
504 			return;
505 		/*
506 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
507 		 * bit to be set.  Enforce it.
508 		 */
509 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
510 
511 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
512 		return;
513 	}
514 
515 	cr4_set_bits(X86_CR4_PKE);
516 	/* Load the default PKRU value */
517 	pkru_write_default();
518 }
519 
520 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
521 static __init int setup_disable_pku(char *arg)
522 {
523 	/*
524 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
525 	 * runtime checks are against OSPKE so clearing the
526 	 * bit does nothing.
527 	 *
528 	 * This way, we will see "pku" in cpuinfo, but not
529 	 * "ospke", which is exactly what we want.  It shows
530 	 * that the CPU has PKU, but the OS has not enabled it.
531 	 * This happens to be exactly how a system would look
532 	 * if we disabled the config option.
533 	 */
534 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
535 	pku_disabled = true;
536 	return 1;
537 }
538 __setup("nopku", setup_disable_pku);
539 #endif
540 
541 #ifdef CONFIG_X86_KERNEL_IBT
542 
543 __noendbr u64 ibt_save(bool disable)
544 {
545 	u64 msr = 0;
546 
547 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
548 		rdmsrl(MSR_IA32_S_CET, msr);
549 		if (disable)
550 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
551 	}
552 
553 	return msr;
554 }
555 
556 __noendbr void ibt_restore(u64 save)
557 {
558 	u64 msr;
559 
560 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
561 		rdmsrl(MSR_IA32_S_CET, msr);
562 		msr &= ~CET_ENDBR_EN;
563 		msr |= (save & CET_ENDBR_EN);
564 		wrmsrl(MSR_IA32_S_CET, msr);
565 	}
566 }
567 
568 #endif
569 
570 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
571 {
572 	bool user_shstk, kernel_ibt;
573 
574 	if (!IS_ENABLED(CONFIG_X86_CET))
575 		return;
576 
577 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
578 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
579 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
580 
581 	if (!kernel_ibt && !user_shstk)
582 		return;
583 
584 	if (user_shstk)
585 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
586 
587 	if (kernel_ibt)
588 		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
589 	else
590 		wrmsrl(MSR_IA32_S_CET, 0);
591 
592 	cr4_set_bits(X86_CR4_CET);
593 
594 	if (kernel_ibt && ibt_selftest()) {
595 		pr_err("IBT selftest: Failed!\n");
596 		wrmsrl(MSR_IA32_S_CET, 0);
597 		setup_clear_cpu_cap(X86_FEATURE_IBT);
598 	}
599 }
600 
601 __noendbr void cet_disable(void)
602 {
603 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
604 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
605 		return;
606 
607 	wrmsrl(MSR_IA32_S_CET, 0);
608 	wrmsrl(MSR_IA32_U_CET, 0);
609 }
610 
611 /*
612  * Some CPU features depend on higher CPUID levels, which may not always
613  * be available due to CPUID level capping or broken virtualization
614  * software.  Add those features to this table to auto-disable them.
615  */
616 struct cpuid_dependent_feature {
617 	u32 feature;
618 	u32 level;
619 };
620 
621 static const struct cpuid_dependent_feature
622 cpuid_dependent_features[] = {
623 	{ X86_FEATURE_MWAIT,		0x00000005 },
624 	{ X86_FEATURE_DCA,		0x00000009 },
625 	{ X86_FEATURE_XSAVE,		0x0000000d },
626 	{ 0, 0 }
627 };
628 
629 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
630 {
631 	const struct cpuid_dependent_feature *df;
632 
633 	for (df = cpuid_dependent_features; df->feature; df++) {
634 
635 		if (!cpu_has(c, df->feature))
636 			continue;
637 		/*
638 		 * Note: cpuid_level is set to -1 if unavailable, but
639 		 * extended_extended_level is set to 0 if unavailable
640 		 * and the legitimate extended levels are all negative
641 		 * when signed; hence the weird messing around with
642 		 * signs here...
643 		 */
644 		if (!((s32)df->level < 0 ?
645 		     (u32)df->level > (u32)c->extended_cpuid_level :
646 		     (s32)df->level > (s32)c->cpuid_level))
647 			continue;
648 
649 		clear_cpu_cap(c, df->feature);
650 		if (!warn)
651 			continue;
652 
653 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
654 			x86_cap_flag(df->feature), df->level);
655 	}
656 }
657 
658 /*
659  * Naming convention should be: <Name> [(<Codename>)]
660  * This table only is used unless init_<vendor>() below doesn't set it;
661  * in particular, if CPUID levels 0x80000002..4 are supported, this
662  * isn't used
663  */
664 
665 /* Look up CPU names by table lookup. */
666 static const char *table_lookup_model(struct cpuinfo_x86 *c)
667 {
668 #ifdef CONFIG_X86_32
669 	const struct legacy_cpu_model_info *info;
670 
671 	if (c->x86_model >= 16)
672 		return NULL;	/* Range check */
673 
674 	if (!this_cpu)
675 		return NULL;
676 
677 	info = this_cpu->legacy_models;
678 
679 	while (info->family) {
680 		if (info->family == c->x86)
681 			return info->model_names[c->x86_model];
682 		info++;
683 	}
684 #endif
685 	return NULL;		/* Not found */
686 }
687 
688 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
689 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
691 
692 #ifdef CONFIG_X86_32
693 /* The 32-bit entry code needs to find cpu_entry_area. */
694 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
695 #endif
696 
697 /* Load the original GDT from the per-cpu structure */
698 void load_direct_gdt(int cpu)
699 {
700 	struct desc_ptr gdt_descr;
701 
702 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
703 	gdt_descr.size = GDT_SIZE - 1;
704 	load_gdt(&gdt_descr);
705 }
706 EXPORT_SYMBOL_GPL(load_direct_gdt);
707 
708 /* Load a fixmap remapping of the per-cpu GDT */
709 void load_fixmap_gdt(int cpu)
710 {
711 	struct desc_ptr gdt_descr;
712 
713 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
714 	gdt_descr.size = GDT_SIZE - 1;
715 	load_gdt(&gdt_descr);
716 }
717 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
718 
719 /**
720  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
721  * @cpu:	The CPU number for which this is invoked
722  *
723  * Invoked during early boot to switch from early GDT and early per CPU to
724  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
725  * switch is implicit by loading the direct GDT. On 64bit this requires
726  * to update GSBASE.
727  */
728 void __init switch_gdt_and_percpu_base(int cpu)
729 {
730 	load_direct_gdt(cpu);
731 
732 #ifdef CONFIG_X86_64
733 	/*
734 	 * No need to load %gs. It is already correct.
735 	 *
736 	 * Writing %gs on 64bit would zero GSBASE which would make any per
737 	 * CPU operation up to the point of the wrmsrl() fault.
738 	 *
739 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
740 	 * early mapping is still valid. That means the GSBASE update will
741 	 * lose any prior per CPU data which was not copied over in
742 	 * setup_per_cpu_areas().
743 	 *
744 	 * This works even with stackprotector enabled because the
745 	 * per CPU stack canary is 0 in both per CPU areas.
746 	 */
747 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
748 #else
749 	/*
750 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
751 	 * it is required to load FS again so that the 'hidden' part is
752 	 * updated from the new GDT. Up to this point the early per CPU
753 	 * translation is active. Any content of the early per CPU data
754 	 * which was not copied over in setup_per_cpu_areas() is lost.
755 	 */
756 	loadsegment(fs, __KERNEL_PERCPU);
757 #endif
758 }
759 
760 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
761 
762 static void get_model_name(struct cpuinfo_x86 *c)
763 {
764 	unsigned int *v;
765 	char *p, *q, *s;
766 
767 	if (c->extended_cpuid_level < 0x80000004)
768 		return;
769 
770 	v = (unsigned int *)c->x86_model_id;
771 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
772 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
773 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
774 	c->x86_model_id[48] = 0;
775 
776 	/* Trim whitespace */
777 	p = q = s = &c->x86_model_id[0];
778 
779 	while (*p == ' ')
780 		p++;
781 
782 	while (*p) {
783 		/* Note the last non-whitespace index */
784 		if (!isspace(*p))
785 			s = q;
786 
787 		*q++ = *p++;
788 	}
789 
790 	*(s + 1) = '\0';
791 }
792 
793 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
794 {
795 	unsigned int eax, ebx, ecx, edx;
796 
797 	c->x86_max_cores = 1;
798 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
799 		return;
800 
801 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
802 	if (eax & 0x1f)
803 		c->x86_max_cores = (eax >> 26) + 1;
804 }
805 
806 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
807 {
808 	unsigned int n, dummy, ebx, ecx, edx, l2size;
809 
810 	n = c->extended_cpuid_level;
811 
812 	if (n >= 0x80000005) {
813 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
814 		c->x86_cache_size = (ecx>>24) + (edx>>24);
815 #ifdef CONFIG_X86_64
816 		/* On K8 L1 TLB is inclusive, so don't count it */
817 		c->x86_tlbsize = 0;
818 #endif
819 	}
820 
821 	if (n < 0x80000006)	/* Some chips just has a large L1. */
822 		return;
823 
824 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
825 	l2size = ecx >> 16;
826 
827 #ifdef CONFIG_X86_64
828 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
829 #else
830 	/* do processor-specific cache resizing */
831 	if (this_cpu->legacy_cache_size)
832 		l2size = this_cpu->legacy_cache_size(c, l2size);
833 
834 	/* Allow user to override all this if necessary. */
835 	if (cachesize_override != -1)
836 		l2size = cachesize_override;
837 
838 	if (l2size == 0)
839 		return;		/* Again, no L2 cache is possible */
840 #endif
841 
842 	c->x86_cache_size = l2size;
843 }
844 
845 u16 __read_mostly tlb_lli_4k[NR_INFO];
846 u16 __read_mostly tlb_lli_2m[NR_INFO];
847 u16 __read_mostly tlb_lli_4m[NR_INFO];
848 u16 __read_mostly tlb_lld_4k[NR_INFO];
849 u16 __read_mostly tlb_lld_2m[NR_INFO];
850 u16 __read_mostly tlb_lld_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_1g[NR_INFO];
852 
853 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
854 {
855 	if (this_cpu->c_detect_tlb)
856 		this_cpu->c_detect_tlb(c);
857 
858 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
859 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
860 		tlb_lli_4m[ENTRIES]);
861 
862 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
863 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
864 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
865 }
866 
867 int detect_ht_early(struct cpuinfo_x86 *c)
868 {
869 #ifdef CONFIG_SMP
870 	u32 eax, ebx, ecx, edx;
871 
872 	if (!cpu_has(c, X86_FEATURE_HT))
873 		return -1;
874 
875 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
876 		return -1;
877 
878 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
879 		return -1;
880 
881 	cpuid(1, &eax, &ebx, &ecx, &edx);
882 
883 	smp_num_siblings = (ebx & 0xff0000) >> 16;
884 	if (smp_num_siblings == 1)
885 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
886 #endif
887 	return 0;
888 }
889 
890 void detect_ht(struct cpuinfo_x86 *c)
891 {
892 #ifdef CONFIG_SMP
893 	int index_msb, core_bits;
894 
895 	if (detect_ht_early(c) < 0)
896 		return;
897 
898 	index_msb = get_count_order(smp_num_siblings);
899 	c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
900 
901 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
902 
903 	index_msb = get_count_order(smp_num_siblings);
904 
905 	core_bits = get_count_order(c->x86_max_cores);
906 
907 	c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
908 		((1 << core_bits) - 1);
909 #endif
910 }
911 
912 static void get_cpu_vendor(struct cpuinfo_x86 *c)
913 {
914 	char *v = c->x86_vendor_id;
915 	int i;
916 
917 	for (i = 0; i < X86_VENDOR_NUM; i++) {
918 		if (!cpu_devs[i])
919 			break;
920 
921 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
922 		    (cpu_devs[i]->c_ident[1] &&
923 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
924 
925 			this_cpu = cpu_devs[i];
926 			c->x86_vendor = this_cpu->c_x86_vendor;
927 			return;
928 		}
929 	}
930 
931 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
932 		    "CPU: Your system may be unstable.\n", v);
933 
934 	c->x86_vendor = X86_VENDOR_UNKNOWN;
935 	this_cpu = &default_cpu;
936 }
937 
938 void cpu_detect(struct cpuinfo_x86 *c)
939 {
940 	/* Get vendor name */
941 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
942 	      (unsigned int *)&c->x86_vendor_id[0],
943 	      (unsigned int *)&c->x86_vendor_id[8],
944 	      (unsigned int *)&c->x86_vendor_id[4]);
945 
946 	c->x86 = 4;
947 	/* Intel-defined flags: level 0x00000001 */
948 	if (c->cpuid_level >= 0x00000001) {
949 		u32 junk, tfms, cap0, misc;
950 
951 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
952 		c->x86		= x86_family(tfms);
953 		c->x86_model	= x86_model(tfms);
954 		c->x86_stepping	= x86_stepping(tfms);
955 
956 		if (cap0 & (1<<19)) {
957 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
958 			c->x86_cache_alignment = c->x86_clflush_size;
959 		}
960 	}
961 }
962 
963 static void apply_forced_caps(struct cpuinfo_x86 *c)
964 {
965 	int i;
966 
967 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
968 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
969 		c->x86_capability[i] |= cpu_caps_set[i];
970 	}
971 }
972 
973 static void init_speculation_control(struct cpuinfo_x86 *c)
974 {
975 	/*
976 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
977 	 * and they also have a different bit for STIBP support. Also,
978 	 * a hypervisor might have set the individual AMD bits even on
979 	 * Intel CPUs, for finer-grained selection of what's available.
980 	 */
981 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
982 		set_cpu_cap(c, X86_FEATURE_IBRS);
983 		set_cpu_cap(c, X86_FEATURE_IBPB);
984 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
985 	}
986 
987 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
988 		set_cpu_cap(c, X86_FEATURE_STIBP);
989 
990 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
991 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
992 		set_cpu_cap(c, X86_FEATURE_SSBD);
993 
994 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
995 		set_cpu_cap(c, X86_FEATURE_IBRS);
996 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
997 	}
998 
999 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1000 		set_cpu_cap(c, X86_FEATURE_IBPB);
1001 
1002 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1003 		set_cpu_cap(c, X86_FEATURE_STIBP);
1004 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1005 	}
1006 
1007 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1008 		set_cpu_cap(c, X86_FEATURE_SSBD);
1009 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1010 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1011 	}
1012 }
1013 
1014 void get_cpu_cap(struct cpuinfo_x86 *c)
1015 {
1016 	u32 eax, ebx, ecx, edx;
1017 
1018 	/* Intel-defined flags: level 0x00000001 */
1019 	if (c->cpuid_level >= 0x00000001) {
1020 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1021 
1022 		c->x86_capability[CPUID_1_ECX] = ecx;
1023 		c->x86_capability[CPUID_1_EDX] = edx;
1024 	}
1025 
1026 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1027 	if (c->cpuid_level >= 0x00000006)
1028 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1029 
1030 	/* Additional Intel-defined flags: level 0x00000007 */
1031 	if (c->cpuid_level >= 0x00000007) {
1032 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1033 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1034 		c->x86_capability[CPUID_7_ECX] = ecx;
1035 		c->x86_capability[CPUID_7_EDX] = edx;
1036 
1037 		/* Check valid sub-leaf index before accessing it */
1038 		if (eax >= 1) {
1039 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1040 			c->x86_capability[CPUID_7_1_EAX] = eax;
1041 		}
1042 	}
1043 
1044 	/* Extended state features: level 0x0000000d */
1045 	if (c->cpuid_level >= 0x0000000d) {
1046 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1047 
1048 		c->x86_capability[CPUID_D_1_EAX] = eax;
1049 	}
1050 
1051 	/* AMD-defined flags: level 0x80000001 */
1052 	eax = cpuid_eax(0x80000000);
1053 	c->extended_cpuid_level = eax;
1054 
1055 	if ((eax & 0xffff0000) == 0x80000000) {
1056 		if (eax >= 0x80000001) {
1057 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1058 
1059 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1060 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1061 		}
1062 	}
1063 
1064 	if (c->extended_cpuid_level >= 0x80000007) {
1065 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1066 
1067 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1068 		c->x86_power = edx;
1069 	}
1070 
1071 	if (c->extended_cpuid_level >= 0x80000008) {
1072 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1073 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1074 	}
1075 
1076 	if (c->extended_cpuid_level >= 0x8000000a)
1077 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1078 
1079 	if (c->extended_cpuid_level >= 0x8000001f)
1080 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1081 
1082 	if (c->extended_cpuid_level >= 0x80000021)
1083 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1084 
1085 	init_scattered_cpuid_features(c);
1086 	init_speculation_control(c);
1087 
1088 	/*
1089 	 * Clear/Set all flags overridden by options, after probe.
1090 	 * This needs to happen each time we re-probe, which may happen
1091 	 * several times during CPU initialization.
1092 	 */
1093 	apply_forced_caps(c);
1094 }
1095 
1096 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1097 {
1098 	u32 eax, ebx, ecx, edx;
1099 	bool vp_bits_from_cpuid = true;
1100 
1101 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1102 	    (c->extended_cpuid_level < 0x80000008))
1103 		vp_bits_from_cpuid = false;
1104 
1105 	if (vp_bits_from_cpuid) {
1106 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1107 
1108 		c->x86_virt_bits = (eax >> 8) & 0xff;
1109 		c->x86_phys_bits = eax & 0xff;
1110 	} else {
1111 		if (IS_ENABLED(CONFIG_X86_64)) {
1112 			c->x86_clflush_size = 64;
1113 			c->x86_phys_bits = 36;
1114 			c->x86_virt_bits = 48;
1115 		} else {
1116 			c->x86_clflush_size = 32;
1117 			c->x86_virt_bits = 32;
1118 			c->x86_phys_bits = 32;
1119 
1120 			if (cpu_has(c, X86_FEATURE_PAE) ||
1121 			    cpu_has(c, X86_FEATURE_PSE36))
1122 				c->x86_phys_bits = 36;
1123 		}
1124 	}
1125 	c->x86_cache_bits = c->x86_phys_bits;
1126 	c->x86_cache_alignment = c->x86_clflush_size;
1127 }
1128 
1129 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130 {
1131 #ifdef CONFIG_X86_32
1132 	int i;
1133 
1134 	/*
1135 	 * First of all, decide if this is a 486 or higher
1136 	 * It's a 486 if we can modify the AC flag
1137 	 */
1138 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1139 		c->x86 = 4;
1140 	else
1141 		c->x86 = 3;
1142 
1143 	for (i = 0; i < X86_VENDOR_NUM; i++)
1144 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145 			c->x86_vendor_id[0] = 0;
1146 			cpu_devs[i]->c_identify(c);
1147 			if (c->x86_vendor_id[0]) {
1148 				get_cpu_vendor(c);
1149 				break;
1150 			}
1151 		}
1152 #endif
1153 }
1154 
1155 #define NO_SPECULATION		BIT(0)
1156 #define NO_MELTDOWN		BIT(1)
1157 #define NO_SSB			BIT(2)
1158 #define NO_L1TF			BIT(3)
1159 #define NO_MDS			BIT(4)
1160 #define MSBDS_ONLY		BIT(5)
1161 #define NO_SWAPGS		BIT(6)
1162 #define NO_ITLB_MULTIHIT	BIT(7)
1163 #define NO_SPECTRE_V2		BIT(8)
1164 #define NO_MMIO			BIT(9)
1165 #define NO_EIBRS_PBRSB		BIT(10)
1166 
1167 #define VULNWL(vendor, family, model, whitelist)	\
1168 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1169 
1170 #define VULNWL_INTEL(model, whitelist)		\
1171 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1172 
1173 #define VULNWL_AMD(family, whitelist)		\
1174 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1175 
1176 #define VULNWL_HYGON(family, whitelist)		\
1177 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1178 
1179 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1180 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1181 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1182 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1183 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1184 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1185 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1186 
1187 	/* Intel Family 6 */
1188 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1189 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1190 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1191 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1192 
1193 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1198 
1199 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205 
1206 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1207 
1208 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210 
1211 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1213 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1214 
1215 	/*
1216 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1217 	 * being documented as such in the APM).  But according to AMD, %gs is
1218 	 * updated non-speculatively, and the issuing of %gs-relative memory
1219 	 * operands will be blocked until the %gs update completes, which is
1220 	 * good enough for our purposes.
1221 	 */
1222 
1223 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1224 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1225 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1226 
1227 	/* AMD Family 0xf - 0x12 */
1228 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232 
1233 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1234 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1236 
1237 	/* Zhaoxin Family 7 */
1238 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1240 	{}
1241 };
1242 
1243 #define VULNBL(vendor, family, model, blacklist)	\
1244 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1245 
1246 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1247 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1248 					    INTEL_FAM6_##model, steppings, \
1249 					    X86_FEATURE_ANY, issues)
1250 
1251 #define VULNBL_AMD(family, blacklist)		\
1252 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1253 
1254 #define VULNBL_HYGON(family, blacklist)		\
1255 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1256 
1257 #define SRBDS		BIT(0)
1258 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1259 #define MMIO		BIT(1)
1260 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1261 #define MMIO_SBDS	BIT(2)
1262 /* CPU is affected by RETbleed, speculating where you would not expect it */
1263 #define RETBLEED	BIT(3)
1264 /* CPU is affected by SMT (cross-thread) return predictions */
1265 #define SMT_RSB		BIT(4)
1266 /* CPU is affected by SRSO */
1267 #define SRSO		BIT(5)
1268 /* CPU is affected by GDS */
1269 #define GDS		BIT(6)
1270 
1271 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1272 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1273 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1274 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1275 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1276 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1277 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1278 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1279 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1280 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1281 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1282 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1283 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1284 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1285 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1286 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1287 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1288 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1289 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1290 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1291 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1292 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1293 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1294 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1295 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1296 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1297 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1298 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1299 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1300 
1301 	VULNBL_AMD(0x15, RETBLEED),
1302 	VULNBL_AMD(0x16, RETBLEED),
1303 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1304 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1305 	VULNBL_AMD(0x19, SRSO),
1306 	{}
1307 };
1308 
1309 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1310 {
1311 	const struct x86_cpu_id *m = x86_match_cpu(table);
1312 
1313 	return m && !!(m->driver_data & which);
1314 }
1315 
1316 u64 x86_read_arch_cap_msr(void)
1317 {
1318 	u64 ia32_cap = 0;
1319 
1320 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1321 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1322 
1323 	return ia32_cap;
1324 }
1325 
1326 static bool arch_cap_mmio_immune(u64 ia32_cap)
1327 {
1328 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1329 		ia32_cap & ARCH_CAP_PSDP_NO &&
1330 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1331 }
1332 
1333 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1334 {
1335 	u64 ia32_cap = x86_read_arch_cap_msr();
1336 
1337 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1338 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1339 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1340 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1341 
1342 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1343 		return;
1344 
1345 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1346 
1347 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1348 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1349 
1350 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1351 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1352 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1353 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1354 
1355 	/*
1356 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1357 	 * flag and protect from vendor-specific bugs via the whitelist.
1358 	 */
1359 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1360 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1361 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1362 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1363 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1364 	}
1365 
1366 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1367 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1368 		setup_force_cpu_bug(X86_BUG_MDS);
1369 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1370 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1371 	}
1372 
1373 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1374 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1375 
1376 	/*
1377 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1378 	 *	- TSX is supported or
1379 	 *	- TSX_CTRL is present
1380 	 *
1381 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1382 	 * the kernel boot e.g. kexec.
1383 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1384 	 * update is not present or running as guest that don't get TSX_CTRL.
1385 	 */
1386 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1387 	    (cpu_has(c, X86_FEATURE_RTM) ||
1388 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1389 		setup_force_cpu_bug(X86_BUG_TAA);
1390 
1391 	/*
1392 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1393 	 * in the vulnerability blacklist.
1394 	 *
1395 	 * Some of the implications and mitigation of Shared Buffers Data
1396 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1397 	 * SRBDS.
1398 	 */
1399 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1400 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1401 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1402 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1403 
1404 	/*
1405 	 * Processor MMIO Stale Data bug enumeration
1406 	 *
1407 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1408 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1409 	 * not want the guest to enumerate the bug.
1410 	 *
1411 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1412 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1413 	 */
1414 	if (!arch_cap_mmio_immune(ia32_cap)) {
1415 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1416 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1417 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1418 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1419 	}
1420 
1421 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1422 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1423 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1424 	}
1425 
1426 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1427 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1428 
1429 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1430 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1431 			setup_force_cpu_bug(X86_BUG_SRSO);
1432 	}
1433 
1434 	/*
1435 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1436 	 * an affected processor, the VMM may have disabled the use of GATHER by
1437 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1438 	 * which means that AVX will be disabled.
1439 	 */
1440 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1441 	    boot_cpu_has(X86_FEATURE_AVX))
1442 		setup_force_cpu_bug(X86_BUG_GDS);
1443 
1444 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1445 		return;
1446 
1447 	/* Rogue Data Cache Load? No! */
1448 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1449 		return;
1450 
1451 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1452 
1453 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1454 		return;
1455 
1456 	setup_force_cpu_bug(X86_BUG_L1TF);
1457 }
1458 
1459 /*
1460  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1461  * unfortunately, that's not true in practice because of early VIA
1462  * chips and (more importantly) broken virtualizers that are not easy
1463  * to detect. In the latter case it doesn't even *fail* reliably, so
1464  * probing for it doesn't even work. Disable it completely on 32-bit
1465  * unless we can find a reliable way to detect all the broken cases.
1466  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1467  */
1468 static void detect_nopl(void)
1469 {
1470 #ifdef CONFIG_X86_32
1471 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1472 #else
1473 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1474 #endif
1475 }
1476 
1477 /*
1478  * We parse cpu parameters early because fpu__init_system() is executed
1479  * before parse_early_param().
1480  */
1481 static void __init cpu_parse_early_param(void)
1482 {
1483 	char arg[128];
1484 	char *argptr = arg, *opt;
1485 	int arglen, taint = 0;
1486 
1487 #ifdef CONFIG_X86_32
1488 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1489 #ifdef CONFIG_MATH_EMULATION
1490 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1491 #else
1492 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1493 #endif
1494 
1495 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1496 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1497 #endif
1498 
1499 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1500 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1501 
1502 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1503 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1504 
1505 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1506 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1507 
1508 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1509 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1510 
1511 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1512 	if (arglen <= 0)
1513 		return;
1514 
1515 	pr_info("Clearing CPUID bits:");
1516 
1517 	while (argptr) {
1518 		bool found __maybe_unused = false;
1519 		unsigned int bit;
1520 
1521 		opt = strsep(&argptr, ",");
1522 
1523 		/*
1524 		 * Handle naked numbers first for feature flags which don't
1525 		 * have names.
1526 		 */
1527 		if (!kstrtouint(opt, 10, &bit)) {
1528 			if (bit < NCAPINTS * 32) {
1529 
1530 				/* empty-string, i.e., ""-defined feature flags */
1531 				if (!x86_cap_flags[bit])
1532 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1533 				else
1534 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1535 
1536 				setup_clear_cpu_cap(bit);
1537 				taint++;
1538 			}
1539 			/*
1540 			 * The assumption is that there are no feature names with only
1541 			 * numbers in the name thus go to the next argument.
1542 			 */
1543 			continue;
1544 		}
1545 
1546 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1547 			if (!x86_cap_flag(bit))
1548 				continue;
1549 
1550 			if (strcmp(x86_cap_flag(bit), opt))
1551 				continue;
1552 
1553 			pr_cont(" %s", opt);
1554 			setup_clear_cpu_cap(bit);
1555 			taint++;
1556 			found = true;
1557 			break;
1558 		}
1559 
1560 		if (!found)
1561 			pr_cont(" (unknown: %s)", opt);
1562 	}
1563 	pr_cont("\n");
1564 
1565 	if (taint)
1566 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1567 }
1568 
1569 /*
1570  * Do minimum CPU detection early.
1571  * Fields really needed: vendor, cpuid_level, family, model, mask,
1572  * cache alignment.
1573  * The others are not touched to avoid unwanted side effects.
1574  *
1575  * WARNING: this function is only called on the boot CPU.  Don't add code
1576  * here that is supposed to run on all CPUs.
1577  */
1578 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1579 {
1580 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1581 	c->extended_cpuid_level = 0;
1582 
1583 	if (!have_cpuid_p())
1584 		identify_cpu_without_cpuid(c);
1585 
1586 	/* cyrix could have cpuid enabled via c_identify()*/
1587 	if (have_cpuid_p()) {
1588 		cpu_detect(c);
1589 		get_cpu_vendor(c);
1590 		get_cpu_cap(c);
1591 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1592 		cpu_parse_early_param();
1593 
1594 		if (this_cpu->c_early_init)
1595 			this_cpu->c_early_init(c);
1596 
1597 		c->cpu_index = 0;
1598 		filter_cpuid_features(c, false);
1599 
1600 		if (this_cpu->c_bsp_init)
1601 			this_cpu->c_bsp_init(c);
1602 	} else {
1603 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1604 	}
1605 
1606 	get_cpu_address_sizes(c);
1607 
1608 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1609 
1610 	cpu_set_bug_bits(c);
1611 
1612 	sld_setup(c);
1613 
1614 #ifdef CONFIG_X86_32
1615 	/*
1616 	 * Regardless of whether PCID is enumerated, the SDM says
1617 	 * that it can't be enabled in 32-bit mode.
1618 	 */
1619 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1620 #endif
1621 
1622 	/*
1623 	 * Later in the boot process pgtable_l5_enabled() relies on
1624 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1625 	 * enabled by this point we need to clear the feature bit to avoid
1626 	 * false-positives at the later stage.
1627 	 *
1628 	 * pgtable_l5_enabled() can be false here for several reasons:
1629 	 *  - 5-level paging is disabled compile-time;
1630 	 *  - it's 32-bit kernel;
1631 	 *  - machine doesn't support 5-level paging;
1632 	 *  - user specified 'no5lvl' in kernel command line.
1633 	 */
1634 	if (!pgtable_l5_enabled())
1635 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1636 
1637 	detect_nopl();
1638 }
1639 
1640 void __init early_cpu_init(void)
1641 {
1642 	const struct cpu_dev *const *cdev;
1643 	int count = 0;
1644 
1645 #ifdef CONFIG_PROCESSOR_SELECT
1646 	pr_info("KERNEL supported cpus:\n");
1647 #endif
1648 
1649 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1650 		const struct cpu_dev *cpudev = *cdev;
1651 
1652 		if (count >= X86_VENDOR_NUM)
1653 			break;
1654 		cpu_devs[count] = cpudev;
1655 		count++;
1656 
1657 #ifdef CONFIG_PROCESSOR_SELECT
1658 		{
1659 			unsigned int j;
1660 
1661 			for (j = 0; j < 2; j++) {
1662 				if (!cpudev->c_ident[j])
1663 					continue;
1664 				pr_info("  %s %s\n", cpudev->c_vendor,
1665 					cpudev->c_ident[j]);
1666 			}
1667 		}
1668 #endif
1669 	}
1670 	early_identify_cpu(&boot_cpu_data);
1671 }
1672 
1673 static bool detect_null_seg_behavior(void)
1674 {
1675 	/*
1676 	 * Empirically, writing zero to a segment selector on AMD does
1677 	 * not clear the base, whereas writing zero to a segment
1678 	 * selector on Intel does clear the base.  Intel's behavior
1679 	 * allows slightly faster context switches in the common case
1680 	 * where GS is unused by the prev and next threads.
1681 	 *
1682 	 * Since neither vendor documents this anywhere that I can see,
1683 	 * detect it directly instead of hard-coding the choice by
1684 	 * vendor.
1685 	 *
1686 	 * I've designated AMD's behavior as the "bug" because it's
1687 	 * counterintuitive and less friendly.
1688 	 */
1689 
1690 	unsigned long old_base, tmp;
1691 	rdmsrl(MSR_FS_BASE, old_base);
1692 	wrmsrl(MSR_FS_BASE, 1);
1693 	loadsegment(fs, 0);
1694 	rdmsrl(MSR_FS_BASE, tmp);
1695 	wrmsrl(MSR_FS_BASE, old_base);
1696 	return tmp == 0;
1697 }
1698 
1699 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1700 {
1701 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1702 	if (!IS_ENABLED(CONFIG_X86_64))
1703 		return;
1704 
1705 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1706 		return;
1707 
1708 	/*
1709 	 * CPUID bit above wasn't set. If this kernel is still running
1710 	 * as a HV guest, then the HV has decided not to advertize
1711 	 * that CPUID bit for whatever reason.	For example, one
1712 	 * member of the migration pool might be vulnerable.  Which
1713 	 * means, the bug is present: set the BUG flag and return.
1714 	 */
1715 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1716 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1717 		return;
1718 	}
1719 
1720 	/*
1721 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1722 	 * 0x18 is the respective family for Hygon.
1723 	 */
1724 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1725 	    detect_null_seg_behavior())
1726 		return;
1727 
1728 	/* All the remaining ones are affected */
1729 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1730 }
1731 
1732 static void generic_identify(struct cpuinfo_x86 *c)
1733 {
1734 	c->extended_cpuid_level = 0;
1735 
1736 	if (!have_cpuid_p())
1737 		identify_cpu_without_cpuid(c);
1738 
1739 	/* cyrix could have cpuid enabled via c_identify()*/
1740 	if (!have_cpuid_p())
1741 		return;
1742 
1743 	cpu_detect(c);
1744 
1745 	get_cpu_vendor(c);
1746 
1747 	get_cpu_cap(c);
1748 
1749 	get_cpu_address_sizes(c);
1750 
1751 	if (c->cpuid_level >= 0x00000001) {
1752 		c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1753 #ifdef CONFIG_X86_32
1754 # ifdef CONFIG_SMP
1755 		c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1756 # else
1757 		c->topo.apicid = c->topo.initial_apicid;
1758 # endif
1759 #endif
1760 		c->topo.pkg_id = c->topo.initial_apicid;
1761 	}
1762 
1763 	get_model_name(c); /* Default name */
1764 
1765 	/*
1766 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1767 	 * systems that run Linux at CPL > 0 may or may not have the
1768 	 * issue, but, even if they have the issue, there's absolutely
1769 	 * nothing we can do about it because we can't use the real IRET
1770 	 * instruction.
1771 	 *
1772 	 * NB: For the time being, only 32-bit kernels support
1773 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1774 	 * whether to apply espfix using paravirt hooks.  If any
1775 	 * non-paravirt system ever shows up that does *not* have the
1776 	 * ESPFIX issue, we can change this.
1777 	 */
1778 #ifdef CONFIG_X86_32
1779 	set_cpu_bug(c, X86_BUG_ESPFIX);
1780 #endif
1781 }
1782 
1783 /*
1784  * Validate that ACPI/mptables have the same information about the
1785  * effective APIC id and update the package map.
1786  */
1787 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1788 {
1789 #ifdef CONFIG_SMP
1790 	unsigned int cpu = smp_processor_id();
1791 	u32 apicid;
1792 
1793 	apicid = apic->cpu_present_to_apicid(cpu);
1794 
1795 	if (apicid != c->topo.apicid) {
1796 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1797 		       cpu, apicid, c->topo.initial_apicid);
1798 	}
1799 	BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1800 	BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1801 #else
1802 	c->topo.logical_pkg_id = 0;
1803 #endif
1804 }
1805 
1806 /*
1807  * This does the hard work of actually picking apart the CPU stuff...
1808  */
1809 static void identify_cpu(struct cpuinfo_x86 *c)
1810 {
1811 	int i;
1812 
1813 	c->loops_per_jiffy = loops_per_jiffy;
1814 	c->x86_cache_size = 0;
1815 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1816 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1817 	c->x86_vendor_id[0] = '\0'; /* Unset */
1818 	c->x86_model_id[0] = '\0';  /* Unset */
1819 	c->x86_max_cores = 1;
1820 	c->x86_coreid_bits = 0;
1821 	c->topo.cu_id = 0xff;
1822 	c->topo.llc_id = BAD_APICID;
1823 	c->topo.l2c_id = BAD_APICID;
1824 #ifdef CONFIG_X86_64
1825 	c->x86_clflush_size = 64;
1826 	c->x86_phys_bits = 36;
1827 	c->x86_virt_bits = 48;
1828 #else
1829 	c->cpuid_level = -1;	/* CPUID not detected */
1830 	c->x86_clflush_size = 32;
1831 	c->x86_phys_bits = 32;
1832 	c->x86_virt_bits = 32;
1833 #endif
1834 	c->x86_cache_alignment = c->x86_clflush_size;
1835 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1836 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1837 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1838 #endif
1839 
1840 	generic_identify(c);
1841 
1842 	if (this_cpu->c_identify)
1843 		this_cpu->c_identify(c);
1844 
1845 	/* Clear/Set all flags overridden by options, after probe */
1846 	apply_forced_caps(c);
1847 
1848 #ifdef CONFIG_X86_64
1849 	c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1850 #endif
1851 
1852 
1853 	/*
1854 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1855 	 * Hygon will clear it in ->c_init() below.
1856 	 */
1857 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1858 
1859 	/*
1860 	 * Vendor-specific initialization.  In this section we
1861 	 * canonicalize the feature flags, meaning if there are
1862 	 * features a certain CPU supports which CPUID doesn't
1863 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 	 * we handle them here.
1865 	 *
1866 	 * At the end of this section, c->x86_capability better
1867 	 * indicate the features this CPU genuinely supports!
1868 	 */
1869 	if (this_cpu->c_init)
1870 		this_cpu->c_init(c);
1871 
1872 	/* Disable the PN if appropriate */
1873 	squash_the_stupid_serial_number(c);
1874 
1875 	/* Set up SMEP/SMAP/UMIP */
1876 	setup_smep(c);
1877 	setup_smap(c);
1878 	setup_umip(c);
1879 
1880 	/* Enable FSGSBASE instructions if available. */
1881 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 		cr4_set_bits(X86_CR4_FSGSBASE);
1883 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1884 	}
1885 
1886 	/*
1887 	 * The vendor-specific functions might have changed features.
1888 	 * Now we do "generic changes."
1889 	 */
1890 
1891 	/* Filter out anything that depends on CPUID levels we don't have */
1892 	filter_cpuid_features(c, true);
1893 
1894 	/* If the model name is still unset, do table lookup. */
1895 	if (!c->x86_model_id[0]) {
1896 		const char *p;
1897 		p = table_lookup_model(c);
1898 		if (p)
1899 			strcpy(c->x86_model_id, p);
1900 		else
1901 			/* Last resort... */
1902 			sprintf(c->x86_model_id, "%02x/%02x",
1903 				c->x86, c->x86_model);
1904 	}
1905 
1906 #ifdef CONFIG_X86_64
1907 	detect_ht(c);
1908 #endif
1909 
1910 	x86_init_rdrand(c);
1911 	setup_pku(c);
1912 	setup_cet(c);
1913 
1914 	/*
1915 	 * Clear/Set all flags overridden by options, need do it
1916 	 * before following smp all cpus cap AND.
1917 	 */
1918 	apply_forced_caps(c);
1919 
1920 	/*
1921 	 * On SMP, boot_cpu_data holds the common feature set between
1922 	 * all CPUs; so make sure that we indicate which features are
1923 	 * common between the CPUs.  The first time this routine gets
1924 	 * executed, c == &boot_cpu_data.
1925 	 */
1926 	if (c != &boot_cpu_data) {
1927 		/* AND the already accumulated flags with these */
1928 		for (i = 0; i < NCAPINTS; i++)
1929 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930 
1931 		/* OR, i.e. replicate the bug flags */
1932 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934 	}
1935 
1936 	ppin_init(c);
1937 
1938 	/* Init Machine Check Exception if available. */
1939 	mcheck_cpu_init(c);
1940 
1941 	select_idle_routine(c);
1942 
1943 #ifdef CONFIG_NUMA
1944 	numa_add_cpu(smp_processor_id());
1945 #endif
1946 }
1947 
1948 /*
1949  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950  * on 32-bit kernels:
1951  */
1952 #ifdef CONFIG_X86_32
1953 void enable_sep_cpu(void)
1954 {
1955 	struct tss_struct *tss;
1956 	int cpu;
1957 
1958 	if (!boot_cpu_has(X86_FEATURE_SEP))
1959 		return;
1960 
1961 	cpu = get_cpu();
1962 	tss = &per_cpu(cpu_tss_rw, cpu);
1963 
1964 	/*
1965 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 	 * see the big comment in struct x86_hw_tss's definition.
1967 	 */
1968 
1969 	tss->x86_tss.ss1 = __KERNEL_CS;
1970 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973 
1974 	put_cpu();
1975 }
1976 #endif
1977 
1978 static __init void identify_boot_cpu(void)
1979 {
1980 	identify_cpu(&boot_cpu_data);
1981 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983 #ifdef CONFIG_X86_32
1984 	enable_sep_cpu();
1985 #endif
1986 	cpu_detect_tlb(&boot_cpu_data);
1987 	setup_cr_pinning();
1988 
1989 	tsx_init();
1990 	tdx_init();
1991 	lkgs_init();
1992 }
1993 
1994 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1995 {
1996 	BUG_ON(c == &boot_cpu_data);
1997 	identify_cpu(c);
1998 #ifdef CONFIG_X86_32
1999 	enable_sep_cpu();
2000 #endif
2001 	validate_apic_and_package_id(c);
2002 	x86_spec_ctrl_setup_ap();
2003 	update_srbds_msr();
2004 	if (boot_cpu_has_bug(X86_BUG_GDS))
2005 		update_gds_msr();
2006 
2007 	tsx_ap_init();
2008 }
2009 
2010 void print_cpu_info(struct cpuinfo_x86 *c)
2011 {
2012 	const char *vendor = NULL;
2013 
2014 	if (c->x86_vendor < X86_VENDOR_NUM) {
2015 		vendor = this_cpu->c_vendor;
2016 	} else {
2017 		if (c->cpuid_level >= 0)
2018 			vendor = c->x86_vendor_id;
2019 	}
2020 
2021 	if (vendor && !strstr(c->x86_model_id, vendor))
2022 		pr_cont("%s ", vendor);
2023 
2024 	if (c->x86_model_id[0])
2025 		pr_cont("%s", c->x86_model_id);
2026 	else
2027 		pr_cont("%d86", c->x86);
2028 
2029 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2030 
2031 	if (c->x86_stepping || c->cpuid_level >= 0)
2032 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2033 	else
2034 		pr_cont(")\n");
2035 }
2036 
2037 /*
2038  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2039  * function prevents it from becoming an environment variable for init.
2040  */
2041 static __init int setup_clearcpuid(char *arg)
2042 {
2043 	return 1;
2044 }
2045 __setup("clearcpuid=", setup_clearcpuid);
2046 
2047 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2048 	.current_task	= &init_task,
2049 	.preempt_count	= INIT_PREEMPT_COUNT,
2050 	.top_of_stack	= TOP_OF_INIT_STACK,
2051 };
2052 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2053 
2054 #ifdef CONFIG_X86_64
2055 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2056 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2057 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2058 
2059 static void wrmsrl_cstar(unsigned long val)
2060 {
2061 	/*
2062 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2063 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2064 	 * guest. Avoid the pointless write on all Intel CPUs.
2065 	 */
2066 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2067 		wrmsrl(MSR_CSTAR, val);
2068 }
2069 
2070 /* May not be marked __init: used by software suspend */
2071 void syscall_init(void)
2072 {
2073 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2074 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2075 
2076 	if (ia32_enabled()) {
2077 		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2078 		/*
2079 		 * This only works on Intel CPUs.
2080 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2081 		 * This does not cause SYSENTER to jump to the wrong location, because
2082 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2083 		 */
2084 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2085 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2086 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2087 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2088 	} else {
2089 		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2090 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2091 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2092 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2093 	}
2094 
2095 	/*
2096 	 * Flags to clear on syscall; clear as much as possible
2097 	 * to minimize user space-kernel interference.
2098 	 */
2099 	wrmsrl(MSR_SYSCALL_MASK,
2100 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2101 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2102 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2103 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2104 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2105 }
2106 
2107 #else	/* CONFIG_X86_64 */
2108 
2109 #ifdef CONFIG_STACKPROTECTOR
2110 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2111 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2112 #endif
2113 
2114 #endif	/* CONFIG_X86_64 */
2115 
2116 /*
2117  * Clear all 6 debug registers:
2118  */
2119 static void clear_all_debug_regs(void)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < 8; i++) {
2124 		/* Ignore db4, db5 */
2125 		if ((i == 4) || (i == 5))
2126 			continue;
2127 
2128 		set_debugreg(0, i);
2129 	}
2130 }
2131 
2132 #ifdef CONFIG_KGDB
2133 /*
2134  * Restore debug regs if using kgdbwait and you have a kernel debugger
2135  * connection established.
2136  */
2137 static void dbg_restore_debug_regs(void)
2138 {
2139 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2140 		arch_kgdb_ops.correct_hw_break();
2141 }
2142 #else /* ! CONFIG_KGDB */
2143 #define dbg_restore_debug_regs()
2144 #endif /* ! CONFIG_KGDB */
2145 
2146 static inline void setup_getcpu(int cpu)
2147 {
2148 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2149 	struct desc_struct d = { };
2150 
2151 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2152 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2153 
2154 	/* Store CPU and node number in limit. */
2155 	d.limit0 = cpudata;
2156 	d.limit1 = cpudata >> 16;
2157 
2158 	d.type = 5;		/* RO data, expand down, accessed */
2159 	d.dpl = 3;		/* Visible to user code */
2160 	d.s = 1;		/* Not a system segment */
2161 	d.p = 1;		/* Present */
2162 	d.d = 1;		/* 32-bit */
2163 
2164 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2165 }
2166 
2167 #ifdef CONFIG_X86_64
2168 static inline void tss_setup_ist(struct tss_struct *tss)
2169 {
2170 	/* Set up the per-CPU TSS IST stacks */
2171 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2172 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2173 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2174 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2175 	/* Only mapped when SEV-ES is active */
2176 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2177 }
2178 #else /* CONFIG_X86_64 */
2179 static inline void tss_setup_ist(struct tss_struct *tss) { }
2180 #endif /* !CONFIG_X86_64 */
2181 
2182 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2183 {
2184 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2185 
2186 #ifdef CONFIG_X86_IOPL_IOPERM
2187 	tss->io_bitmap.prev_max = 0;
2188 	tss->io_bitmap.prev_sequence = 0;
2189 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2190 	/*
2191 	 * Invalidate the extra array entry past the end of the all
2192 	 * permission bitmap as required by the hardware.
2193 	 */
2194 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2195 #endif
2196 }
2197 
2198 /*
2199  * Setup everything needed to handle exceptions from the IDT, including the IST
2200  * exceptions which use paranoid_entry().
2201  */
2202 void cpu_init_exception_handling(void)
2203 {
2204 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2205 	int cpu = raw_smp_processor_id();
2206 
2207 	/* paranoid_entry() gets the CPU number from the GDT */
2208 	setup_getcpu(cpu);
2209 
2210 	/* IST vectors need TSS to be set up. */
2211 	tss_setup_ist(tss);
2212 	tss_setup_io_bitmap(tss);
2213 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2214 
2215 	load_TR_desc();
2216 
2217 	/* GHCB needs to be setup to handle #VC. */
2218 	setup_ghcb();
2219 
2220 	/* Finally load the IDT */
2221 	load_current_idt();
2222 }
2223 
2224 /*
2225  * cpu_init() initializes state that is per-CPU. Some data is already
2226  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2227  * reload it nevertheless, this function acts as a 'CPU state barrier',
2228  * nothing should get across.
2229  */
2230 void cpu_init(void)
2231 {
2232 	struct task_struct *cur = current;
2233 	int cpu = raw_smp_processor_id();
2234 
2235 #ifdef CONFIG_NUMA
2236 	if (this_cpu_read(numa_node) == 0 &&
2237 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2238 		set_numa_node(early_cpu_to_node(cpu));
2239 #endif
2240 	pr_debug("Initializing CPU#%d\n", cpu);
2241 
2242 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2243 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2244 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2245 
2246 	if (IS_ENABLED(CONFIG_X86_64)) {
2247 		loadsegment(fs, 0);
2248 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2249 		syscall_init();
2250 
2251 		wrmsrl(MSR_FS_BASE, 0);
2252 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2253 		barrier();
2254 
2255 		x2apic_setup();
2256 	}
2257 
2258 	mmgrab(&init_mm);
2259 	cur->active_mm = &init_mm;
2260 	BUG_ON(cur->mm);
2261 	initialize_tlbstate_and_flush();
2262 	enter_lazy_tlb(&init_mm, cur);
2263 
2264 	/*
2265 	 * sp0 points to the entry trampoline stack regardless of what task
2266 	 * is running.
2267 	 */
2268 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2269 
2270 	load_mm_ldt(&init_mm);
2271 
2272 	clear_all_debug_regs();
2273 	dbg_restore_debug_regs();
2274 
2275 	doublefault_init_cpu_tss();
2276 
2277 	if (is_uv_system())
2278 		uv_cpu_init();
2279 
2280 	load_fixmap_gdt(cpu);
2281 }
2282 
2283 #ifdef CONFIG_MICROCODE_LATE_LOADING
2284 /**
2285  * store_cpu_caps() - Store a snapshot of CPU capabilities
2286  * @curr_info: Pointer where to store it
2287  *
2288  * Returns: None
2289  */
2290 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2291 {
2292 	/* Reload CPUID max function as it might've changed. */
2293 	curr_info->cpuid_level = cpuid_eax(0);
2294 
2295 	/* Copy all capability leafs and pick up the synthetic ones. */
2296 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2297 	       sizeof(curr_info->x86_capability));
2298 
2299 	/* Get the hardware CPUID leafs */
2300 	get_cpu_cap(curr_info);
2301 }
2302 
2303 /**
2304  * microcode_check() - Check if any CPU capabilities changed after an update.
2305  * @prev_info:	CPU capabilities stored before an update.
2306  *
2307  * The microcode loader calls this upon late microcode load to recheck features,
2308  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2309  *
2310  * Return: None
2311  */
2312 void microcode_check(struct cpuinfo_x86 *prev_info)
2313 {
2314 	struct cpuinfo_x86 curr_info;
2315 
2316 	perf_check_microcode();
2317 
2318 	amd_check_microcode();
2319 
2320 	store_cpu_caps(&curr_info);
2321 
2322 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2323 		    sizeof(prev_info->x86_capability)))
2324 		return;
2325 
2326 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2327 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2328 }
2329 #endif
2330 
2331 /*
2332  * Invoked from core CPU hotplug code after hotplug operations
2333  */
2334 void arch_smt_update(void)
2335 {
2336 	/* Handle the speculative execution misfeatures */
2337 	cpu_bugs_smt_update();
2338 	/* Check whether IPI broadcasting can be enabled */
2339 	apic_smt_update();
2340 }
2341 
2342 void __init arch_cpu_finalize_init(void)
2343 {
2344 	identify_boot_cpu();
2345 
2346 	/*
2347 	 * identify_boot_cpu() initialized SMT support information, let the
2348 	 * core code know.
2349 	 */
2350 	cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2351 
2352 	if (!IS_ENABLED(CONFIG_SMP)) {
2353 		pr_info("CPU: ");
2354 		print_cpu_info(&boot_cpu_data);
2355 	}
2356 
2357 	cpu_select_mitigations();
2358 
2359 	arch_smt_update();
2360 
2361 	if (IS_ENABLED(CONFIG_X86_32)) {
2362 		/*
2363 		 * Check whether this is a real i386 which is not longer
2364 		 * supported and fixup the utsname.
2365 		 */
2366 		if (boot_cpu_data.x86 < 4)
2367 			panic("Kernel requires i486+ for 'invlpg' and other features");
2368 
2369 		init_utsname()->machine[1] =
2370 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2371 	}
2372 
2373 	/*
2374 	 * Must be before alternatives because it might set or clear
2375 	 * feature bits.
2376 	 */
2377 	fpu__init_system();
2378 	fpu__init_cpu();
2379 
2380 	alternative_instructions();
2381 
2382 	if (IS_ENABLED(CONFIG_X86_64)) {
2383 		/*
2384 		 * Make sure the first 2MB area is not mapped by huge pages
2385 		 * There are typically fixed size MTRRs in there and overlapping
2386 		 * MTRRs into large pages causes slow downs.
2387 		 *
2388 		 * Right now we don't do that with gbpages because there seems
2389 		 * very little benefit for that case.
2390 		 */
2391 		if (!direct_gbpages)
2392 			set_memory_4k((unsigned long)__va(0), 1);
2393 	} else {
2394 		fpu__init_check_bugs();
2395 	}
2396 
2397 	/*
2398 	 * This needs to be called before any devices perform DMA
2399 	 * operations that might use the SWIOTLB bounce buffers. It will
2400 	 * mark the bounce buffers as decrypted so that their usage will
2401 	 * not cause "plain-text" data to be decrypted when accessed. It
2402 	 * must be called after late_time_init() so that Hyper-V x86/x64
2403 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2404 	 */
2405 	mem_encrypt_init();
2406 }
2407