xref: /linux/arch/x86/include/asm/uv/uv_hub.h (revision 60063497a95e716c9a689af3be2687d261f115b4)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
24 
25 
26 /*
27  * Addressing Terminology
28  *
29  *	M       - The low M bits of a physical address represent the offset
30  *		  into the blade local memory. RAM memory on a blade is physically
31  *		  contiguous (although various IO spaces may punch holes in
32  *		  it)..
33  *
34  *	N	- Number of bits in the node portion of a socket physical
35  *		  address.
36  *
37  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38  *		  routers always have low bit of 1, C/MBricks have low bit
39  *		  equal to 0. Most addressing macros that target UV hub chips
40  *		  right shift the NASID by 1 to exclude the always-zero bit.
41  *		  NASIDs contain up to 15 bits.
42  *
43  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44  *		  of nasids.
45  *
46  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47  *		  of the nasid for socket usage.
48  *
49  *
50  *  NumaLink Global Physical Address Format:
51  *  +--------------------------------+---------------------+
52  *  |00..000|      GNODE             |      NodeOffset     |
53  *  +--------------------------------+---------------------+
54  *          |<-------53 - M bits --->|<--------M bits ----->
55  *
56  *	M - number of node offset bits (35 .. 40)
57  *
58  *
59  *  Memory/UV-HUB Processor Socket Address Format:
60  *  +----------------+---------------+---------------------+
61  *  |00..000000000000|   PNODE       |      NodeOffset     |
62  *  +----------------+---------------+---------------------+
63  *                   <--- N bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *	N - number of PNODE bits (0 .. 10)
67  *
68  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69  *		The actual values are configuration dependent and are set at
70  *		boot time. M & N values are set by the hardware/BIOS at boot.
71  *
72  *
73  * APICID format
74  *	NOTE!!!!!! This is the current format of the APICID. However, code
75  *	should assume that this will change in the future. Use functions
76  *	in this file for all APICID bit manipulations and conversion.
77  *
78  *		1111110000000000
79  *		5432109876543210
80  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
81  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
82  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
83  *		sssssssssss
84  *
85  *			p  = pnode bits
86  *			l =  socket number on board
87  *			c  = core
88  *			h  = hyperthread
89  *			s  = bits that are in the SOCKET_ID CSR
90  *
91  *	Note: Processor may support fewer bits in the APICID register. The ACPI
92  *	      tables hold all 16 bits. Software needs to be aware of this.
93  *
94  *	      Unless otherwise specified, all references to APICID refer to
95  *	      the FULL value contained in ACPI tables, not the subset in the
96  *	      processor APICID register.
97  */
98 
99 
100 /*
101  * Maximum number of bricks in all partitions and in all coherency domains.
102  * This is the total number of bricks accessible in the numalink fabric. It
103  * includes all C & M bricks. Routers are NOT included.
104  *
105  * This value is also the value of the maximum number of non-router NASIDs
106  * in the numalink fabric.
107  *
108  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
109  */
110 #define UV_MAX_NUMALINK_BLADES	16384
111 
112 /*
113  * Maximum number of C/Mbricks within a software SSI (hardware may support
114  * more).
115  */
116 #define UV_MAX_SSI_BLADES	256
117 
118 /*
119  * The largest possible NASID of a C or M brick (+ 2)
120  */
121 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
122 
123 struct uv_scir_s {
124 	struct timer_list timer;
125 	unsigned long	offset;
126 	unsigned long	last;
127 	unsigned long	idle_on;
128 	unsigned long	idle_off;
129 	unsigned char	state;
130 	unsigned char	enabled;
131 };
132 
133 /*
134  * The following defines attributes of the HUB chip. These attributes are
135  * frequently referenced and are kept in the per-cpu data areas of each cpu.
136  * They are kept together in a struct to minimize cache misses.
137  */
138 struct uv_hub_info_s {
139 	unsigned long		global_mmr_base;
140 	unsigned long		gpa_mask;
141 	unsigned int		gnode_extra;
142 	unsigned char		hub_revision;
143 	unsigned char		apic_pnode_shift;
144 	unsigned long		gnode_upper;
145 	unsigned long		lowmem_remap_top;
146 	unsigned long		lowmem_remap_base;
147 	unsigned short		pnode;
148 	unsigned short		pnode_mask;
149 	unsigned short		coherency_domain_number;
150 	unsigned short		numa_blade_id;
151 	unsigned char		blade_processor_id;
152 	unsigned char		m_val;
153 	unsigned char		n_val;
154 	struct uv_scir_s	scir;
155 };
156 
157 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
158 #define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
159 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
160 
161 /*
162  * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
163  * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
164  * This is a software convention - NOT the hardware revision numbers in
165  * the hub chip.
166  */
167 #define UV1_HUB_REVISION_BASE		1
168 #define UV2_HUB_REVISION_BASE		3
169 
170 static inline int is_uv1_hub(void)
171 {
172 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
173 }
174 
175 static inline int is_uv2_hub(void)
176 {
177 	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
178 }
179 
180 union uvh_apicid {
181     unsigned long       v;
182     struct uvh_apicid_s {
183         unsigned long   local_apic_mask  : 24;
184         unsigned long   local_apic_shift :  5;
185         unsigned long   unused1          :  3;
186         unsigned long   pnode_mask       : 24;
187         unsigned long   pnode_shift      :  5;
188         unsigned long   unused2          :  3;
189     } s;
190 };
191 
192 /*
193  * Local & Global MMR space macros.
194  *	Note: macros are intended to be used ONLY by inline functions
195  *	in this file - not by other kernel code.
196  *		n -  NASID (full 15-bit global nasid)
197  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
198  *		p -  PNODE (local part of nsids, right shifted 1)
199  */
200 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
201 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
202 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
203 
204 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
205 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
206 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
207 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
208 
209 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
210 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
211 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
212 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
213 
214 #define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE     \
215 						: UV2_LOCAL_MMR_BASE)
216 #define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE  \
217 						: UV2_GLOBAL_MMR32_BASE)
218 #define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE :   \
219 						UV2_LOCAL_MMR_SIZE)
220 #define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
221 						UV2_GLOBAL_MMR32_SIZE)
222 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
223 
224 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
225 
226 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
227 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
228 
229 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
230 
231 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
232 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
233 
234 #define UVH_APICID		0x002D0E00L
235 #define UV_APIC_PNODE_SHIFT	6
236 
237 #define UV_APICID_HIBIT_MASK	0xffff0000
238 
239 /* Local Bus from cpu's perspective */
240 #define LOCAL_BUS_BASE		0x1c00000
241 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
242 
243 /*
244  * System Controller Interface Reg
245  *
246  * Note there are NO leds on a UV system.  This register is only
247  * used by the system controller to monitor system-wide operation.
248  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
249  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
250  * a node.
251  *
252  * The window is located at top of ACPI MMR space
253  */
254 #define SCIR_WINDOW_COUNT	64
255 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
256 				 LOCAL_BUS_SIZE - \
257 				 SCIR_WINDOW_COUNT)
258 
259 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
260 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
261 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
262 
263 /* Loop through all installed blades */
264 #define for_each_possible_blade(bid)		\
265 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
266 
267 /*
268  * Macros for converting between kernel virtual addresses, socket local physical
269  * addresses, and UV global physical addresses.
270  *	Note: use the standard __pa() & __va() macros for converting
271  *	      between socket virtual and socket physical addresses.
272  */
273 
274 /* socket phys RAM --> UV global physical address */
275 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
276 {
277 	if (paddr < uv_hub_info->lowmem_remap_top)
278 		paddr |= uv_hub_info->lowmem_remap_base;
279 	return paddr | uv_hub_info->gnode_upper;
280 }
281 
282 
283 /* socket virtual --> UV global physical address */
284 static inline unsigned long uv_gpa(void *v)
285 {
286 	return uv_soc_phys_ram_to_gpa(__pa(v));
287 }
288 
289 /* Top two bits indicate the requested address is in MMR space.  */
290 static inline int
291 uv_gpa_in_mmr_space(unsigned long gpa)
292 {
293 	return (gpa >> 62) == 0x3UL;
294 }
295 
296 /* UV global physical address --> socket phys RAM */
297 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
298 {
299 	unsigned long paddr = gpa & uv_hub_info->gpa_mask;
300 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
301 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
302 
303 	if (paddr >= remap_base && paddr < remap_base + remap_top)
304 		paddr -= remap_base;
305 	return paddr;
306 }
307 
308 
309 /* gnode -> pnode */
310 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
311 {
312 	return gpa >> uv_hub_info->m_val;
313 }
314 
315 /* gpa -> pnode */
316 static inline int uv_gpa_to_pnode(unsigned long gpa)
317 {
318 	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
319 
320 	return uv_gpa_to_gnode(gpa) & n_mask;
321 }
322 
323 /* pnode, offset --> socket virtual */
324 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
325 {
326 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
327 }
328 
329 
330 /*
331  * Extract a PNODE from an APICID (full apicid, not processor subset)
332  */
333 static inline int uv_apicid_to_pnode(int apicid)
334 {
335 	return (apicid >> uv_hub_info->apic_pnode_shift);
336 }
337 
338 /*
339  * Convert an apicid to the socket number on the blade
340  */
341 static inline int uv_apicid_to_socket(int apicid)
342 {
343 	if (is_uv1_hub())
344 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
345 	else
346 		return 0;
347 }
348 
349 /*
350  * Access global MMRs using the low memory MMR32 space. This region supports
351  * faster MMR access but not all MMRs are accessible in this space.
352  */
353 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
354 {
355 	return __va(UV_GLOBAL_MMR32_BASE |
356 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
357 }
358 
359 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
360 {
361 	writeq(val, uv_global_mmr32_address(pnode, offset));
362 }
363 
364 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
365 {
366 	return readq(uv_global_mmr32_address(pnode, offset));
367 }
368 
369 /*
370  * Access Global MMR space using the MMR space located at the top of physical
371  * memory.
372  */
373 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
374 {
375 	return __va(UV_GLOBAL_MMR64_BASE |
376 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
377 }
378 
379 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
380 {
381 	writeq(val, uv_global_mmr64_address(pnode, offset));
382 }
383 
384 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
385 {
386 	return readq(uv_global_mmr64_address(pnode, offset));
387 }
388 
389 /*
390  * Global MMR space addresses when referenced by the GRU. (GRU does
391  * NOT use socket addressing).
392  */
393 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
394 {
395 	return UV_GLOBAL_GRU_MMR_BASE | offset |
396 		((unsigned long)pnode << uv_hub_info->m_val);
397 }
398 
399 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
400 {
401 	writeb(val, uv_global_mmr64_address(pnode, offset));
402 }
403 
404 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
405 {
406 	return readb(uv_global_mmr64_address(pnode, offset));
407 }
408 
409 /*
410  * Access hub local MMRs. Faster than using global space but only local MMRs
411  * are accessible.
412  */
413 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
414 {
415 	return __va(UV_LOCAL_MMR_BASE | offset);
416 }
417 
418 static inline unsigned long uv_read_local_mmr(unsigned long offset)
419 {
420 	return readq(uv_local_mmr_address(offset));
421 }
422 
423 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
424 {
425 	writeq(val, uv_local_mmr_address(offset));
426 }
427 
428 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
429 {
430 	return readb(uv_local_mmr_address(offset));
431 }
432 
433 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
434 {
435 	writeb(val, uv_local_mmr_address(offset));
436 }
437 
438 /*
439  * Structures and definitions for converting between cpu, node, pnode, and blade
440  * numbers.
441  */
442 struct uv_blade_info {
443 	unsigned short	nr_possible_cpus;
444 	unsigned short	nr_online_cpus;
445 	unsigned short	pnode;
446 	short		memory_nid;
447 	spinlock_t	nmi_lock;
448 	unsigned long	nmi_count;
449 };
450 extern struct uv_blade_info *uv_blade_info;
451 extern short *uv_node_to_blade;
452 extern short *uv_cpu_to_blade;
453 extern short uv_possible_blades;
454 
455 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
456 static inline int uv_blade_processor_id(void)
457 {
458 	return uv_hub_info->blade_processor_id;
459 }
460 
461 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
462 static inline int uv_numa_blade_id(void)
463 {
464 	return uv_hub_info->numa_blade_id;
465 }
466 
467 /* Convert a cpu number to the the UV blade number */
468 static inline int uv_cpu_to_blade_id(int cpu)
469 {
470 	return uv_cpu_to_blade[cpu];
471 }
472 
473 /* Convert linux node number to the UV blade number */
474 static inline int uv_node_to_blade_id(int nid)
475 {
476 	return uv_node_to_blade[nid];
477 }
478 
479 /* Convert a blade id to the PNODE of the blade */
480 static inline int uv_blade_to_pnode(int bid)
481 {
482 	return uv_blade_info[bid].pnode;
483 }
484 
485 /* Nid of memory node on blade. -1 if no blade-local memory */
486 static inline int uv_blade_to_memory_nid(int bid)
487 {
488 	return uv_blade_info[bid].memory_nid;
489 }
490 
491 /* Determine the number of possible cpus on a blade */
492 static inline int uv_blade_nr_possible_cpus(int bid)
493 {
494 	return uv_blade_info[bid].nr_possible_cpus;
495 }
496 
497 /* Determine the number of online cpus on a blade */
498 static inline int uv_blade_nr_online_cpus(int bid)
499 {
500 	return uv_blade_info[bid].nr_online_cpus;
501 }
502 
503 /* Convert a cpu id to the PNODE of the blade containing the cpu */
504 static inline int uv_cpu_to_pnode(int cpu)
505 {
506 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
507 }
508 
509 /* Convert a linux node number to the PNODE of the blade */
510 static inline int uv_node_to_pnode(int nid)
511 {
512 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
513 }
514 
515 /* Maximum possible number of blades */
516 static inline int uv_num_possible_blades(void)
517 {
518 	return uv_possible_blades;
519 }
520 
521 /* Update SCIR state */
522 static inline void uv_set_scir_bits(unsigned char value)
523 {
524 	if (uv_hub_info->scir.state != value) {
525 		uv_hub_info->scir.state = value;
526 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
527 	}
528 }
529 
530 static inline unsigned long uv_scir_offset(int apicid)
531 {
532 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
533 }
534 
535 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
536 {
537 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
538 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
539 				uv_cpu_hub_info(cpu)->scir.offset, value);
540 		uv_cpu_hub_info(cpu)->scir.state = value;
541 	}
542 }
543 
544 extern unsigned int uv_apicid_hibits;
545 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
546 {
547 	apicid |= uv_apicid_hibits;
548 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
549 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
550 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
551 			(vector << UVH_IPI_INT_VECTOR_SHFT);
552 }
553 
554 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
555 {
556 	unsigned long val;
557 	unsigned long dmode = dest_Fixed;
558 
559 	if (vector == NMI_VECTOR)
560 		dmode = dest_NMI;
561 
562 	val = uv_hub_ipi_value(apicid, vector, dmode);
563 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
564 }
565 
566 /*
567  * Get the minimum revision number of the hub chips within the partition.
568  *     1 - UV1 rev 1.0 initial silicon
569  *     2 - UV1 rev 2.0 production silicon
570  *     3 - UV2 rev 1.0 initial silicon
571  */
572 static inline int uv_get_min_hub_revision_id(void)
573 {
574 	return uv_hub_info->hub_revision;
575 }
576 
577 #endif /* CONFIG_X86_64 */
578 #endif /* _ASM_X86_UV_UV_HUB_H */
579