xref: /linux/arch/x86/boot/compressed/kaslr.c (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kaslr.c
4  *
5  * This contains the routines needed to generate a reasonable level of
6  * entropy to choose a randomized kernel base address offset in support
7  * of Kernel Address Space Layout Randomization (KASLR). Additionally
8  * handles walking the physical memory maps (and tracking memory regions
9  * to avoid) in order to select a physical memory location that can
10  * contain the entire properly aligned running kernel image.
11  *
12  */
13 
14 /*
15  * isspace() in linux/ctype.h is expected by next_args() to filter
16  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17  * since isdigit() is implemented in both of them. Hence disable it
18  * here.
19  */
20 #define BOOT_CTYPE_H
21 
22 /*
23  * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
24  * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
25  * which is meaningless and will cause compiling error in some cases.
26  * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
27  * as empty.
28  */
29 #define _LINUX_EXPORT_H
30 #define EXPORT_SYMBOL(sym)
31 
32 #include "misc.h"
33 #include "error.h"
34 #include "../string.h"
35 
36 #include <generated/compile.h>
37 #include <linux/module.h>
38 #include <linux/uts.h>
39 #include <linux/utsname.h>
40 #include <linux/ctype.h>
41 #include <linux/efi.h>
42 #include <generated/utsrelease.h>
43 #include <asm/efi.h>
44 
45 /* Macros used by the included decompressor code below. */
46 #define STATIC
47 #include <linux/decompress/mm.h>
48 
49 #ifdef CONFIG_X86_5LEVEL
50 unsigned int pgtable_l5_enabled __ro_after_init;
51 unsigned int pgdir_shift __ro_after_init = 39;
52 unsigned int ptrs_per_p4d __ro_after_init = 1;
53 #endif
54 
55 extern unsigned long get_cmd_line_ptr(void);
56 
57 /* Used by PAGE_KERN* macros: */
58 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
59 
60 /* Simplified build-specific string for starting entropy. */
61 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
62 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
63 
64 static unsigned long rotate_xor(unsigned long hash, const void *area,
65 				size_t size)
66 {
67 	size_t i;
68 	unsigned long *ptr = (unsigned long *)area;
69 
70 	for (i = 0; i < size / sizeof(hash); i++) {
71 		/* Rotate by odd number of bits and XOR. */
72 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
73 		hash ^= ptr[i];
74 	}
75 
76 	return hash;
77 }
78 
79 /* Attempt to create a simple but unpredictable starting entropy. */
80 static unsigned long get_boot_seed(void)
81 {
82 	unsigned long hash = 0;
83 
84 	hash = rotate_xor(hash, build_str, sizeof(build_str));
85 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
86 
87 	return hash;
88 }
89 
90 #define KASLR_COMPRESSED_BOOT
91 #include "../../lib/kaslr.c"
92 
93 struct mem_vector {
94 	unsigned long long start;
95 	unsigned long long size;
96 };
97 
98 /* Only supporting at most 4 unusable memmap regions with kaslr */
99 #define MAX_MEMMAP_REGIONS	4
100 
101 static bool memmap_too_large;
102 
103 
104 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
105 unsigned long long mem_limit = ULLONG_MAX;
106 
107 
108 enum mem_avoid_index {
109 	MEM_AVOID_ZO_RANGE = 0,
110 	MEM_AVOID_INITRD,
111 	MEM_AVOID_CMDLINE,
112 	MEM_AVOID_BOOTPARAMS,
113 	MEM_AVOID_MEMMAP_BEGIN,
114 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
115 	MEM_AVOID_MAX,
116 };
117 
118 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
119 
120 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
121 {
122 	/* Item one is entirely before item two. */
123 	if (one->start + one->size <= two->start)
124 		return false;
125 	/* Item one is entirely after item two. */
126 	if (one->start >= two->start + two->size)
127 		return false;
128 	return true;
129 }
130 
131 char *skip_spaces(const char *str)
132 {
133 	while (isspace(*str))
134 		++str;
135 	return (char *)str;
136 }
137 #include "../../../../lib/ctype.c"
138 #include "../../../../lib/cmdline.c"
139 
140 static int
141 parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
142 {
143 	char *oldp;
144 
145 	if (!p)
146 		return -EINVAL;
147 
148 	/* We don't care about this option here */
149 	if (!strncmp(p, "exactmap", 8))
150 		return -EINVAL;
151 
152 	oldp = p;
153 	*size = memparse(p, &p);
154 	if (p == oldp)
155 		return -EINVAL;
156 
157 	switch (*p) {
158 	case '#':
159 	case '$':
160 	case '!':
161 		*start = memparse(p + 1, &p);
162 		return 0;
163 	case '@':
164 		/* memmap=nn@ss specifies usable region, should be skipped */
165 		*size = 0;
166 		/* Fall through */
167 	default:
168 		/*
169 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
170 		 * same behaviour as mem=nn[KMG]. It limits the max address
171 		 * system can use. Region above the limit should be avoided.
172 		 */
173 		*start = 0;
174 		return 0;
175 	}
176 
177 	return -EINVAL;
178 }
179 
180 static void mem_avoid_memmap(char *str)
181 {
182 	static int i;
183 
184 	if (i >= MAX_MEMMAP_REGIONS)
185 		return;
186 
187 	while (str && (i < MAX_MEMMAP_REGIONS)) {
188 		int rc;
189 		unsigned long long start, size;
190 		char *k = strchr(str, ',');
191 
192 		if (k)
193 			*k++ = 0;
194 
195 		rc = parse_memmap(str, &start, &size);
196 		if (rc < 0)
197 			break;
198 		str = k;
199 
200 		if (start == 0) {
201 			/* Store the specified memory limit if size > 0 */
202 			if (size > 0)
203 				mem_limit = size;
204 
205 			continue;
206 		}
207 
208 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
209 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
210 		i++;
211 	}
212 
213 	/* More than 4 memmaps, fail kaslr */
214 	if ((i >= MAX_MEMMAP_REGIONS) && str)
215 		memmap_too_large = true;
216 }
217 
218 static int handle_mem_memmap(void)
219 {
220 	char *args = (char *)get_cmd_line_ptr();
221 	size_t len = strlen((char *)args);
222 	char *tmp_cmdline;
223 	char *param, *val;
224 	u64 mem_size;
225 
226 	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
227 		return 0;
228 
229 	tmp_cmdline = malloc(len + 1);
230 	if (!tmp_cmdline)
231 		error("Failed to allocate space for tmp_cmdline");
232 
233 	memcpy(tmp_cmdline, args, len);
234 	tmp_cmdline[len] = 0;
235 	args = tmp_cmdline;
236 
237 	/* Chew leading spaces */
238 	args = skip_spaces(args);
239 
240 	while (*args) {
241 		args = next_arg(args, &param, &val);
242 		/* Stop at -- */
243 		if (!val && strcmp(param, "--") == 0) {
244 			warn("Only '--' specified in cmdline");
245 			free(tmp_cmdline);
246 			return -1;
247 		}
248 
249 		if (!strcmp(param, "memmap")) {
250 			mem_avoid_memmap(val);
251 		} else if (!strcmp(param, "mem")) {
252 			char *p = val;
253 
254 			if (!strcmp(p, "nopentium"))
255 				continue;
256 			mem_size = memparse(p, &p);
257 			if (mem_size == 0) {
258 				free(tmp_cmdline);
259 				return -EINVAL;
260 			}
261 			mem_limit = mem_size;
262 		}
263 	}
264 
265 	free(tmp_cmdline);
266 	return 0;
267 }
268 
269 /*
270  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
271  * The mem_avoid array is used to store the ranges that need to be avoided
272  * when KASLR searches for an appropriate random address. We must avoid any
273  * regions that are unsafe to overlap with during decompression, and other
274  * things like the initrd, cmdline and boot_params. This comment seeks to
275  * explain mem_avoid as clearly as possible since incorrect mem_avoid
276  * memory ranges lead to really hard to debug boot failures.
277  *
278  * The initrd, cmdline, and boot_params are trivial to identify for
279  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
280  * MEM_AVOID_BOOTPARAMS respectively below.
281  *
282  * What is not obvious how to avoid is the range of memory that is used
283  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
284  * the compressed kernel (ZO) and its run space, which is used to extract
285  * the uncompressed kernel (VO) and relocs.
286  *
287  * ZO's full run size sits against the end of the decompression buffer, so
288  * we can calculate where text, data, bss, etc of ZO are positioned more
289  * easily.
290  *
291  * For additional background, the decompression calculations can be found
292  * in header.S, and the memory diagram is based on the one found in misc.c.
293  *
294  * The following conditions are already enforced by the image layouts and
295  * associated code:
296  *  - input + input_size >= output + output_size
297  *  - kernel_total_size <= init_size
298  *  - kernel_total_size <= output_size (see Note below)
299  *  - output + init_size >= output + output_size
300  *
301  * (Note that kernel_total_size and output_size have no fundamental
302  * relationship, but output_size is passed to choose_random_location
303  * as a maximum of the two. The diagram is showing a case where
304  * kernel_total_size is larger than output_size, but this case is
305  * handled by bumping output_size.)
306  *
307  * The above conditions can be illustrated by a diagram:
308  *
309  * 0   output            input            input+input_size    output+init_size
310  * |     |                 |                             |             |
311  * |     |                 |                             |             |
312  * |-----|--------|--------|--------------|-----------|--|-------------|
313  *                |                       |           |
314  *                |                       |           |
315  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
316  *
317  * [output, output+init_size) is the entire memory range used for
318  * extracting the compressed image.
319  *
320  * [output, output+kernel_total_size) is the range needed for the
321  * uncompressed kernel (VO) and its run size (bss, brk, etc).
322  *
323  * [output, output+output_size) is VO plus relocs (i.e. the entire
324  * uncompressed payload contained by ZO). This is the area of the buffer
325  * written to during decompression.
326  *
327  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
328  * range of the copied ZO and decompression code. (i.e. the range
329  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
330  *
331  * [input, input+input_size) is the original copied compressed image (ZO)
332  * (i.e. it does not include its run size). This range must be avoided
333  * because it contains the data used for decompression.
334  *
335  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
336  * range includes ZO's heap and stack, and must be avoided since it
337  * performs the decompression.
338  *
339  * Since the above two ranges need to be avoided and they are adjacent,
340  * they can be merged, resulting in: [input, output+init_size) which
341  * becomes the MEM_AVOID_ZO_RANGE below.
342  */
343 static void mem_avoid_init(unsigned long input, unsigned long input_size,
344 			   unsigned long output)
345 {
346 	unsigned long init_size = boot_params->hdr.init_size;
347 	u64 initrd_start, initrd_size;
348 	u64 cmd_line, cmd_line_size;
349 	char *ptr;
350 
351 	/*
352 	 * Avoid the region that is unsafe to overlap during
353 	 * decompression.
354 	 */
355 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
356 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
357 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
358 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
359 
360 	/* Avoid initrd. */
361 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
362 	initrd_start |= boot_params->hdr.ramdisk_image;
363 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
364 	initrd_size |= boot_params->hdr.ramdisk_size;
365 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
366 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
367 	/* No need to set mapping for initrd, it will be handled in VO. */
368 
369 	/* Avoid kernel command line. */
370 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
371 	cmd_line |= boot_params->hdr.cmd_line_ptr;
372 	/* Calculate size of cmd_line. */
373 	ptr = (char *)(unsigned long)cmd_line;
374 	for (cmd_line_size = 0; ptr[cmd_line_size++];)
375 		;
376 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
377 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
378 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
379 			 mem_avoid[MEM_AVOID_CMDLINE].size);
380 
381 	/* Avoid boot parameters. */
382 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
383 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
384 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
385 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
386 
387 	/* We don't need to set a mapping for setup_data. */
388 
389 	/* Mark the memmap regions we need to avoid */
390 	handle_mem_memmap();
391 
392 #ifdef CONFIG_X86_VERBOSE_BOOTUP
393 	/* Make sure video RAM can be used. */
394 	add_identity_map(0, PMD_SIZE);
395 #endif
396 }
397 
398 /*
399  * Does this memory vector overlap a known avoided area? If so, record the
400  * overlap region with the lowest address.
401  */
402 static bool mem_avoid_overlap(struct mem_vector *img,
403 			      struct mem_vector *overlap)
404 {
405 	int i;
406 	struct setup_data *ptr;
407 	unsigned long earliest = img->start + img->size;
408 	bool is_overlapping = false;
409 
410 	for (i = 0; i < MEM_AVOID_MAX; i++) {
411 		if (mem_overlaps(img, &mem_avoid[i]) &&
412 		    mem_avoid[i].start < earliest) {
413 			*overlap = mem_avoid[i];
414 			earliest = overlap->start;
415 			is_overlapping = true;
416 		}
417 	}
418 
419 	/* Avoid all entries in the setup_data linked list. */
420 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
421 	while (ptr) {
422 		struct mem_vector avoid;
423 
424 		avoid.start = (unsigned long)ptr;
425 		avoid.size = sizeof(*ptr) + ptr->len;
426 
427 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
428 			*overlap = avoid;
429 			earliest = overlap->start;
430 			is_overlapping = true;
431 		}
432 
433 		ptr = (struct setup_data *)(unsigned long)ptr->next;
434 	}
435 
436 	return is_overlapping;
437 }
438 
439 struct slot_area {
440 	unsigned long addr;
441 	int num;
442 };
443 
444 #define MAX_SLOT_AREA 100
445 
446 static struct slot_area slot_areas[MAX_SLOT_AREA];
447 
448 static unsigned long slot_max;
449 
450 static unsigned long slot_area_index;
451 
452 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
453 {
454 	struct slot_area slot_area;
455 
456 	if (slot_area_index == MAX_SLOT_AREA)
457 		return;
458 
459 	slot_area.addr = region->start;
460 	slot_area.num = (region->size - image_size) /
461 			CONFIG_PHYSICAL_ALIGN + 1;
462 
463 	if (slot_area.num > 0) {
464 		slot_areas[slot_area_index++] = slot_area;
465 		slot_max += slot_area.num;
466 	}
467 }
468 
469 static unsigned long slots_fetch_random(void)
470 {
471 	unsigned long slot;
472 	int i;
473 
474 	/* Handle case of no slots stored. */
475 	if (slot_max == 0)
476 		return 0;
477 
478 	slot = kaslr_get_random_long("Physical") % slot_max;
479 
480 	for (i = 0; i < slot_area_index; i++) {
481 		if (slot >= slot_areas[i].num) {
482 			slot -= slot_areas[i].num;
483 			continue;
484 		}
485 		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
486 	}
487 
488 	if (i == slot_area_index)
489 		debug_putstr("slots_fetch_random() failed!?\n");
490 	return 0;
491 }
492 
493 static void process_mem_region(struct mem_vector *entry,
494 			       unsigned long minimum,
495 			       unsigned long image_size)
496 {
497 	struct mem_vector region, overlap;
498 	struct slot_area slot_area;
499 	unsigned long start_orig, end;
500 	struct mem_vector cur_entry;
501 
502 	/* On 32-bit, ignore entries entirely above our maximum. */
503 	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
504 		return;
505 
506 	/* Ignore entries entirely below our minimum. */
507 	if (entry->start + entry->size < minimum)
508 		return;
509 
510 	/* Ignore entries above memory limit */
511 	end = min(entry->size + entry->start, mem_limit);
512 	if (entry->start >= end)
513 		return;
514 	cur_entry.start = entry->start;
515 	cur_entry.size = end - entry->start;
516 
517 	region.start = cur_entry.start;
518 	region.size = cur_entry.size;
519 
520 	/* Give up if slot area array is full. */
521 	while (slot_area_index < MAX_SLOT_AREA) {
522 		start_orig = region.start;
523 
524 		/* Potentially raise address to minimum location. */
525 		if (region.start < minimum)
526 			region.start = minimum;
527 
528 		/* Potentially raise address to meet alignment needs. */
529 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
530 
531 		/* Did we raise the address above the passed in memory entry? */
532 		if (region.start > cur_entry.start + cur_entry.size)
533 			return;
534 
535 		/* Reduce size by any delta from the original address. */
536 		region.size -= region.start - start_orig;
537 
538 		/* On 32-bit, reduce region size to fit within max size. */
539 		if (IS_ENABLED(CONFIG_X86_32) &&
540 		    region.start + region.size > KERNEL_IMAGE_SIZE)
541 			region.size = KERNEL_IMAGE_SIZE - region.start;
542 
543 		/* Return if region can't contain decompressed kernel */
544 		if (region.size < image_size)
545 			return;
546 
547 		/* If nothing overlaps, store the region and return. */
548 		if (!mem_avoid_overlap(&region, &overlap)) {
549 			store_slot_info(&region, image_size);
550 			return;
551 		}
552 
553 		/* Store beginning of region if holds at least image_size. */
554 		if (overlap.start > region.start + image_size) {
555 			struct mem_vector beginning;
556 
557 			beginning.start = region.start;
558 			beginning.size = overlap.start - region.start;
559 			store_slot_info(&beginning, image_size);
560 		}
561 
562 		/* Return if overlap extends to or past end of region. */
563 		if (overlap.start + overlap.size >= region.start + region.size)
564 			return;
565 
566 		/* Clip off the overlapping region and start over. */
567 		region.size -= overlap.start - region.start + overlap.size;
568 		region.start = overlap.start + overlap.size;
569 	}
570 }
571 
572 #ifdef CONFIG_EFI
573 /*
574  * Returns true if mirror region found (and must have been processed
575  * for slots adding)
576  */
577 static bool
578 process_efi_entries(unsigned long minimum, unsigned long image_size)
579 {
580 	struct efi_info *e = &boot_params->efi_info;
581 	bool efi_mirror_found = false;
582 	struct mem_vector region;
583 	efi_memory_desc_t *md;
584 	unsigned long pmap;
585 	char *signature;
586 	u32 nr_desc;
587 	int i;
588 
589 	signature = (char *)&e->efi_loader_signature;
590 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
591 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
592 		return false;
593 
594 #ifdef CONFIG_X86_32
595 	/* Can't handle data above 4GB at this time */
596 	if (e->efi_memmap_hi) {
597 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
598 		return false;
599 	}
600 	pmap =  e->efi_memmap;
601 #else
602 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
603 #endif
604 
605 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
606 	for (i = 0; i < nr_desc; i++) {
607 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
608 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
609 			efi_mirror_found = true;
610 			break;
611 		}
612 	}
613 
614 	for (i = 0; i < nr_desc; i++) {
615 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
616 
617 		/*
618 		 * Here we are more conservative in picking free memory than
619 		 * the EFI spec allows:
620 		 *
621 		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
622 		 * free memory and thus available to place the kernel image into,
623 		 * but in practice there's firmware where using that memory leads
624 		 * to crashes.
625 		 *
626 		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
627 		 */
628 		if (md->type != EFI_CONVENTIONAL_MEMORY)
629 			continue;
630 
631 		if (efi_mirror_found &&
632 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
633 			continue;
634 
635 		region.start = md->phys_addr;
636 		region.size = md->num_pages << EFI_PAGE_SHIFT;
637 		process_mem_region(&region, minimum, image_size);
638 		if (slot_area_index == MAX_SLOT_AREA) {
639 			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
640 			break;
641 		}
642 	}
643 	return true;
644 }
645 #else
646 static inline bool
647 process_efi_entries(unsigned long minimum, unsigned long image_size)
648 {
649 	return false;
650 }
651 #endif
652 
653 static void process_e820_entries(unsigned long minimum,
654 				 unsigned long image_size)
655 {
656 	int i;
657 	struct mem_vector region;
658 	struct boot_e820_entry *entry;
659 
660 	/* Verify potential e820 positions, appending to slots list. */
661 	for (i = 0; i < boot_params->e820_entries; i++) {
662 		entry = &boot_params->e820_table[i];
663 		/* Skip non-RAM entries. */
664 		if (entry->type != E820_TYPE_RAM)
665 			continue;
666 		region.start = entry->addr;
667 		region.size = entry->size;
668 		process_mem_region(&region, minimum, image_size);
669 		if (slot_area_index == MAX_SLOT_AREA) {
670 			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
671 			break;
672 		}
673 	}
674 }
675 
676 static unsigned long find_random_phys_addr(unsigned long minimum,
677 					   unsigned long image_size)
678 {
679 	/* Check if we had too many memmaps. */
680 	if (memmap_too_large) {
681 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
682 		return 0;
683 	}
684 
685 	/* Make sure minimum is aligned. */
686 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
687 
688 	if (process_efi_entries(minimum, image_size))
689 		return slots_fetch_random();
690 
691 	process_e820_entries(minimum, image_size);
692 	return slots_fetch_random();
693 }
694 
695 static unsigned long find_random_virt_addr(unsigned long minimum,
696 					   unsigned long image_size)
697 {
698 	unsigned long slots, random_addr;
699 
700 	/* Make sure minimum is aligned. */
701 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
702 	/* Align image_size for easy slot calculations. */
703 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
704 
705 	/*
706 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
707 	 * that can hold image_size within the range of minimum to
708 	 * KERNEL_IMAGE_SIZE?
709 	 */
710 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
711 		 CONFIG_PHYSICAL_ALIGN + 1;
712 
713 	random_addr = kaslr_get_random_long("Virtual") % slots;
714 
715 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
716 }
717 
718 /*
719  * Since this function examines addresses much more numerically,
720  * it takes the input and output pointers as 'unsigned long'.
721  */
722 void choose_random_location(unsigned long input,
723 			    unsigned long input_size,
724 			    unsigned long *output,
725 			    unsigned long output_size,
726 			    unsigned long *virt_addr)
727 {
728 	unsigned long random_addr, min_addr;
729 
730 	if (cmdline_find_option_bool("nokaslr")) {
731 		warn("KASLR disabled: 'nokaslr' on cmdline.");
732 		return;
733 	}
734 
735 #ifdef CONFIG_X86_5LEVEL
736 	if (__read_cr4() & X86_CR4_LA57) {
737 		pgtable_l5_enabled = 1;
738 		pgdir_shift = 48;
739 		ptrs_per_p4d = 512;
740 	}
741 #endif
742 
743 	boot_params->hdr.loadflags |= KASLR_FLAG;
744 
745 	/* Prepare to add new identity pagetables on demand. */
746 	initialize_identity_maps();
747 
748 	/* Record the various known unsafe memory ranges. */
749 	mem_avoid_init(input, input_size, *output);
750 
751 	/*
752 	 * Low end of the randomization range should be the
753 	 * smaller of 512M or the initial kernel image
754 	 * location:
755 	 */
756 	min_addr = min(*output, 512UL << 20);
757 
758 	/* Walk available memory entries to find a random address. */
759 	random_addr = find_random_phys_addr(min_addr, output_size);
760 	if (!random_addr) {
761 		warn("Physical KASLR disabled: no suitable memory region!");
762 	} else {
763 		/* Update the new physical address location. */
764 		if (*output != random_addr) {
765 			add_identity_map(random_addr, output_size);
766 			*output = random_addr;
767 		}
768 
769 		/*
770 		 * This loads the identity mapping page table.
771 		 * This should only be done if a new physical address
772 		 * is found for the kernel, otherwise we should keep
773 		 * the old page table to make it be like the "nokaslr"
774 		 * case.
775 		 */
776 		finalize_identity_maps();
777 	}
778 
779 
780 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
781 	if (IS_ENABLED(CONFIG_X86_64))
782 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
783 	*virt_addr = random_addr;
784 }
785