xref: /linux/arch/um/kernel/process.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include "as-layout.h"
27 #include "kern_util.h"
28 #include "os.h"
29 #include "skas.h"
30 
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 
38 static inline int external_pid(void)
39 {
40 	/* FIXME: Need to look up userspace_pid by cpu */
41 	return userspace_pid[0];
42 }
43 
44 int pid_to_processor_id(int pid)
45 {
46 	int i;
47 
48 	for (i = 0; i < ncpus; i++) {
49 		if (cpu_tasks[i].pid == pid)
50 			return i;
51 	}
52 	return -1;
53 }
54 
55 void free_stack(unsigned long stack, int order)
56 {
57 	free_pages(stack, order);
58 }
59 
60 unsigned long alloc_stack(int order, int atomic)
61 {
62 	unsigned long page;
63 	gfp_t flags = GFP_KERNEL;
64 
65 	if (atomic)
66 		flags = GFP_ATOMIC;
67 	page = __get_free_pages(flags, order);
68 
69 	return page;
70 }
71 
72 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
73 {
74 	int pid;
75 
76 	current->thread.request.u.thread.proc = fn;
77 	current->thread.request.u.thread.arg = arg;
78 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
79 		      &current->thread.regs, 0, NULL, NULL);
80 	return pid;
81 }
82 EXPORT_SYMBOL(kernel_thread);
83 
84 static inline void set_current(struct task_struct *task)
85 {
86 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
87 		{ external_pid(), task });
88 }
89 
90 extern void arch_switch_to(struct task_struct *to);
91 
92 void *__switch_to(struct task_struct *from, struct task_struct *to)
93 {
94 	to->thread.prev_sched = from;
95 	set_current(to);
96 
97 	do {
98 		current->thread.saved_task = NULL;
99 
100 		switch_threads(&from->thread.switch_buf,
101 			       &to->thread.switch_buf);
102 
103 		arch_switch_to(current);
104 
105 		if (current->thread.saved_task)
106 			show_regs(&(current->thread.regs));
107 		to = current->thread.saved_task;
108 		from = current;
109 	} while (current->thread.saved_task);
110 
111 	return current->thread.prev_sched;
112 }
113 
114 void interrupt_end(void)
115 {
116 	if (need_resched())
117 		schedule();
118 	if (test_thread_flag(TIF_SIGPENDING))
119 		do_signal();
120 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
121 		tracehook_notify_resume(&current->thread.regs);
122 }
123 
124 void exit_thread(void)
125 {
126 }
127 
128 int get_current_pid(void)
129 {
130 	return task_pid_nr(current);
131 }
132 
133 /*
134  * This is called magically, by its address being stuffed in a jmp_buf
135  * and being longjmp-d to.
136  */
137 void new_thread_handler(void)
138 {
139 	int (*fn)(void *), n;
140 	void *arg;
141 
142 	if (current->thread.prev_sched != NULL)
143 		schedule_tail(current->thread.prev_sched);
144 	current->thread.prev_sched = NULL;
145 
146 	fn = current->thread.request.u.thread.proc;
147 	arg = current->thread.request.u.thread.arg;
148 
149 	/*
150 	 * The return value is 1 if the kernel thread execs a process,
151 	 * 0 if it just exits
152 	 */
153 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 	if (n == 1)
155 		userspace(&current->thread.regs.regs);
156 	else
157 		do_exit(0);
158 }
159 
160 /* Called magically, see new_thread_handler above */
161 void fork_handler(void)
162 {
163 	force_flush_all();
164 
165 	schedule_tail(current->thread.prev_sched);
166 
167 	/*
168 	 * XXX: if interrupt_end() calls schedule, this call to
169 	 * arch_switch_to isn't needed. We could want to apply this to
170 	 * improve performance. -bb
171 	 */
172 	arch_switch_to(current);
173 
174 	current->thread.prev_sched = NULL;
175 
176 	userspace(&current->thread.regs.regs);
177 }
178 
179 int copy_thread(unsigned long clone_flags, unsigned long sp,
180 		unsigned long stack_top, struct task_struct * p,
181 		struct pt_regs *regs)
182 {
183 	void (*handler)(void);
184 	int kthread = current->flags & PF_KTHREAD;
185 	int ret = 0;
186 
187 	p->thread = (struct thread_struct) INIT_THREAD;
188 
189 	if (!kthread) {
190 	  	memcpy(&p->thread.regs.regs, &regs->regs,
191 		       sizeof(p->thread.regs.regs));
192 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
193 		if (sp != 0)
194 			REGS_SP(p->thread.regs.regs.gp) = sp;
195 
196 		handler = fork_handler;
197 
198 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
199 	} else {
200 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
201 		p->thread.request.u.thread = current->thread.request.u.thread;
202 		handler = new_thread_handler;
203 	}
204 
205 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
206 
207 	if (!kthread) {
208 		clear_flushed_tls(p);
209 
210 		/*
211 		 * Set a new TLS for the child thread?
212 		 */
213 		if (clone_flags & CLONE_SETTLS)
214 			ret = arch_copy_tls(p);
215 	}
216 
217 	return ret;
218 }
219 
220 void initial_thread_cb(void (*proc)(void *), void *arg)
221 {
222 	int save_kmalloc_ok = kmalloc_ok;
223 
224 	kmalloc_ok = 0;
225 	initial_thread_cb_skas(proc, arg);
226 	kmalloc_ok = save_kmalloc_ok;
227 }
228 
229 void default_idle(void)
230 {
231 	unsigned long long nsecs;
232 
233 	while (1) {
234 		/* endless idle loop with no priority at all */
235 
236 		/*
237 		 * although we are an idle CPU, we do not want to
238 		 * get into the scheduler unnecessarily.
239 		 */
240 		if (need_resched())
241 			schedule();
242 
243 		tick_nohz_idle_enter();
244 		rcu_idle_enter();
245 		nsecs = disable_timer();
246 		idle_sleep(nsecs);
247 		rcu_idle_exit();
248 		tick_nohz_idle_exit();
249 	}
250 }
251 
252 void cpu_idle(void)
253 {
254 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
255 	default_idle();
256 }
257 
258 int __cant_sleep(void) {
259 	return in_atomic() || irqs_disabled() || in_interrupt();
260 	/* Is in_interrupt() really needed? */
261 }
262 
263 int user_context(unsigned long sp)
264 {
265 	unsigned long stack;
266 
267 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
268 	return stack != (unsigned long) current_thread_info();
269 }
270 
271 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
272 
273 void do_uml_exitcalls(void)
274 {
275 	exitcall_t *call;
276 
277 	call = &__uml_exitcall_end;
278 	while (--call >= &__uml_exitcall_begin)
279 		(*call)();
280 }
281 
282 char *uml_strdup(const char *string)
283 {
284 	return kstrdup(string, GFP_KERNEL);
285 }
286 EXPORT_SYMBOL(uml_strdup);
287 
288 int copy_to_user_proc(void __user *to, void *from, int size)
289 {
290 	return copy_to_user(to, from, size);
291 }
292 
293 int copy_from_user_proc(void *to, void __user *from, int size)
294 {
295 	return copy_from_user(to, from, size);
296 }
297 
298 int clear_user_proc(void __user *buf, int size)
299 {
300 	return clear_user(buf, size);
301 }
302 
303 int strlen_user_proc(char __user *str)
304 {
305 	return strlen_user(str);
306 }
307 
308 int smp_sigio_handler(void)
309 {
310 #ifdef CONFIG_SMP
311 	int cpu = current_thread_info()->cpu;
312 	IPI_handler(cpu);
313 	if (cpu != 0)
314 		return 1;
315 #endif
316 	return 0;
317 }
318 
319 int cpu(void)
320 {
321 	return current_thread_info()->cpu;
322 }
323 
324 static atomic_t using_sysemu = ATOMIC_INIT(0);
325 int sysemu_supported;
326 
327 void set_using_sysemu(int value)
328 {
329 	if (value > sysemu_supported)
330 		return;
331 	atomic_set(&using_sysemu, value);
332 }
333 
334 int get_using_sysemu(void)
335 {
336 	return atomic_read(&using_sysemu);
337 }
338 
339 static int sysemu_proc_show(struct seq_file *m, void *v)
340 {
341 	seq_printf(m, "%d\n", get_using_sysemu());
342 	return 0;
343 }
344 
345 static int sysemu_proc_open(struct inode *inode, struct file *file)
346 {
347 	return single_open(file, sysemu_proc_show, NULL);
348 }
349 
350 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
351 				 size_t count, loff_t *pos)
352 {
353 	char tmp[2];
354 
355 	if (copy_from_user(tmp, buf, 1))
356 		return -EFAULT;
357 
358 	if (tmp[0] >= '0' && tmp[0] <= '2')
359 		set_using_sysemu(tmp[0] - '0');
360 	/* We use the first char, but pretend to write everything */
361 	return count;
362 }
363 
364 static const struct file_operations sysemu_proc_fops = {
365 	.owner		= THIS_MODULE,
366 	.open		= sysemu_proc_open,
367 	.read		= seq_read,
368 	.llseek		= seq_lseek,
369 	.release	= single_release,
370 	.write		= sysemu_proc_write,
371 };
372 
373 int __init make_proc_sysemu(void)
374 {
375 	struct proc_dir_entry *ent;
376 	if (!sysemu_supported)
377 		return 0;
378 
379 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
380 
381 	if (ent == NULL)
382 	{
383 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
384 		return 0;
385 	}
386 
387 	return 0;
388 }
389 
390 late_initcall(make_proc_sysemu);
391 
392 int singlestepping(void * t)
393 {
394 	struct task_struct *task = t ? t : current;
395 
396 	if (!(task->ptrace & PT_DTRACE))
397 		return 0;
398 
399 	if (task->thread.singlestep_syscall)
400 		return 1;
401 
402 	return 2;
403 }
404 
405 /*
406  * Only x86 and x86_64 have an arch_align_stack().
407  * All other arches have "#define arch_align_stack(x) (x)"
408  * in their asm/system.h
409  * As this is included in UML from asm-um/system-generic.h,
410  * we can use it to behave as the subarch does.
411  */
412 #ifndef arch_align_stack
413 unsigned long arch_align_stack(unsigned long sp)
414 {
415 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
416 		sp -= get_random_int() % 8192;
417 	return sp & ~0xf;
418 }
419 #endif
420 
421 unsigned long get_wchan(struct task_struct *p)
422 {
423 	unsigned long stack_page, sp, ip;
424 	bool seen_sched = 0;
425 
426 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
427 		return 0;
428 
429 	stack_page = (unsigned long) task_stack_page(p);
430 	/* Bail if the process has no kernel stack for some reason */
431 	if (stack_page == 0)
432 		return 0;
433 
434 	sp = p->thread.switch_buf->JB_SP;
435 	/*
436 	 * Bail if the stack pointer is below the bottom of the kernel
437 	 * stack for some reason
438 	 */
439 	if (sp < stack_page)
440 		return 0;
441 
442 	while (sp < stack_page + THREAD_SIZE) {
443 		ip = *((unsigned long *) sp);
444 		if (in_sched_functions(ip))
445 			/* Ignore everything until we're above the scheduler */
446 			seen_sched = 1;
447 		else if (kernel_text_address(ip) && seen_sched)
448 			return ip;
449 
450 		sp += sizeof(unsigned long);
451 	}
452 
453 	return 0;
454 }
455 
456 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
457 {
458 	int cpu = current_thread_info()->cpu;
459 
460 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
461 }
462 
463