xref: /linux/arch/um/drivers/vector_kern.c (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 /*
2  * Copyright (C) 2017 - Cambridge Greys Limited
3  * Copyright (C) 2011 - 2014 Cisco Systems Inc
4  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
6  * James Leu (jleu@mindspring.net).
7  * Copyright (C) 2001 by various other people who didn't put their name here.
8  * Licensed under the GPL.
9  */
10 
11 #include <linux/version.h>
12 #include <linux/bootmem.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/netdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/skbuff.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <init.h>
25 #include <irq_kern.h>
26 #include <irq_user.h>
27 #include <net_kern.h>
28 #include <os.h>
29 #include "mconsole_kern.h"
30 #include "vector_user.h"
31 #include "vector_kern.h"
32 
33 /*
34  * Adapted from network devices with the following major changes:
35  * All transports are static - simplifies the code significantly
36  * Multiple FDs/IRQs per device
37  * Vector IO optionally used for read/write, falling back to legacy
38  * based on configuration and/or availability
39  * Configuration is no longer positional - L2TPv3 and GRE require up to
40  * 10 parameters, passing this as positional is not fit for purpose.
41  * Only socket transports are supported
42  */
43 
44 
45 #define DRIVER_NAME "uml-vector"
46 #define DRIVER_VERSION "01"
47 struct vector_cmd_line_arg {
48 	struct list_head list;
49 	int unit;
50 	char *arguments;
51 };
52 
53 struct vector_device {
54 	struct list_head list;
55 	struct net_device *dev;
56 	struct platform_device pdev;
57 	int unit;
58 	int opened;
59 };
60 
61 static LIST_HEAD(vec_cmd_line);
62 
63 static DEFINE_SPINLOCK(vector_devices_lock);
64 static LIST_HEAD(vector_devices);
65 
66 static int driver_registered;
67 
68 static void vector_eth_configure(int n, struct arglist *def);
69 
70 /* Argument accessors to set variables (and/or set default values)
71  * mtu, buffer sizing, default headroom, etc
72  */
73 
74 #define DEFAULT_HEADROOM 2
75 #define SAFETY_MARGIN 32
76 #define DEFAULT_VECTOR_SIZE 64
77 #define TX_SMALL_PACKET 128
78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
79 
80 static const struct {
81 	const char string[ETH_GSTRING_LEN];
82 } ethtool_stats_keys[] = {
83 	{ "rx_queue_max" },
84 	{ "rx_queue_running_average" },
85 	{ "tx_queue_max" },
86 	{ "tx_queue_running_average" },
87 	{ "rx_encaps_errors" },
88 	{ "tx_timeout_count" },
89 	{ "tx_restart_queue" },
90 	{ "tx_kicks" },
91 	{ "tx_flow_control_xon" },
92 	{ "tx_flow_control_xoff" },
93 	{ "rx_csum_offload_good" },
94 	{ "rx_csum_offload_errors"},
95 	{ "sg_ok"},
96 	{ "sg_linearized"},
97 };
98 
99 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
100 
101 static void vector_reset_stats(struct vector_private *vp)
102 {
103 	vp->estats.rx_queue_max = 0;
104 	vp->estats.rx_queue_running_average = 0;
105 	vp->estats.tx_queue_max = 0;
106 	vp->estats.tx_queue_running_average = 0;
107 	vp->estats.rx_encaps_errors = 0;
108 	vp->estats.tx_timeout_count = 0;
109 	vp->estats.tx_restart_queue = 0;
110 	vp->estats.tx_kicks = 0;
111 	vp->estats.tx_flow_control_xon = 0;
112 	vp->estats.tx_flow_control_xoff = 0;
113 	vp->estats.sg_ok = 0;
114 	vp->estats.sg_linearized = 0;
115 }
116 
117 static int get_mtu(struct arglist *def)
118 {
119 	char *mtu = uml_vector_fetch_arg(def, "mtu");
120 	long result;
121 
122 	if (mtu != NULL) {
123 		if (kstrtoul(mtu, 10, &result) == 0)
124 			return result;
125 	}
126 	return ETH_MAX_PACKET;
127 }
128 
129 static int get_depth(struct arglist *def)
130 {
131 	char *mtu = uml_vector_fetch_arg(def, "depth");
132 	long result;
133 
134 	if (mtu != NULL) {
135 		if (kstrtoul(mtu, 10, &result) == 0)
136 			return result;
137 	}
138 	return DEFAULT_VECTOR_SIZE;
139 }
140 
141 static int get_headroom(struct arglist *def)
142 {
143 	char *mtu = uml_vector_fetch_arg(def, "headroom");
144 	long result;
145 
146 	if (mtu != NULL) {
147 		if (kstrtoul(mtu, 10, &result) == 0)
148 			return result;
149 	}
150 	return DEFAULT_HEADROOM;
151 }
152 
153 static int get_req_size(struct arglist *def)
154 {
155 	char *gro = uml_vector_fetch_arg(def, "gro");
156 	long result;
157 
158 	if (gro != NULL) {
159 		if (kstrtoul(gro, 10, &result) == 0) {
160 			if (result > 0)
161 				return 65536;
162 		}
163 	}
164 	return get_mtu(def) + ETH_HEADER_OTHER +
165 		get_headroom(def) + SAFETY_MARGIN;
166 }
167 
168 
169 static int get_transport_options(struct arglist *def)
170 {
171 	char *transport = uml_vector_fetch_arg(def, "transport");
172 	char *vector = uml_vector_fetch_arg(def, "vec");
173 
174 	int vec_rx = VECTOR_RX;
175 	int vec_tx = VECTOR_TX;
176 	long parsed;
177 
178 	if (vector != NULL) {
179 		if (kstrtoul(vector, 10, &parsed) == 0) {
180 			if (parsed == 0) {
181 				vec_rx = 0;
182 				vec_tx = 0;
183 			}
184 		}
185 	}
186 
187 
188 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
189 		return (vec_rx | VECTOR_BPF);
190 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
191 		return (vec_rx | vec_tx);
192 	return (vec_rx | vec_tx);
193 }
194 
195 
196 /* A mini-buffer for packet drop read
197  * All of our supported transports are datagram oriented and we always
198  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
199  * than the packet size it still counts as full packet read and will
200  * clean the incoming stream to keep sigio/epoll happy
201  */
202 
203 #define DROP_BUFFER_SIZE 32
204 
205 static char *drop_buffer;
206 
207 /* Array backed queues optimized for bulk enqueue/dequeue and
208  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
209  * For more details and full design rationale see
210  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
211  */
212 
213 
214 /*
215  * Advance the mmsg queue head by n = advance. Resets the queue to
216  * maximum enqueue/dequeue-at-once capacity if possible. Called by
217  * dequeuers. Caller must hold the head_lock!
218  */
219 
220 static int vector_advancehead(struct vector_queue *qi, int advance)
221 {
222 	int queue_depth;
223 
224 	qi->head =
225 		(qi->head + advance)
226 			% qi->max_depth;
227 
228 
229 	spin_lock(&qi->tail_lock);
230 	qi->queue_depth -= advance;
231 
232 	/* we are at 0, use this to
233 	 * reset head and tail so we can use max size vectors
234 	 */
235 
236 	if (qi->queue_depth == 0) {
237 		qi->head = 0;
238 		qi->tail = 0;
239 	}
240 	queue_depth = qi->queue_depth;
241 	spin_unlock(&qi->tail_lock);
242 	return queue_depth;
243 }
244 
245 /*	Advance the queue tail by n = advance.
246  *	This is called by enqueuers which should hold the
247  *	head lock already
248  */
249 
250 static int vector_advancetail(struct vector_queue *qi, int advance)
251 {
252 	int queue_depth;
253 
254 	qi->tail =
255 		(qi->tail + advance)
256 			% qi->max_depth;
257 	spin_lock(&qi->head_lock);
258 	qi->queue_depth += advance;
259 	queue_depth = qi->queue_depth;
260 	spin_unlock(&qi->head_lock);
261 	return queue_depth;
262 }
263 
264 static int prep_msg(struct vector_private *vp,
265 	struct sk_buff *skb,
266 	struct iovec *iov)
267 {
268 	int iov_index = 0;
269 	int nr_frags, frag;
270 	skb_frag_t *skb_frag;
271 
272 	nr_frags = skb_shinfo(skb)->nr_frags;
273 	if (nr_frags > MAX_IOV_SIZE) {
274 		if (skb_linearize(skb) != 0)
275 			goto drop;
276 	}
277 	if (vp->header_size > 0) {
278 		iov[iov_index].iov_len = vp->header_size;
279 		vp->form_header(iov[iov_index].iov_base, skb, vp);
280 		iov_index++;
281 	}
282 	iov[iov_index].iov_base = skb->data;
283 	if (nr_frags > 0) {
284 		iov[iov_index].iov_len = skb->len - skb->data_len;
285 		vp->estats.sg_ok++;
286 	} else
287 		iov[iov_index].iov_len = skb->len;
288 	iov_index++;
289 	for (frag = 0; frag < nr_frags; frag++) {
290 		skb_frag = &skb_shinfo(skb)->frags[frag];
291 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
292 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
293 		iov_index++;
294 	}
295 	return iov_index;
296 drop:
297 	return -1;
298 }
299 /*
300  * Generic vector enqueue with support for forming headers using transport
301  * specific callback. Allows GRE, L2TPv3, RAW and other transports
302  * to use a common enqueue procedure in vector mode
303  */
304 
305 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
306 {
307 	struct vector_private *vp = netdev_priv(qi->dev);
308 	int queue_depth;
309 	int packet_len;
310 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
311 	int iov_count;
312 
313 	spin_lock(&qi->tail_lock);
314 	spin_lock(&qi->head_lock);
315 	queue_depth = qi->queue_depth;
316 	spin_unlock(&qi->head_lock);
317 
318 	if (skb)
319 		packet_len = skb->len;
320 
321 	if (queue_depth < qi->max_depth) {
322 
323 		*(qi->skbuff_vector + qi->tail) = skb;
324 		mmsg_vector += qi->tail;
325 		iov_count = prep_msg(
326 			vp,
327 			skb,
328 			mmsg_vector->msg_hdr.msg_iov
329 		);
330 		if (iov_count < 1)
331 			goto drop;
332 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
333 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
334 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
335 		queue_depth = vector_advancetail(qi, 1);
336 	} else
337 		goto drop;
338 	spin_unlock(&qi->tail_lock);
339 	return queue_depth;
340 drop:
341 	qi->dev->stats.tx_dropped++;
342 	if (skb != NULL) {
343 		packet_len = skb->len;
344 		dev_consume_skb_any(skb);
345 		netdev_completed_queue(qi->dev, 1, packet_len);
346 	}
347 	spin_unlock(&qi->tail_lock);
348 	return queue_depth;
349 }
350 
351 static int consume_vector_skbs(struct vector_queue *qi, int count)
352 {
353 	struct sk_buff *skb;
354 	int skb_index;
355 	int bytes_compl = 0;
356 
357 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
358 		skb = *(qi->skbuff_vector + skb_index);
359 		/* mark as empty to ensure correct destruction if
360 		 * needed
361 		 */
362 		bytes_compl += skb->len;
363 		*(qi->skbuff_vector + skb_index) = NULL;
364 		dev_consume_skb_any(skb);
365 	}
366 	qi->dev->stats.tx_bytes += bytes_compl;
367 	qi->dev->stats.tx_packets += count;
368 	netdev_completed_queue(qi->dev, count, bytes_compl);
369 	return vector_advancehead(qi, count);
370 }
371 
372 /*
373  * Generic vector deque via sendmmsg with support for forming headers
374  * using transport specific callback. Allows GRE, L2TPv3, RAW and
375  * other transports to use a common dequeue procedure in vector mode
376  */
377 
378 
379 static int vector_send(struct vector_queue *qi)
380 {
381 	struct vector_private *vp = netdev_priv(qi->dev);
382 	struct mmsghdr *send_from;
383 	int result = 0, send_len, queue_depth = qi->max_depth;
384 
385 	if (spin_trylock(&qi->head_lock)) {
386 		if (spin_trylock(&qi->tail_lock)) {
387 			/* update queue_depth to current value */
388 			queue_depth = qi->queue_depth;
389 			spin_unlock(&qi->tail_lock);
390 			while (queue_depth > 0) {
391 				/* Calculate the start of the vector */
392 				send_len = queue_depth;
393 				send_from = qi->mmsg_vector;
394 				send_from += qi->head;
395 				/* Adjust vector size if wraparound */
396 				if (send_len + qi->head > qi->max_depth)
397 					send_len = qi->max_depth - qi->head;
398 				/* Try to TX as many packets as possible */
399 				if (send_len > 0) {
400 					result = uml_vector_sendmmsg(
401 						 vp->fds->tx_fd,
402 						 send_from,
403 						 send_len,
404 						 0
405 					);
406 					vp->in_write_poll =
407 						(result != send_len);
408 				}
409 				/* For some of the sendmmsg error scenarios
410 				 * we may end being unsure in the TX success
411 				 * for all packets. It is safer to declare
412 				 * them all TX-ed and blame the network.
413 				 */
414 				if (result < 0) {
415 					if (net_ratelimit())
416 						netdev_err(vp->dev, "sendmmsg err=%i\n",
417 							result);
418 					result = send_len;
419 				}
420 				if (result > 0) {
421 					queue_depth =
422 						consume_vector_skbs(qi, result);
423 					/* This is equivalent to an TX IRQ.
424 					 * Restart the upper layers to feed us
425 					 * more packets.
426 					 */
427 					if (result > vp->estats.tx_queue_max)
428 						vp->estats.tx_queue_max = result;
429 					vp->estats.tx_queue_running_average =
430 						(vp->estats.tx_queue_running_average + result) >> 1;
431 				}
432 				netif_trans_update(qi->dev);
433 				netif_wake_queue(qi->dev);
434 				/* if TX is busy, break out of the send loop,
435 				 *  poll write IRQ will reschedule xmit for us
436 				 */
437 				if (result != send_len) {
438 					vp->estats.tx_restart_queue++;
439 					break;
440 				}
441 			}
442 		}
443 		spin_unlock(&qi->head_lock);
444 	} else {
445 		tasklet_schedule(&vp->tx_poll);
446 	}
447 	return queue_depth;
448 }
449 
450 /* Queue destructor. Deliberately stateless so we can use
451  * it in queue cleanup if initialization fails.
452  */
453 
454 static void destroy_queue(struct vector_queue *qi)
455 {
456 	int i;
457 	struct iovec *iov;
458 	struct vector_private *vp = netdev_priv(qi->dev);
459 	struct mmsghdr *mmsg_vector;
460 
461 	if (qi == NULL)
462 		return;
463 	/* deallocate any skbuffs - we rely on any unused to be
464 	 * set to NULL.
465 	 */
466 	if (qi->skbuff_vector != NULL) {
467 		for (i = 0; i < qi->max_depth; i++) {
468 			if (*(qi->skbuff_vector + i) != NULL)
469 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
470 		}
471 		kfree(qi->skbuff_vector);
472 	}
473 	/* deallocate matching IOV structures including header buffs */
474 	if (qi->mmsg_vector != NULL) {
475 		mmsg_vector = qi->mmsg_vector;
476 		for (i = 0; i < qi->max_depth; i++) {
477 			iov = mmsg_vector->msg_hdr.msg_iov;
478 			if (iov != NULL) {
479 				if ((vp->header_size > 0) &&
480 					(iov->iov_base != NULL))
481 					kfree(iov->iov_base);
482 				kfree(iov);
483 			}
484 			mmsg_vector++;
485 		}
486 		kfree(qi->mmsg_vector);
487 	}
488 	kfree(qi);
489 }
490 
491 /*
492  * Queue constructor. Create a queue with a given side.
493  */
494 static struct vector_queue *create_queue(
495 	struct vector_private *vp,
496 	int max_size,
497 	int header_size,
498 	int num_extra_frags)
499 {
500 	struct vector_queue *result;
501 	int i;
502 	struct iovec *iov;
503 	struct mmsghdr *mmsg_vector;
504 
505 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
506 	if (result == NULL)
507 		goto out_fail;
508 	result->max_depth = max_size;
509 	result->dev = vp->dev;
510 	result->mmsg_vector = kmalloc(
511 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
512 	result->skbuff_vector = kmalloc(
513 		(sizeof(void *) * max_size), GFP_KERNEL);
514 	if (result->mmsg_vector == NULL || result->skbuff_vector == NULL)
515 		goto out_fail;
516 
517 	mmsg_vector = result->mmsg_vector;
518 	for (i = 0; i < max_size; i++) {
519 		/* Clear all pointers - we use non-NULL as marking on
520 		 * what to free on destruction
521 		 */
522 		*(result->skbuff_vector + i) = NULL;
523 		mmsg_vector->msg_hdr.msg_iov = NULL;
524 		mmsg_vector++;
525 	}
526 	mmsg_vector = result->mmsg_vector;
527 	result->max_iov_frags = num_extra_frags;
528 	for (i = 0; i < max_size; i++) {
529 		if (vp->header_size > 0)
530 			iov = kmalloc(
531 				sizeof(struct iovec) * (3 + num_extra_frags),
532 				GFP_KERNEL
533 			);
534 		else
535 			iov = kmalloc(
536 				sizeof(struct iovec) * (2 + num_extra_frags),
537 				GFP_KERNEL
538 			);
539 		if (iov == NULL)
540 			goto out_fail;
541 		mmsg_vector->msg_hdr.msg_iov = iov;
542 		mmsg_vector->msg_hdr.msg_iovlen = 1;
543 		mmsg_vector->msg_hdr.msg_control = NULL;
544 		mmsg_vector->msg_hdr.msg_controllen = 0;
545 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
546 		mmsg_vector->msg_hdr.msg_name = NULL;
547 		mmsg_vector->msg_hdr.msg_namelen = 0;
548 		if (vp->header_size > 0) {
549 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
550 			if (iov->iov_base == NULL)
551 				goto out_fail;
552 			iov->iov_len = header_size;
553 			mmsg_vector->msg_hdr.msg_iovlen = 2;
554 			iov++;
555 		}
556 		iov->iov_base = NULL;
557 		iov->iov_len = 0;
558 		mmsg_vector++;
559 	}
560 	spin_lock_init(&result->head_lock);
561 	spin_lock_init(&result->tail_lock);
562 	result->queue_depth = 0;
563 	result->head = 0;
564 	result->tail = 0;
565 	return result;
566 out_fail:
567 	destroy_queue(result);
568 	return NULL;
569 }
570 
571 /*
572  * We do not use the RX queue as a proper wraparound queue for now
573  * This is not necessary because the consumption via netif_rx()
574  * happens in-line. While we can try using the return code of
575  * netif_rx() for flow control there are no drivers doing this today.
576  * For this RX specific use we ignore the tail/head locks and
577  * just read into a prepared queue filled with skbuffs.
578  */
579 
580 static struct sk_buff *prep_skb(
581 	struct vector_private *vp,
582 	struct user_msghdr *msg)
583 {
584 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
585 	struct sk_buff *result;
586 	int iov_index = 0, len;
587 	struct iovec *iov = msg->msg_iov;
588 	int err, nr_frags, frag;
589 	skb_frag_t *skb_frag;
590 
591 	if (vp->req_size <= linear)
592 		len = linear;
593 	else
594 		len = vp->req_size;
595 	result = alloc_skb_with_frags(
596 		linear,
597 		len - vp->max_packet,
598 		3,
599 		&err,
600 		GFP_ATOMIC
601 	);
602 	if (vp->header_size > 0)
603 		iov_index++;
604 	if (result == NULL) {
605 		iov[iov_index].iov_base = NULL;
606 		iov[iov_index].iov_len = 0;
607 		goto done;
608 	}
609 	skb_reserve(result, vp->headroom);
610 	result->dev = vp->dev;
611 	skb_put(result, vp->max_packet);
612 	result->data_len = len - vp->max_packet;
613 	result->len += len - vp->max_packet;
614 	skb_reset_mac_header(result);
615 	result->ip_summed = CHECKSUM_NONE;
616 	iov[iov_index].iov_base = result->data;
617 	iov[iov_index].iov_len = vp->max_packet;
618 	iov_index++;
619 
620 	nr_frags = skb_shinfo(result)->nr_frags;
621 	for (frag = 0; frag < nr_frags; frag++) {
622 		skb_frag = &skb_shinfo(result)->frags[frag];
623 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
624 		if (iov[iov_index].iov_base != NULL)
625 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
626 		else
627 			iov[iov_index].iov_len = 0;
628 		iov_index++;
629 	}
630 done:
631 	msg->msg_iovlen = iov_index;
632 	return result;
633 }
634 
635 
636 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
637 
638 static void prep_queue_for_rx(struct vector_queue *qi)
639 {
640 	struct vector_private *vp = netdev_priv(qi->dev);
641 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
642 	void **skbuff_vector = qi->skbuff_vector;
643 	int i;
644 
645 	if (qi->queue_depth == 0)
646 		return;
647 	for (i = 0; i < qi->queue_depth; i++) {
648 		/* it is OK if allocation fails - recvmmsg with NULL data in
649 		 * iov argument still performs an RX, just drops the packet
650 		 * This allows us stop faffing around with a "drop buffer"
651 		 */
652 
653 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
654 		skbuff_vector++;
655 		mmsg_vector++;
656 	}
657 	qi->queue_depth = 0;
658 }
659 
660 static struct vector_device *find_device(int n)
661 {
662 	struct vector_device *device;
663 	struct list_head *ele;
664 
665 	spin_lock(&vector_devices_lock);
666 	list_for_each(ele, &vector_devices) {
667 		device = list_entry(ele, struct vector_device, list);
668 		if (device->unit == n)
669 			goto out;
670 	}
671 	device = NULL;
672  out:
673 	spin_unlock(&vector_devices_lock);
674 	return device;
675 }
676 
677 static int vector_parse(char *str, int *index_out, char **str_out,
678 			char **error_out)
679 {
680 	int n, len, err;
681 	char *start = str;
682 
683 	len = strlen(str);
684 
685 	while ((*str != ':') && (strlen(str) > 1))
686 		str++;
687 	if (*str != ':') {
688 		*error_out = "Expected ':' after device number";
689 		return -EINVAL;
690 	}
691 	*str = '\0';
692 
693 	err = kstrtouint(start, 0, &n);
694 	if (err < 0) {
695 		*error_out = "Bad device number";
696 		return err;
697 	}
698 
699 	str++;
700 	if (find_device(n)) {
701 		*error_out = "Device already configured";
702 		return -EINVAL;
703 	}
704 
705 	*index_out = n;
706 	*str_out = str;
707 	return 0;
708 }
709 
710 static int vector_config(char *str, char **error_out)
711 {
712 	int err, n;
713 	char *params;
714 	struct arglist *parsed;
715 
716 	err = vector_parse(str, &n, &params, error_out);
717 	if (err != 0)
718 		return err;
719 
720 	/* This string is broken up and the pieces used by the underlying
721 	 * driver. We should copy it to make sure things do not go wrong
722 	 * later.
723 	 */
724 
725 	params = kstrdup(params, GFP_KERNEL);
726 	if (params == NULL) {
727 		*error_out = "vector_config failed to strdup string";
728 		return -ENOMEM;
729 	}
730 
731 	parsed = uml_parse_vector_ifspec(params);
732 
733 	if (parsed == NULL) {
734 		*error_out = "vector_config failed to parse parameters";
735 		return -EINVAL;
736 	}
737 
738 	vector_eth_configure(n, parsed);
739 	return 0;
740 }
741 
742 static int vector_id(char **str, int *start_out, int *end_out)
743 {
744 	char *end;
745 	int n;
746 
747 	n = simple_strtoul(*str, &end, 0);
748 	if ((*end != '\0') || (end == *str))
749 		return -1;
750 
751 	*start_out = n;
752 	*end_out = n;
753 	*str = end;
754 	return n;
755 }
756 
757 static int vector_remove(int n, char **error_out)
758 {
759 	struct vector_device *vec_d;
760 	struct net_device *dev;
761 	struct vector_private *vp;
762 
763 	vec_d = find_device(n);
764 	if (vec_d == NULL)
765 		return -ENODEV;
766 	dev = vec_d->dev;
767 	vp = netdev_priv(dev);
768 	if (vp->fds != NULL)
769 		return -EBUSY;
770 	unregister_netdev(dev);
771 	platform_device_unregister(&vec_d->pdev);
772 	return 0;
773 }
774 
775 /*
776  * There is no shared per-transport initialization code, so
777  * we will just initialize each interface one by one and
778  * add them to a list
779  */
780 
781 static struct platform_driver uml_net_driver = {
782 	.driver = {
783 		.name = DRIVER_NAME,
784 	},
785 };
786 
787 
788 static void vector_device_release(struct device *dev)
789 {
790 	struct vector_device *device = dev_get_drvdata(dev);
791 	struct net_device *netdev = device->dev;
792 
793 	list_del(&device->list);
794 	kfree(device);
795 	free_netdev(netdev);
796 }
797 
798 /* Bog standard recv using recvmsg - not used normally unless the user
799  * explicitly specifies not to use recvmmsg vector RX.
800  */
801 
802 static int vector_legacy_rx(struct vector_private *vp)
803 {
804 	int pkt_len;
805 	struct user_msghdr hdr;
806 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
807 	int iovpos = 0;
808 	struct sk_buff *skb;
809 	int header_check;
810 
811 	hdr.msg_name = NULL;
812 	hdr.msg_namelen = 0;
813 	hdr.msg_iov = (struct iovec *) &iov;
814 	hdr.msg_control = NULL;
815 	hdr.msg_controllen = 0;
816 	hdr.msg_flags = 0;
817 
818 	if (vp->header_size > 0) {
819 		iov[0].iov_base = vp->header_rxbuffer;
820 		iov[0].iov_len = vp->header_size;
821 	}
822 
823 	skb = prep_skb(vp, &hdr);
824 
825 	if (skb == NULL) {
826 		/* Read a packet into drop_buffer and don't do
827 		 * anything with it.
828 		 */
829 		iov[iovpos].iov_base = drop_buffer;
830 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
831 		hdr.msg_iovlen = 1;
832 		vp->dev->stats.rx_dropped++;
833 	}
834 
835 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
836 
837 	if (skb != NULL) {
838 		if (pkt_len > vp->header_size) {
839 			if (vp->header_size > 0) {
840 				header_check = vp->verify_header(
841 					vp->header_rxbuffer, skb, vp);
842 				if (header_check < 0) {
843 					dev_kfree_skb_irq(skb);
844 					vp->dev->stats.rx_dropped++;
845 					vp->estats.rx_encaps_errors++;
846 					return 0;
847 				}
848 				if (header_check > 0) {
849 					vp->estats.rx_csum_offload_good++;
850 					skb->ip_summed = CHECKSUM_UNNECESSARY;
851 				}
852 			}
853 			pskb_trim(skb, pkt_len - vp->rx_header_size);
854 			skb->protocol = eth_type_trans(skb, skb->dev);
855 			vp->dev->stats.rx_bytes += skb->len;
856 			vp->dev->stats.rx_packets++;
857 			netif_rx(skb);
858 		} else {
859 			dev_kfree_skb_irq(skb);
860 		}
861 	}
862 	return pkt_len;
863 }
864 
865 /*
866  * Packet at a time TX which falls back to vector TX if the
867  * underlying transport is busy.
868  */
869 
870 
871 
872 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
873 {
874 	struct iovec iov[3 + MAX_IOV_SIZE];
875 	int iov_count, pkt_len = 0;
876 
877 	iov[0].iov_base = vp->header_txbuffer;
878 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
879 
880 	if (iov_count < 1)
881 		goto drop;
882 	pkt_len = uml_vector_writev(
883 		vp->fds->tx_fd,
884 		(struct iovec *) &iov,
885 		iov_count
886 	);
887 
888 	netif_trans_update(vp->dev);
889 	netif_wake_queue(vp->dev);
890 
891 	if (pkt_len > 0) {
892 		vp->dev->stats.tx_bytes += skb->len;
893 		vp->dev->stats.tx_packets++;
894 	} else {
895 		vp->dev->stats.tx_dropped++;
896 	}
897 	consume_skb(skb);
898 	return pkt_len;
899 drop:
900 	vp->dev->stats.tx_dropped++;
901 	consume_skb(skb);
902 	return pkt_len;
903 }
904 
905 /*
906  * Receive as many messages as we can in one call using the special
907  * mmsg vector matched to an skb vector which we prepared earlier.
908  */
909 
910 static int vector_mmsg_rx(struct vector_private *vp)
911 {
912 	int packet_count, i;
913 	struct vector_queue *qi = vp->rx_queue;
914 	struct sk_buff *skb;
915 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
916 	void **skbuff_vector = qi->skbuff_vector;
917 	int header_check;
918 
919 	/* Refresh the vector and make sure it is with new skbs and the
920 	 * iovs are updated to point to them.
921 	 */
922 
923 	prep_queue_for_rx(qi);
924 
925 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
926 
927 	packet_count = uml_vector_recvmmsg(
928 		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
929 
930 	if (packet_count <= 0)
931 		return packet_count;
932 
933 	/* We treat packet processing as enqueue, buffer refresh as dequeue
934 	 * The queue_depth tells us how many buffers have been used and how
935 	 * many do we need to prep the next time prep_queue_for_rx() is called.
936 	 */
937 
938 	qi->queue_depth = packet_count;
939 
940 	for (i = 0; i < packet_count; i++) {
941 		skb = (*skbuff_vector);
942 		if (mmsg_vector->msg_len > vp->header_size) {
943 			if (vp->header_size > 0) {
944 				header_check = vp->verify_header(
945 					mmsg_vector->msg_hdr.msg_iov->iov_base,
946 					skb,
947 					vp
948 				);
949 				if (header_check < 0) {
950 				/* Overlay header failed to verify - discard.
951 				 * We can actually keep this skb and reuse it,
952 				 * but that will make the prep logic too
953 				 * complex.
954 				 */
955 					dev_kfree_skb_irq(skb);
956 					vp->estats.rx_encaps_errors++;
957 					continue;
958 				}
959 				if (header_check > 0) {
960 					vp->estats.rx_csum_offload_good++;
961 					skb->ip_summed = CHECKSUM_UNNECESSARY;
962 				}
963 			}
964 			pskb_trim(skb,
965 				mmsg_vector->msg_len - vp->rx_header_size);
966 			skb->protocol = eth_type_trans(skb, skb->dev);
967 			/*
968 			 * We do not need to lock on updating stats here
969 			 * The interrupt loop is non-reentrant.
970 			 */
971 			vp->dev->stats.rx_bytes += skb->len;
972 			vp->dev->stats.rx_packets++;
973 			netif_rx(skb);
974 		} else {
975 			/* Overlay header too short to do anything - discard.
976 			 * We can actually keep this skb and reuse it,
977 			 * but that will make the prep logic too complex.
978 			 */
979 			if (skb != NULL)
980 				dev_kfree_skb_irq(skb);
981 		}
982 		(*skbuff_vector) = NULL;
983 		/* Move to the next buffer element */
984 		mmsg_vector++;
985 		skbuff_vector++;
986 	}
987 	if (packet_count > 0) {
988 		if (vp->estats.rx_queue_max < packet_count)
989 			vp->estats.rx_queue_max = packet_count;
990 		vp->estats.rx_queue_running_average =
991 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
992 	}
993 	return packet_count;
994 }
995 
996 static void vector_rx(struct vector_private *vp)
997 {
998 	int err;
999 
1000 	if ((vp->options & VECTOR_RX) > 0)
1001 		while ((err = vector_mmsg_rx(vp)) > 0)
1002 			;
1003 	else
1004 		while ((err = vector_legacy_rx(vp)) > 0)
1005 			;
1006 	if ((err != 0) && net_ratelimit())
1007 		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1008 }
1009 
1010 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1011 {
1012 	struct vector_private *vp = netdev_priv(dev);
1013 	int queue_depth = 0;
1014 
1015 	if ((vp->options & VECTOR_TX) == 0) {
1016 		writev_tx(vp, skb);
1017 		return NETDEV_TX_OK;
1018 	}
1019 
1020 	/* We do BQL only in the vector path, no point doing it in
1021 	 * packet at a time mode as there is no device queue
1022 	 */
1023 
1024 	netdev_sent_queue(vp->dev, skb->len);
1025 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1026 
1027 	/* if the device queue is full, stop the upper layers and
1028 	 * flush it.
1029 	 */
1030 
1031 	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1032 		vp->estats.tx_kicks++;
1033 		netif_stop_queue(dev);
1034 		vector_send(vp->tx_queue);
1035 		return NETDEV_TX_OK;
1036 	}
1037 	if (skb->xmit_more) {
1038 		mod_timer(&vp->tl, vp->coalesce);
1039 		return NETDEV_TX_OK;
1040 	}
1041 	if (skb->len < TX_SMALL_PACKET) {
1042 		vp->estats.tx_kicks++;
1043 		vector_send(vp->tx_queue);
1044 	} else
1045 		tasklet_schedule(&vp->tx_poll);
1046 	return NETDEV_TX_OK;
1047 }
1048 
1049 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1050 {
1051 	struct net_device *dev = dev_id;
1052 	struct vector_private *vp = netdev_priv(dev);
1053 
1054 	if (!netif_running(dev))
1055 		return IRQ_NONE;
1056 	vector_rx(vp);
1057 	return IRQ_HANDLED;
1058 
1059 }
1060 
1061 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1062 {
1063 	struct net_device *dev = dev_id;
1064 	struct vector_private *vp = netdev_priv(dev);
1065 
1066 	if (!netif_running(dev))
1067 		return IRQ_NONE;
1068 	/* We need to pay attention to it only if we got
1069 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1070 	 * we ignore it. In the future, it may be worth
1071 	 * it to improve the IRQ controller a bit to make
1072 	 * tweaking the IRQ mask less costly
1073 	 */
1074 
1075 	if (vp->in_write_poll)
1076 		tasklet_schedule(&vp->tx_poll);
1077 	return IRQ_HANDLED;
1078 
1079 }
1080 
1081 static int irq_rr;
1082 
1083 static int vector_net_close(struct net_device *dev)
1084 {
1085 	struct vector_private *vp = netdev_priv(dev);
1086 	unsigned long flags;
1087 
1088 	netif_stop_queue(dev);
1089 	del_timer(&vp->tl);
1090 
1091 	if (vp->fds == NULL)
1092 		return 0;
1093 
1094 	/* Disable and free all IRQS */
1095 	if (vp->rx_irq > 0) {
1096 		um_free_irq(vp->rx_irq, dev);
1097 		vp->rx_irq = 0;
1098 	}
1099 	if (vp->tx_irq > 0) {
1100 		um_free_irq(vp->tx_irq, dev);
1101 		vp->tx_irq = 0;
1102 	}
1103 	tasklet_kill(&vp->tx_poll);
1104 	if (vp->fds->rx_fd > 0) {
1105 		os_close_file(vp->fds->rx_fd);
1106 		vp->fds->rx_fd = -1;
1107 	}
1108 	if (vp->fds->tx_fd > 0) {
1109 		os_close_file(vp->fds->tx_fd);
1110 		vp->fds->tx_fd = -1;
1111 	}
1112 	if (vp->bpf != NULL)
1113 		kfree(vp->bpf);
1114 	if (vp->fds->remote_addr != NULL)
1115 		kfree(vp->fds->remote_addr);
1116 	if (vp->transport_data != NULL)
1117 		kfree(vp->transport_data);
1118 	if (vp->header_rxbuffer != NULL)
1119 		kfree(vp->header_rxbuffer);
1120 	if (vp->header_txbuffer != NULL)
1121 		kfree(vp->header_txbuffer);
1122 	if (vp->rx_queue != NULL)
1123 		destroy_queue(vp->rx_queue);
1124 	if (vp->tx_queue != NULL)
1125 		destroy_queue(vp->tx_queue);
1126 	kfree(vp->fds);
1127 	vp->fds = NULL;
1128 	spin_lock_irqsave(&vp->lock, flags);
1129 	vp->opened = false;
1130 	spin_unlock_irqrestore(&vp->lock, flags);
1131 	return 0;
1132 }
1133 
1134 /* TX tasklet */
1135 
1136 static void vector_tx_poll(unsigned long data)
1137 {
1138 	struct vector_private *vp = (struct vector_private *)data;
1139 
1140 	vp->estats.tx_kicks++;
1141 	vector_send(vp->tx_queue);
1142 }
1143 static void vector_reset_tx(struct work_struct *work)
1144 {
1145 	struct vector_private *vp =
1146 		container_of(work, struct vector_private, reset_tx);
1147 	netdev_reset_queue(vp->dev);
1148 	netif_start_queue(vp->dev);
1149 	netif_wake_queue(vp->dev);
1150 }
1151 static int vector_net_open(struct net_device *dev)
1152 {
1153 	struct vector_private *vp = netdev_priv(dev);
1154 	unsigned long flags;
1155 	int err = -EINVAL;
1156 	struct vector_device *vdevice;
1157 
1158 	spin_lock_irqsave(&vp->lock, flags);
1159 	if (vp->opened) {
1160 		spin_unlock_irqrestore(&vp->lock, flags);
1161 		return -ENXIO;
1162 	}
1163 	vp->opened = true;
1164 	spin_unlock_irqrestore(&vp->lock, flags);
1165 
1166 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1167 
1168 	if (vp->fds == NULL)
1169 		goto out_close;
1170 
1171 	if (build_transport_data(vp) < 0)
1172 		goto out_close;
1173 
1174 	if ((vp->options & VECTOR_RX) > 0) {
1175 		vp->rx_queue = create_queue(
1176 			vp,
1177 			get_depth(vp->parsed),
1178 			vp->rx_header_size,
1179 			MAX_IOV_SIZE
1180 		);
1181 		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1182 	} else {
1183 		vp->header_rxbuffer = kmalloc(
1184 			vp->rx_header_size,
1185 			GFP_KERNEL
1186 		);
1187 		if (vp->header_rxbuffer == NULL)
1188 			goto out_close;
1189 	}
1190 	if ((vp->options & VECTOR_TX) > 0) {
1191 		vp->tx_queue = create_queue(
1192 			vp,
1193 			get_depth(vp->parsed),
1194 			vp->header_size,
1195 			MAX_IOV_SIZE
1196 		);
1197 	} else {
1198 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1199 		if (vp->header_txbuffer == NULL)
1200 			goto out_close;
1201 	}
1202 
1203 	/* READ IRQ */
1204 	err = um_request_irq(
1205 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1206 			IRQ_READ, vector_rx_interrupt,
1207 			IRQF_SHARED, dev->name, dev);
1208 	if (err != 0) {
1209 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1210 		err = -ENETUNREACH;
1211 		goto out_close;
1212 	}
1213 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1214 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1215 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1216 
1217 	/* WRITE IRQ - we need it only if we have vector TX */
1218 	if ((vp->options & VECTOR_TX) > 0) {
1219 		err = um_request_irq(
1220 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1221 				IRQ_WRITE, vector_tx_interrupt,
1222 				IRQF_SHARED, dev->name, dev);
1223 		if (err != 0) {
1224 			netdev_err(dev,
1225 				"vector_open: failed to get tx irq(%d)\n", err);
1226 			err = -ENETUNREACH;
1227 			goto out_close;
1228 		}
1229 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1230 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1231 	}
1232 
1233 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1234 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1235 			vp->options = vp->options | VECTOR_BPF;
1236 	}
1237 
1238 	if ((vp->options & VECTOR_BPF) != 0)
1239 		vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
1240 
1241 	netif_start_queue(dev);
1242 
1243 	/* clear buffer - it can happen that the host side of the interface
1244 	 * is full when we get here. In this case, new data is never queued,
1245 	 * SIGIOs never arrive, and the net never works.
1246 	 */
1247 
1248 	vector_rx(vp);
1249 
1250 	vector_reset_stats(vp);
1251 	vdevice = find_device(vp->unit);
1252 	vdevice->opened = 1;
1253 
1254 	if ((vp->options & VECTOR_TX) != 0)
1255 		add_timer(&vp->tl);
1256 	return 0;
1257 out_close:
1258 	vector_net_close(dev);
1259 	return err;
1260 }
1261 
1262 
1263 static void vector_net_set_multicast_list(struct net_device *dev)
1264 {
1265 	/* TODO: - we can do some BPF games here */
1266 	return;
1267 }
1268 
1269 static void vector_net_tx_timeout(struct net_device *dev)
1270 {
1271 	struct vector_private *vp = netdev_priv(dev);
1272 
1273 	vp->estats.tx_timeout_count++;
1274 	netif_trans_update(dev);
1275 	schedule_work(&vp->reset_tx);
1276 }
1277 
1278 static netdev_features_t vector_fix_features(struct net_device *dev,
1279 	netdev_features_t features)
1280 {
1281 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1282 	return features;
1283 }
1284 
1285 static int vector_set_features(struct net_device *dev,
1286 	netdev_features_t features)
1287 {
1288 	struct vector_private *vp = netdev_priv(dev);
1289 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1290 	 * no way to negotiate it on raw sockets, so we can change
1291 	 * only our side.
1292 	 */
1293 	if (features & NETIF_F_GRO)
1294 		/* All new frame buffers will be GRO-sized */
1295 		vp->req_size = 65536;
1296 	else
1297 		/* All new frame buffers will be normal sized */
1298 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1299 	return 0;
1300 }
1301 
1302 #ifdef CONFIG_NET_POLL_CONTROLLER
1303 static void vector_net_poll_controller(struct net_device *dev)
1304 {
1305 	disable_irq(dev->irq);
1306 	vector_rx_interrupt(dev->irq, dev);
1307 	enable_irq(dev->irq);
1308 }
1309 #endif
1310 
1311 static void vector_net_get_drvinfo(struct net_device *dev,
1312 				struct ethtool_drvinfo *info)
1313 {
1314 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1315 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1316 }
1317 
1318 static void vector_get_ringparam(struct net_device *netdev,
1319 				struct ethtool_ringparam *ring)
1320 {
1321 	struct vector_private *vp = netdev_priv(netdev);
1322 
1323 	ring->rx_max_pending = vp->rx_queue->max_depth;
1324 	ring->tx_max_pending = vp->tx_queue->max_depth;
1325 	ring->rx_pending = vp->rx_queue->max_depth;
1326 	ring->tx_pending = vp->tx_queue->max_depth;
1327 }
1328 
1329 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1330 {
1331 	switch (stringset) {
1332 	case ETH_SS_TEST:
1333 		*buf = '\0';
1334 		break;
1335 	case ETH_SS_STATS:
1336 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1337 		break;
1338 	default:
1339 		WARN_ON(1);
1340 		break;
1341 	}
1342 }
1343 
1344 static int vector_get_sset_count(struct net_device *dev, int sset)
1345 {
1346 	switch (sset) {
1347 	case ETH_SS_TEST:
1348 		return 0;
1349 	case ETH_SS_STATS:
1350 		return VECTOR_NUM_STATS;
1351 	default:
1352 		return -EOPNOTSUPP;
1353 	}
1354 }
1355 
1356 static void vector_get_ethtool_stats(struct net_device *dev,
1357 	struct ethtool_stats *estats,
1358 	u64 *tmp_stats)
1359 {
1360 	struct vector_private *vp = netdev_priv(dev);
1361 
1362 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1363 }
1364 
1365 static int vector_get_coalesce(struct net_device *netdev,
1366 					struct ethtool_coalesce *ec)
1367 {
1368 	struct vector_private *vp = netdev_priv(netdev);
1369 
1370 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1371 	return 0;
1372 }
1373 
1374 static int vector_set_coalesce(struct net_device *netdev,
1375 					struct ethtool_coalesce *ec)
1376 {
1377 	struct vector_private *vp = netdev_priv(netdev);
1378 
1379 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1380 	if (vp->coalesce == 0)
1381 		vp->coalesce = 1;
1382 	return 0;
1383 }
1384 
1385 static const struct ethtool_ops vector_net_ethtool_ops = {
1386 	.get_drvinfo	= vector_net_get_drvinfo,
1387 	.get_link	= ethtool_op_get_link,
1388 	.get_ts_info	= ethtool_op_get_ts_info,
1389 	.get_ringparam	= vector_get_ringparam,
1390 	.get_strings	= vector_get_strings,
1391 	.get_sset_count	= vector_get_sset_count,
1392 	.get_ethtool_stats = vector_get_ethtool_stats,
1393 	.get_coalesce	= vector_get_coalesce,
1394 	.set_coalesce	= vector_set_coalesce,
1395 };
1396 
1397 
1398 static const struct net_device_ops vector_netdev_ops = {
1399 	.ndo_open		= vector_net_open,
1400 	.ndo_stop		= vector_net_close,
1401 	.ndo_start_xmit		= vector_net_start_xmit,
1402 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1403 	.ndo_tx_timeout		= vector_net_tx_timeout,
1404 	.ndo_set_mac_address	= eth_mac_addr,
1405 	.ndo_validate_addr	= eth_validate_addr,
1406 	.ndo_fix_features	= vector_fix_features,
1407 	.ndo_set_features	= vector_set_features,
1408 #ifdef CONFIG_NET_POLL_CONTROLLER
1409 	.ndo_poll_controller = vector_net_poll_controller,
1410 #endif
1411 };
1412 
1413 
1414 static void vector_timer_expire(struct timer_list *t)
1415 {
1416 	struct vector_private *vp = from_timer(vp, t, tl);
1417 
1418 	vp->estats.tx_kicks++;
1419 	vector_send(vp->tx_queue);
1420 }
1421 
1422 static void vector_eth_configure(
1423 		int n,
1424 		struct arglist *def
1425 	)
1426 {
1427 	struct vector_device *device;
1428 	struct net_device *dev;
1429 	struct vector_private *vp;
1430 	int err;
1431 
1432 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1433 	if (device == NULL) {
1434 		printk(KERN_ERR "eth_configure failed to allocate struct "
1435 				 "vector_device\n");
1436 		return;
1437 	}
1438 	dev = alloc_etherdev(sizeof(struct vector_private));
1439 	if (dev == NULL) {
1440 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1441 				 "net_device for vec%d\n", n);
1442 		goto out_free_device;
1443 	}
1444 
1445 	dev->mtu = get_mtu(def);
1446 
1447 	INIT_LIST_HEAD(&device->list);
1448 	device->unit = n;
1449 
1450 	/* If this name ends up conflicting with an existing registered
1451 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1452 	 * and fail.
1453 	 */
1454 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1455 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1456 	vp = netdev_priv(dev);
1457 
1458 	/* sysfs register */
1459 	if (!driver_registered) {
1460 		platform_driver_register(&uml_net_driver);
1461 		driver_registered = 1;
1462 	}
1463 	device->pdev.id = n;
1464 	device->pdev.name = DRIVER_NAME;
1465 	device->pdev.dev.release = vector_device_release;
1466 	dev_set_drvdata(&device->pdev.dev, device);
1467 	if (platform_device_register(&device->pdev))
1468 		goto out_free_netdev;
1469 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1470 
1471 	device->dev = dev;
1472 
1473 	*vp = ((struct vector_private)
1474 		{
1475 		.list			= LIST_HEAD_INIT(vp->list),
1476 		.dev			= dev,
1477 		.unit			= n,
1478 		.options		= get_transport_options(def),
1479 		.rx_irq			= 0,
1480 		.tx_irq			= 0,
1481 		.parsed			= def,
1482 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1483 		/* TODO - we need to calculate headroom so that ip header
1484 		 * is 16 byte aligned all the time
1485 		 */
1486 		.headroom		= get_headroom(def),
1487 		.form_header		= NULL,
1488 		.verify_header		= NULL,
1489 		.header_rxbuffer	= NULL,
1490 		.header_txbuffer	= NULL,
1491 		.header_size		= 0,
1492 		.rx_header_size		= 0,
1493 		.rexmit_scheduled	= false,
1494 		.opened			= false,
1495 		.transport_data		= NULL,
1496 		.in_write_poll		= false,
1497 		.coalesce		= 2,
1498 		.req_size		= get_req_size(def)
1499 		});
1500 
1501 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1502 	tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1503 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1504 
1505 	timer_setup(&vp->tl, vector_timer_expire, 0);
1506 	spin_lock_init(&vp->lock);
1507 
1508 	/* FIXME */
1509 	dev->netdev_ops = &vector_netdev_ops;
1510 	dev->ethtool_ops = &vector_net_ethtool_ops;
1511 	dev->watchdog_timeo = (HZ >> 1);
1512 	/* primary IRQ - fixme */
1513 	dev->irq = 0; /* we will adjust this once opened */
1514 
1515 	rtnl_lock();
1516 	err = register_netdevice(dev);
1517 	rtnl_unlock();
1518 	if (err)
1519 		goto out_undo_user_init;
1520 
1521 	spin_lock(&vector_devices_lock);
1522 	list_add(&device->list, &vector_devices);
1523 	spin_unlock(&vector_devices_lock);
1524 
1525 	return;
1526 
1527 out_undo_user_init:
1528 	return;
1529 out_free_netdev:
1530 	free_netdev(dev);
1531 out_free_device:
1532 	kfree(device);
1533 }
1534 
1535 
1536 
1537 
1538 /*
1539  * Invoked late in the init
1540  */
1541 
1542 static int __init vector_init(void)
1543 {
1544 	struct list_head *ele;
1545 	struct vector_cmd_line_arg *def;
1546 	struct arglist *parsed;
1547 
1548 	list_for_each(ele, &vec_cmd_line) {
1549 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1550 		parsed = uml_parse_vector_ifspec(def->arguments);
1551 		if (parsed != NULL)
1552 			vector_eth_configure(def->unit, parsed);
1553 	}
1554 	return 0;
1555 }
1556 
1557 
1558 /* Invoked at initial argument parsing, only stores
1559  * arguments until a proper vector_init is called
1560  * later
1561  */
1562 
1563 static int __init vector_setup(char *str)
1564 {
1565 	char *error;
1566 	int n, err;
1567 	struct vector_cmd_line_arg *new;
1568 
1569 	err = vector_parse(str, &n, &str, &error);
1570 	if (err) {
1571 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1572 				 str, error);
1573 		return 1;
1574 	}
1575 	new = alloc_bootmem(sizeof(*new));
1576 	INIT_LIST_HEAD(&new->list);
1577 	new->unit = n;
1578 	new->arguments = str;
1579 	list_add_tail(&new->list, &vec_cmd_line);
1580 	return 1;
1581 }
1582 
1583 __setup("vec", vector_setup);
1584 __uml_help(vector_setup,
1585 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1586 "	 Configure a vector io network device.\n\n"
1587 );
1588 
1589 late_initcall(vector_init);
1590 
1591 static struct mc_device vector_mc = {
1592 	.list		= LIST_HEAD_INIT(vector_mc.list),
1593 	.name		= "vec",
1594 	.config		= vector_config,
1595 	.get_config	= NULL,
1596 	.id		= vector_id,
1597 	.remove		= vector_remove,
1598 };
1599 
1600 #ifdef CONFIG_INET
1601 static int vector_inetaddr_event(
1602 	struct notifier_block *this,
1603 	unsigned long event,
1604 	void *ptr)
1605 {
1606 	return NOTIFY_DONE;
1607 }
1608 
1609 static struct notifier_block vector_inetaddr_notifier = {
1610 	.notifier_call		= vector_inetaddr_event,
1611 };
1612 
1613 static void inet_register(void)
1614 {
1615 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1616 }
1617 #else
1618 static inline void inet_register(void)
1619 {
1620 }
1621 #endif
1622 
1623 static int vector_net_init(void)
1624 {
1625 	mconsole_register_dev(&vector_mc);
1626 	inet_register();
1627 	return 0;
1628 }
1629 
1630 __initcall(vector_net_init);
1631 
1632 
1633 
1634