xref: /linux/arch/sparc/mm/init_64.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329 	struct mm_struct *mm;
330 	unsigned long flags;
331 	pte_t pte = *ptep;
332 
333 	if (tlb_type != hypervisor) {
334 		unsigned long pfn = pte_pfn(pte);
335 
336 		if (pfn_valid(pfn))
337 			flush_dcache(pfn);
338 	}
339 
340 	mm = vma->vm_mm;
341 
342 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343 	if (!pte_accessible(mm, pte))
344 		return;
345 
346 	spin_lock_irqsave(&mm->context.lock, flags);
347 
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349 	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
350 	    is_hugetlb_pte(pte)) {
351 		/* We are fabricating 8MB pages using 4MB real hw pages.  */
352 		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
353 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
354 					address, pte_val(pte));
355 	} else
356 #endif
357 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
358 					address, pte_val(pte));
359 
360 	spin_unlock_irqrestore(&mm->context.lock, flags);
361 }
362 
363 void flush_dcache_page(struct page *page)
364 {
365 	struct address_space *mapping;
366 	int this_cpu;
367 
368 	if (tlb_type == hypervisor)
369 		return;
370 
371 	/* Do not bother with the expensive D-cache flush if it
372 	 * is merely the zero page.  The 'bigcore' testcase in GDB
373 	 * causes this case to run millions of times.
374 	 */
375 	if (page == ZERO_PAGE(0))
376 		return;
377 
378 	this_cpu = get_cpu();
379 
380 	mapping = page_mapping(page);
381 	if (mapping && !mapping_mapped(mapping)) {
382 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
383 		if (dirty) {
384 			int dirty_cpu = dcache_dirty_cpu(page);
385 
386 			if (dirty_cpu == this_cpu)
387 				goto out;
388 			smp_flush_dcache_page_impl(page, dirty_cpu);
389 		}
390 		set_dcache_dirty(page, this_cpu);
391 	} else {
392 		/* We could delay the flush for the !page_mapping
393 		 * case too.  But that case is for exec env/arg
394 		 * pages and those are %99 certainly going to get
395 		 * faulted into the tlb (and thus flushed) anyways.
396 		 */
397 		flush_dcache_page_impl(page);
398 	}
399 
400 out:
401 	put_cpu();
402 }
403 EXPORT_SYMBOL(flush_dcache_page);
404 
405 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
406 {
407 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
408 	if (tlb_type == spitfire) {
409 		unsigned long kaddr;
410 
411 		/* This code only runs on Spitfire cpus so this is
412 		 * why we can assume _PAGE_PADDR_4U.
413 		 */
414 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
415 			unsigned long paddr, mask = _PAGE_PADDR_4U;
416 
417 			if (kaddr >= PAGE_OFFSET)
418 				paddr = kaddr & mask;
419 			else {
420 				pgd_t *pgdp = pgd_offset_k(kaddr);
421 				pud_t *pudp = pud_offset(pgdp, kaddr);
422 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
423 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
424 
425 				paddr = pte_val(*ptep) & mask;
426 			}
427 			__flush_icache_page(paddr);
428 		}
429 	}
430 }
431 EXPORT_SYMBOL(flush_icache_range);
432 
433 void mmu_info(struct seq_file *m)
434 {
435 	static const char *pgsz_strings[] = {
436 		"8K", "64K", "512K", "4MB", "32MB",
437 		"256MB", "2GB", "16GB",
438 	};
439 	int i, printed;
440 
441 	if (tlb_type == cheetah)
442 		seq_printf(m, "MMU Type\t: Cheetah\n");
443 	else if (tlb_type == cheetah_plus)
444 		seq_printf(m, "MMU Type\t: Cheetah+\n");
445 	else if (tlb_type == spitfire)
446 		seq_printf(m, "MMU Type\t: Spitfire\n");
447 	else if (tlb_type == hypervisor)
448 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449 	else
450 		seq_printf(m, "MMU Type\t: ???\n");
451 
452 	seq_printf(m, "MMU PGSZs\t: ");
453 	printed = 0;
454 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
455 		if (cpu_pgsz_mask & (1UL << i)) {
456 			seq_printf(m, "%s%s",
457 				   printed ? "," : "", pgsz_strings[i]);
458 			printed++;
459 		}
460 	}
461 	seq_putc(m, '\n');
462 
463 #ifdef CONFIG_DEBUG_DCFLUSH
464 	seq_printf(m, "DCPageFlushes\t: %d\n",
465 		   atomic_read(&dcpage_flushes));
466 #ifdef CONFIG_SMP
467 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
468 		   atomic_read(&dcpage_flushes_xcall));
469 #endif /* CONFIG_SMP */
470 #endif /* CONFIG_DEBUG_DCFLUSH */
471 }
472 
473 struct linux_prom_translation prom_trans[512] __read_mostly;
474 unsigned int prom_trans_ents __read_mostly;
475 
476 unsigned long kern_locked_tte_data;
477 
478 /* The obp translations are saved based on 8k pagesize, since obp can
479  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
480  * HI_OBP_ADDRESS range are handled in ktlb.S.
481  */
482 static inline int in_obp_range(unsigned long vaddr)
483 {
484 	return (vaddr >= LOW_OBP_ADDRESS &&
485 		vaddr < HI_OBP_ADDRESS);
486 }
487 
488 static int cmp_ptrans(const void *a, const void *b)
489 {
490 	const struct linux_prom_translation *x = a, *y = b;
491 
492 	if (x->virt > y->virt)
493 		return 1;
494 	if (x->virt < y->virt)
495 		return -1;
496 	return 0;
497 }
498 
499 /* Read OBP translations property into 'prom_trans[]'.  */
500 static void __init read_obp_translations(void)
501 {
502 	int n, node, ents, first, last, i;
503 
504 	node = prom_finddevice("/virtual-memory");
505 	n = prom_getproplen(node, "translations");
506 	if (unlikely(n == 0 || n == -1)) {
507 		prom_printf("prom_mappings: Couldn't get size.\n");
508 		prom_halt();
509 	}
510 	if (unlikely(n > sizeof(prom_trans))) {
511 		prom_printf("prom_mappings: Size %d is too big.\n", n);
512 		prom_halt();
513 	}
514 
515 	if ((n = prom_getproperty(node, "translations",
516 				  (char *)&prom_trans[0],
517 				  sizeof(prom_trans))) == -1) {
518 		prom_printf("prom_mappings: Couldn't get property.\n");
519 		prom_halt();
520 	}
521 
522 	n = n / sizeof(struct linux_prom_translation);
523 
524 	ents = n;
525 
526 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
527 	     cmp_ptrans, NULL);
528 
529 	/* Now kick out all the non-OBP entries.  */
530 	for (i = 0; i < ents; i++) {
531 		if (in_obp_range(prom_trans[i].virt))
532 			break;
533 	}
534 	first = i;
535 	for (; i < ents; i++) {
536 		if (!in_obp_range(prom_trans[i].virt))
537 			break;
538 	}
539 	last = i;
540 
541 	for (i = 0; i < (last - first); i++) {
542 		struct linux_prom_translation *src = &prom_trans[i + first];
543 		struct linux_prom_translation *dest = &prom_trans[i];
544 
545 		*dest = *src;
546 	}
547 	for (; i < ents; i++) {
548 		struct linux_prom_translation *dest = &prom_trans[i];
549 		dest->virt = dest->size = dest->data = 0x0UL;
550 	}
551 
552 	prom_trans_ents = last - first;
553 
554 	if (tlb_type == spitfire) {
555 		/* Clear diag TTE bits. */
556 		for (i = 0; i < prom_trans_ents; i++)
557 			prom_trans[i].data &= ~0x0003fe0000000000UL;
558 	}
559 
560 	/* Force execute bit on.  */
561 	for (i = 0; i < prom_trans_ents; i++)
562 		prom_trans[i].data |= (tlb_type == hypervisor ?
563 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
564 }
565 
566 static void __init hypervisor_tlb_lock(unsigned long vaddr,
567 				       unsigned long pte,
568 				       unsigned long mmu)
569 {
570 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
571 
572 	if (ret != 0) {
573 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
574 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
575 		prom_halt();
576 	}
577 }
578 
579 static unsigned long kern_large_tte(unsigned long paddr);
580 
581 static void __init remap_kernel(void)
582 {
583 	unsigned long phys_page, tte_vaddr, tte_data;
584 	int i, tlb_ent = sparc64_highest_locked_tlbent();
585 
586 	tte_vaddr = (unsigned long) KERNBASE;
587 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
588 	tte_data = kern_large_tte(phys_page);
589 
590 	kern_locked_tte_data = tte_data;
591 
592 	/* Now lock us into the TLBs via Hypervisor or OBP. */
593 	if (tlb_type == hypervisor) {
594 		for (i = 0; i < num_kernel_image_mappings; i++) {
595 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
596 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
597 			tte_vaddr += 0x400000;
598 			tte_data += 0x400000;
599 		}
600 	} else {
601 		for (i = 0; i < num_kernel_image_mappings; i++) {
602 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
603 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
604 			tte_vaddr += 0x400000;
605 			tte_data += 0x400000;
606 		}
607 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
608 	}
609 	if (tlb_type == cheetah_plus) {
610 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
611 					    CTX_CHEETAH_PLUS_NUC);
612 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
613 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
614 	}
615 }
616 
617 
618 static void __init inherit_prom_mappings(void)
619 {
620 	/* Now fixup OBP's idea about where we really are mapped. */
621 	printk("Remapping the kernel... ");
622 	remap_kernel();
623 	printk("done.\n");
624 }
625 
626 void prom_world(int enter)
627 {
628 	if (!enter)
629 		set_fs(get_fs());
630 
631 	__asm__ __volatile__("flushw");
632 }
633 
634 void __flush_dcache_range(unsigned long start, unsigned long end)
635 {
636 	unsigned long va;
637 
638 	if (tlb_type == spitfire) {
639 		int n = 0;
640 
641 		for (va = start; va < end; va += 32) {
642 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
643 			if (++n >= 512)
644 				break;
645 		}
646 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647 		start = __pa(start);
648 		end = __pa(end);
649 		for (va = start; va < end; va += 32)
650 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
651 					     "membar #Sync"
652 					     : /* no outputs */
653 					     : "r" (va),
654 					       "i" (ASI_DCACHE_INVALIDATE));
655 	}
656 }
657 EXPORT_SYMBOL(__flush_dcache_range);
658 
659 /* get_new_mmu_context() uses "cache + 1".  */
660 DEFINE_SPINLOCK(ctx_alloc_lock);
661 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
662 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
663 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
664 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
665 
666 /* Caller does TLB context flushing on local CPU if necessary.
667  * The caller also ensures that CTX_VALID(mm->context) is false.
668  *
669  * We must be careful about boundary cases so that we never
670  * let the user have CTX 0 (nucleus) or we ever use a CTX
671  * version of zero (and thus NO_CONTEXT would not be caught
672  * by version mis-match tests in mmu_context.h).
673  *
674  * Always invoked with interrupts disabled.
675  */
676 void get_new_mmu_context(struct mm_struct *mm)
677 {
678 	unsigned long ctx, new_ctx;
679 	unsigned long orig_pgsz_bits;
680 	int new_version;
681 
682 	spin_lock(&ctx_alloc_lock);
683 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
684 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
685 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
686 	new_version = 0;
687 	if (new_ctx >= (1 << CTX_NR_BITS)) {
688 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
689 		if (new_ctx >= ctx) {
690 			int i;
691 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
692 				CTX_FIRST_VERSION;
693 			if (new_ctx == 1)
694 				new_ctx = CTX_FIRST_VERSION;
695 
696 			/* Don't call memset, for 16 entries that's just
697 			 * plain silly...
698 			 */
699 			mmu_context_bmap[0] = 3;
700 			mmu_context_bmap[1] = 0;
701 			mmu_context_bmap[2] = 0;
702 			mmu_context_bmap[3] = 0;
703 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
704 				mmu_context_bmap[i + 0] = 0;
705 				mmu_context_bmap[i + 1] = 0;
706 				mmu_context_bmap[i + 2] = 0;
707 				mmu_context_bmap[i + 3] = 0;
708 			}
709 			new_version = 1;
710 			goto out;
711 		}
712 	}
713 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
714 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
715 out:
716 	tlb_context_cache = new_ctx;
717 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
718 	spin_unlock(&ctx_alloc_lock);
719 
720 	if (unlikely(new_version))
721 		smp_new_mmu_context_version();
722 }
723 
724 static int numa_enabled = 1;
725 static int numa_debug;
726 
727 static int __init early_numa(char *p)
728 {
729 	if (!p)
730 		return 0;
731 
732 	if (strstr(p, "off"))
733 		numa_enabled = 0;
734 
735 	if (strstr(p, "debug"))
736 		numa_debug = 1;
737 
738 	return 0;
739 }
740 early_param("numa", early_numa);
741 
742 #define numadbg(f, a...) \
743 do {	if (numa_debug) \
744 		printk(KERN_INFO f, ## a); \
745 } while (0)
746 
747 static void __init find_ramdisk(unsigned long phys_base)
748 {
749 #ifdef CONFIG_BLK_DEV_INITRD
750 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
751 		unsigned long ramdisk_image;
752 
753 		/* Older versions of the bootloader only supported a
754 		 * 32-bit physical address for the ramdisk image
755 		 * location, stored at sparc_ramdisk_image.  Newer
756 		 * SILO versions set sparc_ramdisk_image to zero and
757 		 * provide a full 64-bit physical address at
758 		 * sparc_ramdisk_image64.
759 		 */
760 		ramdisk_image = sparc_ramdisk_image;
761 		if (!ramdisk_image)
762 			ramdisk_image = sparc_ramdisk_image64;
763 
764 		/* Another bootloader quirk.  The bootloader normalizes
765 		 * the physical address to KERNBASE, so we have to
766 		 * factor that back out and add in the lowest valid
767 		 * physical page address to get the true physical address.
768 		 */
769 		ramdisk_image -= KERNBASE;
770 		ramdisk_image += phys_base;
771 
772 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
773 			ramdisk_image, sparc_ramdisk_size);
774 
775 		initrd_start = ramdisk_image;
776 		initrd_end = ramdisk_image + sparc_ramdisk_size;
777 
778 		memblock_reserve(initrd_start, sparc_ramdisk_size);
779 
780 		initrd_start += PAGE_OFFSET;
781 		initrd_end += PAGE_OFFSET;
782 	}
783 #endif
784 }
785 
786 struct node_mem_mask {
787 	unsigned long mask;
788 	unsigned long val;
789 };
790 static struct node_mem_mask node_masks[MAX_NUMNODES];
791 static int num_node_masks;
792 
793 #ifdef CONFIG_NEED_MULTIPLE_NODES
794 
795 int numa_cpu_lookup_table[NR_CPUS];
796 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
797 
798 struct mdesc_mblock {
799 	u64	base;
800 	u64	size;
801 	u64	offset; /* RA-to-PA */
802 };
803 static struct mdesc_mblock *mblocks;
804 static int num_mblocks;
805 static int find_numa_node_for_addr(unsigned long pa,
806 				   struct node_mem_mask *pnode_mask);
807 
808 static unsigned long __init ra_to_pa(unsigned long addr)
809 {
810 	int i;
811 
812 	for (i = 0; i < num_mblocks; i++) {
813 		struct mdesc_mblock *m = &mblocks[i];
814 
815 		if (addr >= m->base &&
816 		    addr < (m->base + m->size)) {
817 			addr += m->offset;
818 			break;
819 		}
820 	}
821 	return addr;
822 }
823 
824 static int __init find_node(unsigned long addr)
825 {
826 	static bool search_mdesc = true;
827 	static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL };
828 	static int last_index;
829 	int i;
830 
831 	addr = ra_to_pa(addr);
832 	for (i = 0; i < num_node_masks; i++) {
833 		struct node_mem_mask *p = &node_masks[i];
834 
835 		if ((addr & p->mask) == p->val)
836 			return i;
837 	}
838 	/* The following condition has been observed on LDOM guests because
839 	 * node_masks only contains the best latency mask and value.
840 	 * LDOM guest's mdesc can contain a single latency group to
841 	 * cover multiple address range. Print warning message only if the
842 	 * address cannot be found in node_masks nor mdesc.
843 	 */
844 	if ((search_mdesc) &&
845 	    ((addr & last_mem_mask.mask) != last_mem_mask.val)) {
846 		/* find the available node in the mdesc */
847 		last_index = find_numa_node_for_addr(addr, &last_mem_mask);
848 		numadbg("find_node: latency group for address 0x%lx is %d\n",
849 			addr, last_index);
850 		if ((last_index < 0) || (last_index >= num_node_masks)) {
851 			/* WARN_ONCE() and use default group 0 */
852 			WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.");
853 			search_mdesc = false;
854 			last_index = 0;
855 		}
856 	}
857 
858 	return last_index;
859 }
860 
861 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
862 {
863 	*nid = find_node(start);
864 	start += PAGE_SIZE;
865 	while (start < end) {
866 		int n = find_node(start);
867 
868 		if (n != *nid)
869 			break;
870 		start += PAGE_SIZE;
871 	}
872 
873 	if (start > end)
874 		start = end;
875 
876 	return start;
877 }
878 #endif
879 
880 /* This must be invoked after performing all of the necessary
881  * memblock_set_node() calls for 'nid'.  We need to be able to get
882  * correct data from get_pfn_range_for_nid().
883  */
884 static void __init allocate_node_data(int nid)
885 {
886 	struct pglist_data *p;
887 	unsigned long start_pfn, end_pfn;
888 #ifdef CONFIG_NEED_MULTIPLE_NODES
889 	unsigned long paddr;
890 
891 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
892 	if (!paddr) {
893 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
894 		prom_halt();
895 	}
896 	NODE_DATA(nid) = __va(paddr);
897 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
898 
899 	NODE_DATA(nid)->node_id = nid;
900 #endif
901 
902 	p = NODE_DATA(nid);
903 
904 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
905 	p->node_start_pfn = start_pfn;
906 	p->node_spanned_pages = end_pfn - start_pfn;
907 }
908 
909 static void init_node_masks_nonnuma(void)
910 {
911 #ifdef CONFIG_NEED_MULTIPLE_NODES
912 	int i;
913 #endif
914 
915 	numadbg("Initializing tables for non-numa.\n");
916 
917 	node_masks[0].mask = node_masks[0].val = 0;
918 	num_node_masks = 1;
919 
920 #ifdef CONFIG_NEED_MULTIPLE_NODES
921 	for (i = 0; i < NR_CPUS; i++)
922 		numa_cpu_lookup_table[i] = 0;
923 
924 	cpumask_setall(&numa_cpumask_lookup_table[0]);
925 #endif
926 }
927 
928 #ifdef CONFIG_NEED_MULTIPLE_NODES
929 struct pglist_data *node_data[MAX_NUMNODES];
930 
931 EXPORT_SYMBOL(numa_cpu_lookup_table);
932 EXPORT_SYMBOL(numa_cpumask_lookup_table);
933 EXPORT_SYMBOL(node_data);
934 
935 struct mdesc_mlgroup {
936 	u64	node;
937 	u64	latency;
938 	u64	match;
939 	u64	mask;
940 };
941 static struct mdesc_mlgroup *mlgroups;
942 static int num_mlgroups;
943 
944 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
945 				   u32 cfg_handle)
946 {
947 	u64 arc;
948 
949 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
950 		u64 target = mdesc_arc_target(md, arc);
951 		const u64 *val;
952 
953 		val = mdesc_get_property(md, target,
954 					 "cfg-handle", NULL);
955 		if (val && *val == cfg_handle)
956 			return 0;
957 	}
958 	return -ENODEV;
959 }
960 
961 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
962 				    u32 cfg_handle)
963 {
964 	u64 arc, candidate, best_latency = ~(u64)0;
965 
966 	candidate = MDESC_NODE_NULL;
967 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
968 		u64 target = mdesc_arc_target(md, arc);
969 		const char *name = mdesc_node_name(md, target);
970 		const u64 *val;
971 
972 		if (strcmp(name, "pio-latency-group"))
973 			continue;
974 
975 		val = mdesc_get_property(md, target, "latency", NULL);
976 		if (!val)
977 			continue;
978 
979 		if (*val < best_latency) {
980 			candidate = target;
981 			best_latency = *val;
982 		}
983 	}
984 
985 	if (candidate == MDESC_NODE_NULL)
986 		return -ENODEV;
987 
988 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
989 }
990 
991 int of_node_to_nid(struct device_node *dp)
992 {
993 	const struct linux_prom64_registers *regs;
994 	struct mdesc_handle *md;
995 	u32 cfg_handle;
996 	int count, nid;
997 	u64 grp;
998 
999 	/* This is the right thing to do on currently supported
1000 	 * SUN4U NUMA platforms as well, as the PCI controller does
1001 	 * not sit behind any particular memory controller.
1002 	 */
1003 	if (!mlgroups)
1004 		return -1;
1005 
1006 	regs = of_get_property(dp, "reg", NULL);
1007 	if (!regs)
1008 		return -1;
1009 
1010 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1011 
1012 	md = mdesc_grab();
1013 
1014 	count = 0;
1015 	nid = -1;
1016 	mdesc_for_each_node_by_name(md, grp, "group") {
1017 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1018 			nid = count;
1019 			break;
1020 		}
1021 		count++;
1022 	}
1023 
1024 	mdesc_release(md);
1025 
1026 	return nid;
1027 }
1028 
1029 static void __init add_node_ranges(void)
1030 {
1031 	struct memblock_region *reg;
1032 
1033 	for_each_memblock(memory, reg) {
1034 		unsigned long size = reg->size;
1035 		unsigned long start, end;
1036 
1037 		start = reg->base;
1038 		end = start + size;
1039 		while (start < end) {
1040 			unsigned long this_end;
1041 			int nid;
1042 
1043 			this_end = memblock_nid_range(start, end, &nid);
1044 
1045 			numadbg("Setting memblock NUMA node nid[%d] "
1046 				"start[%lx] end[%lx]\n",
1047 				nid, start, this_end);
1048 
1049 			memblock_set_node(start, this_end - start,
1050 					  &memblock.memory, nid);
1051 			start = this_end;
1052 		}
1053 	}
1054 }
1055 
1056 static int __init grab_mlgroups(struct mdesc_handle *md)
1057 {
1058 	unsigned long paddr;
1059 	int count = 0;
1060 	u64 node;
1061 
1062 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1063 		count++;
1064 	if (!count)
1065 		return -ENOENT;
1066 
1067 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1068 			  SMP_CACHE_BYTES);
1069 	if (!paddr)
1070 		return -ENOMEM;
1071 
1072 	mlgroups = __va(paddr);
1073 	num_mlgroups = count;
1074 
1075 	count = 0;
1076 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1077 		struct mdesc_mlgroup *m = &mlgroups[count++];
1078 		const u64 *val;
1079 
1080 		m->node = node;
1081 
1082 		val = mdesc_get_property(md, node, "latency", NULL);
1083 		m->latency = *val;
1084 		val = mdesc_get_property(md, node, "address-match", NULL);
1085 		m->match = *val;
1086 		val = mdesc_get_property(md, node, "address-mask", NULL);
1087 		m->mask = *val;
1088 
1089 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1090 			"match[%llx] mask[%llx]\n",
1091 			count - 1, m->node, m->latency, m->match, m->mask);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static int __init grab_mblocks(struct mdesc_handle *md)
1098 {
1099 	unsigned long paddr;
1100 	int count = 0;
1101 	u64 node;
1102 
1103 	mdesc_for_each_node_by_name(md, node, "mblock")
1104 		count++;
1105 	if (!count)
1106 		return -ENOENT;
1107 
1108 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1109 			  SMP_CACHE_BYTES);
1110 	if (!paddr)
1111 		return -ENOMEM;
1112 
1113 	mblocks = __va(paddr);
1114 	num_mblocks = count;
1115 
1116 	count = 0;
1117 	mdesc_for_each_node_by_name(md, node, "mblock") {
1118 		struct mdesc_mblock *m = &mblocks[count++];
1119 		const u64 *val;
1120 
1121 		val = mdesc_get_property(md, node, "base", NULL);
1122 		m->base = *val;
1123 		val = mdesc_get_property(md, node, "size", NULL);
1124 		m->size = *val;
1125 		val = mdesc_get_property(md, node,
1126 					 "address-congruence-offset", NULL);
1127 
1128 		/* The address-congruence-offset property is optional.
1129 		 * Explicity zero it be identifty this.
1130 		 */
1131 		if (val)
1132 			m->offset = *val;
1133 		else
1134 			m->offset = 0UL;
1135 
1136 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1137 			count - 1, m->base, m->size, m->offset);
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1144 					       u64 grp, cpumask_t *mask)
1145 {
1146 	u64 arc;
1147 
1148 	cpumask_clear(mask);
1149 
1150 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1151 		u64 target = mdesc_arc_target(md, arc);
1152 		const char *name = mdesc_node_name(md, target);
1153 		const u64 *id;
1154 
1155 		if (strcmp(name, "cpu"))
1156 			continue;
1157 		id = mdesc_get_property(md, target, "id", NULL);
1158 		if (*id < nr_cpu_ids)
1159 			cpumask_set_cpu(*id, mask);
1160 	}
1161 }
1162 
1163 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < num_mlgroups; i++) {
1168 		struct mdesc_mlgroup *m = &mlgroups[i];
1169 		if (m->node == node)
1170 			return m;
1171 	}
1172 	return NULL;
1173 }
1174 
1175 int __node_distance(int from, int to)
1176 {
1177 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1178 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1179 			from, to);
1180 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1181 	}
1182 	return numa_latency[from][to];
1183 }
1184 
1185 static int find_numa_node_for_addr(unsigned long pa,
1186 				   struct node_mem_mask *pnode_mask)
1187 {
1188 	struct mdesc_handle *md = mdesc_grab();
1189 	u64 node, arc;
1190 	int i = 0;
1191 
1192 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1193 	if (node == MDESC_NODE_NULL)
1194 		goto out;
1195 
1196 	mdesc_for_each_node_by_name(md, node, "group") {
1197 		mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) {
1198 			u64 target = mdesc_arc_target(md, arc);
1199 			struct mdesc_mlgroup *m = find_mlgroup(target);
1200 
1201 			if (!m)
1202 				continue;
1203 			if ((pa & m->mask) == m->match) {
1204 				if (pnode_mask) {
1205 					pnode_mask->mask = m->mask;
1206 					pnode_mask->val = m->match;
1207 				}
1208 				mdesc_release(md);
1209 				return i;
1210 			}
1211 		}
1212 		i++;
1213 	}
1214 
1215 out:
1216 	mdesc_release(md);
1217 	return -1;
1218 }
1219 
1220 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1221 {
1222 	int i;
1223 
1224 	for (i = 0; i < MAX_NUMNODES; i++) {
1225 		struct node_mem_mask *n = &node_masks[i];
1226 
1227 		if ((grp->mask == n->mask) && (grp->match == n->val))
1228 			break;
1229 	}
1230 	return i;
1231 }
1232 
1233 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1234 						 u64 grp, int index)
1235 {
1236 	u64 arc;
1237 
1238 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1239 		int tnode;
1240 		u64 target = mdesc_arc_target(md, arc);
1241 		struct mdesc_mlgroup *m = find_mlgroup(target);
1242 
1243 		if (!m)
1244 			continue;
1245 		tnode = find_best_numa_node_for_mlgroup(m);
1246 		if (tnode == MAX_NUMNODES)
1247 			continue;
1248 		numa_latency[index][tnode] = m->latency;
1249 	}
1250 }
1251 
1252 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1253 				      int index)
1254 {
1255 	struct mdesc_mlgroup *candidate = NULL;
1256 	u64 arc, best_latency = ~(u64)0;
1257 	struct node_mem_mask *n;
1258 
1259 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1260 		u64 target = mdesc_arc_target(md, arc);
1261 		struct mdesc_mlgroup *m = find_mlgroup(target);
1262 		if (!m)
1263 			continue;
1264 		if (m->latency < best_latency) {
1265 			candidate = m;
1266 			best_latency = m->latency;
1267 		}
1268 	}
1269 	if (!candidate)
1270 		return -ENOENT;
1271 
1272 	if (num_node_masks != index) {
1273 		printk(KERN_ERR "Inconsistent NUMA state, "
1274 		       "index[%d] != num_node_masks[%d]\n",
1275 		       index, num_node_masks);
1276 		return -EINVAL;
1277 	}
1278 
1279 	n = &node_masks[num_node_masks++];
1280 
1281 	n->mask = candidate->mask;
1282 	n->val = candidate->match;
1283 
1284 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1285 		index, n->mask, n->val, candidate->latency);
1286 
1287 	return 0;
1288 }
1289 
1290 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1291 					 int index)
1292 {
1293 	cpumask_t mask;
1294 	int cpu;
1295 
1296 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1297 
1298 	for_each_cpu(cpu, &mask)
1299 		numa_cpu_lookup_table[cpu] = index;
1300 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1301 
1302 	if (numa_debug) {
1303 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1304 		for_each_cpu(cpu, &mask)
1305 			printk("%d ", cpu);
1306 		printk("]\n");
1307 	}
1308 
1309 	return numa_attach_mlgroup(md, grp, index);
1310 }
1311 
1312 static int __init numa_parse_mdesc(void)
1313 {
1314 	struct mdesc_handle *md = mdesc_grab();
1315 	int i, j, err, count;
1316 	u64 node;
1317 
1318 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1319 	if (node == MDESC_NODE_NULL) {
1320 		mdesc_release(md);
1321 		return -ENOENT;
1322 	}
1323 
1324 	err = grab_mblocks(md);
1325 	if (err < 0)
1326 		goto out;
1327 
1328 	err = grab_mlgroups(md);
1329 	if (err < 0)
1330 		goto out;
1331 
1332 	count = 0;
1333 	mdesc_for_each_node_by_name(md, node, "group") {
1334 		err = numa_parse_mdesc_group(md, node, count);
1335 		if (err < 0)
1336 			break;
1337 		count++;
1338 	}
1339 
1340 	count = 0;
1341 	mdesc_for_each_node_by_name(md, node, "group") {
1342 		find_numa_latencies_for_group(md, node, count);
1343 		count++;
1344 	}
1345 
1346 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1347 	for (i = 0; i < MAX_NUMNODES; i++) {
1348 		u64 self_latency = numa_latency[i][i];
1349 
1350 		for (j = 0; j < MAX_NUMNODES; j++) {
1351 			numa_latency[i][j] =
1352 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1353 				self_latency;
1354 		}
1355 	}
1356 
1357 	add_node_ranges();
1358 
1359 	for (i = 0; i < num_node_masks; i++) {
1360 		allocate_node_data(i);
1361 		node_set_online(i);
1362 	}
1363 
1364 	err = 0;
1365 out:
1366 	mdesc_release(md);
1367 	return err;
1368 }
1369 
1370 static int __init numa_parse_jbus(void)
1371 {
1372 	unsigned long cpu, index;
1373 
1374 	/* NUMA node id is encoded in bits 36 and higher, and there is
1375 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1376 	 */
1377 	index = 0;
1378 	for_each_present_cpu(cpu) {
1379 		numa_cpu_lookup_table[cpu] = index;
1380 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1381 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1382 		node_masks[index].val = cpu << 36UL;
1383 
1384 		index++;
1385 	}
1386 	num_node_masks = index;
1387 
1388 	add_node_ranges();
1389 
1390 	for (index = 0; index < num_node_masks; index++) {
1391 		allocate_node_data(index);
1392 		node_set_online(index);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int __init numa_parse_sun4u(void)
1399 {
1400 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1401 		unsigned long ver;
1402 
1403 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1404 		if ((ver >> 32UL) == __JALAPENO_ID ||
1405 		    (ver >> 32UL) == __SERRANO_ID)
1406 			return numa_parse_jbus();
1407 	}
1408 	return -1;
1409 }
1410 
1411 static int __init bootmem_init_numa(void)
1412 {
1413 	int i, j;
1414 	int err = -1;
1415 
1416 	numadbg("bootmem_init_numa()\n");
1417 
1418 	/* Some sane defaults for numa latency values */
1419 	for (i = 0; i < MAX_NUMNODES; i++) {
1420 		for (j = 0; j < MAX_NUMNODES; j++)
1421 			numa_latency[i][j] = (i == j) ?
1422 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1423 	}
1424 
1425 	if (numa_enabled) {
1426 		if (tlb_type == hypervisor)
1427 			err = numa_parse_mdesc();
1428 		else
1429 			err = numa_parse_sun4u();
1430 	}
1431 	return err;
1432 }
1433 
1434 #else
1435 
1436 static int bootmem_init_numa(void)
1437 {
1438 	return -1;
1439 }
1440 
1441 #endif
1442 
1443 static void __init bootmem_init_nonnuma(void)
1444 {
1445 	unsigned long top_of_ram = memblock_end_of_DRAM();
1446 	unsigned long total_ram = memblock_phys_mem_size();
1447 
1448 	numadbg("bootmem_init_nonnuma()\n");
1449 
1450 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1451 	       top_of_ram, total_ram);
1452 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1453 	       (top_of_ram - total_ram) >> 20);
1454 
1455 	init_node_masks_nonnuma();
1456 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1457 	allocate_node_data(0);
1458 	node_set_online(0);
1459 }
1460 
1461 static unsigned long __init bootmem_init(unsigned long phys_base)
1462 {
1463 	unsigned long end_pfn;
1464 
1465 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1466 	max_pfn = max_low_pfn = end_pfn;
1467 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1468 
1469 	if (bootmem_init_numa() < 0)
1470 		bootmem_init_nonnuma();
1471 
1472 	/* Dump memblock with node info. */
1473 	memblock_dump_all();
1474 
1475 	/* XXX cpu notifier XXX */
1476 
1477 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1478 	sparse_init();
1479 
1480 	return end_pfn;
1481 }
1482 
1483 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1484 static int pall_ents __initdata;
1485 
1486 static unsigned long max_phys_bits = 40;
1487 
1488 bool kern_addr_valid(unsigned long addr)
1489 {
1490 	pgd_t *pgd;
1491 	pud_t *pud;
1492 	pmd_t *pmd;
1493 	pte_t *pte;
1494 
1495 	if ((long)addr < 0L) {
1496 		unsigned long pa = __pa(addr);
1497 
1498 		if ((addr >> max_phys_bits) != 0UL)
1499 			return false;
1500 
1501 		return pfn_valid(pa >> PAGE_SHIFT);
1502 	}
1503 
1504 	if (addr >= (unsigned long) KERNBASE &&
1505 	    addr < (unsigned long)&_end)
1506 		return true;
1507 
1508 	pgd = pgd_offset_k(addr);
1509 	if (pgd_none(*pgd))
1510 		return 0;
1511 
1512 	pud = pud_offset(pgd, addr);
1513 	if (pud_none(*pud))
1514 		return 0;
1515 
1516 	if (pud_large(*pud))
1517 		return pfn_valid(pud_pfn(*pud));
1518 
1519 	pmd = pmd_offset(pud, addr);
1520 	if (pmd_none(*pmd))
1521 		return 0;
1522 
1523 	if (pmd_large(*pmd))
1524 		return pfn_valid(pmd_pfn(*pmd));
1525 
1526 	pte = pte_offset_kernel(pmd, addr);
1527 	if (pte_none(*pte))
1528 		return 0;
1529 
1530 	return pfn_valid(pte_pfn(*pte));
1531 }
1532 EXPORT_SYMBOL(kern_addr_valid);
1533 
1534 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1535 					      unsigned long vend,
1536 					      pud_t *pud)
1537 {
1538 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1539 	u64 pte_val = vstart;
1540 
1541 	/* Each PUD is 8GB */
1542 	if ((vstart & mask16gb) ||
1543 	    (vend - vstart <= mask16gb)) {
1544 		pte_val ^= kern_linear_pte_xor[2];
1545 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1546 
1547 		return vstart + PUD_SIZE;
1548 	}
1549 
1550 	pte_val ^= kern_linear_pte_xor[3];
1551 	pte_val |= _PAGE_PUD_HUGE;
1552 
1553 	vend = vstart + mask16gb + 1UL;
1554 	while (vstart < vend) {
1555 		pud_val(*pud) = pte_val;
1556 
1557 		pte_val += PUD_SIZE;
1558 		vstart += PUD_SIZE;
1559 		pud++;
1560 	}
1561 	return vstart;
1562 }
1563 
1564 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1565 				   bool guard)
1566 {
1567 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1568 		return true;
1569 
1570 	return false;
1571 }
1572 
1573 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1574 					      unsigned long vend,
1575 					      pmd_t *pmd)
1576 {
1577 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1578 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1579 	u64 pte_val = vstart;
1580 
1581 	/* Each PMD is 8MB */
1582 	if ((vstart & mask256mb) ||
1583 	    (vend - vstart <= mask256mb)) {
1584 		pte_val ^= kern_linear_pte_xor[0];
1585 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1586 
1587 		return vstart + PMD_SIZE;
1588 	}
1589 
1590 	if ((vstart & mask2gb) ||
1591 	    (vend - vstart <= mask2gb)) {
1592 		pte_val ^= kern_linear_pte_xor[1];
1593 		pte_val |= _PAGE_PMD_HUGE;
1594 		vend = vstart + mask256mb + 1UL;
1595 	} else {
1596 		pte_val ^= kern_linear_pte_xor[2];
1597 		pte_val |= _PAGE_PMD_HUGE;
1598 		vend = vstart + mask2gb + 1UL;
1599 	}
1600 
1601 	while (vstart < vend) {
1602 		pmd_val(*pmd) = pte_val;
1603 
1604 		pte_val += PMD_SIZE;
1605 		vstart += PMD_SIZE;
1606 		pmd++;
1607 	}
1608 
1609 	return vstart;
1610 }
1611 
1612 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1613 				   bool guard)
1614 {
1615 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1616 		return true;
1617 
1618 	return false;
1619 }
1620 
1621 static unsigned long __ref kernel_map_range(unsigned long pstart,
1622 					    unsigned long pend, pgprot_t prot,
1623 					    bool use_huge)
1624 {
1625 	unsigned long vstart = PAGE_OFFSET + pstart;
1626 	unsigned long vend = PAGE_OFFSET + pend;
1627 	unsigned long alloc_bytes = 0UL;
1628 
1629 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1630 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1631 			    vstart, vend);
1632 		prom_halt();
1633 	}
1634 
1635 	while (vstart < vend) {
1636 		unsigned long this_end, paddr = __pa(vstart);
1637 		pgd_t *pgd = pgd_offset_k(vstart);
1638 		pud_t *pud;
1639 		pmd_t *pmd;
1640 		pte_t *pte;
1641 
1642 		if (pgd_none(*pgd)) {
1643 			pud_t *new;
1644 
1645 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1646 			alloc_bytes += PAGE_SIZE;
1647 			pgd_populate(&init_mm, pgd, new);
1648 		}
1649 		pud = pud_offset(pgd, vstart);
1650 		if (pud_none(*pud)) {
1651 			pmd_t *new;
1652 
1653 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1654 				vstart = kernel_map_hugepud(vstart, vend, pud);
1655 				continue;
1656 			}
1657 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1658 			alloc_bytes += PAGE_SIZE;
1659 			pud_populate(&init_mm, pud, new);
1660 		}
1661 
1662 		pmd = pmd_offset(pud, vstart);
1663 		if (pmd_none(*pmd)) {
1664 			pte_t *new;
1665 
1666 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1667 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1668 				continue;
1669 			}
1670 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1671 			alloc_bytes += PAGE_SIZE;
1672 			pmd_populate_kernel(&init_mm, pmd, new);
1673 		}
1674 
1675 		pte = pte_offset_kernel(pmd, vstart);
1676 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1677 		if (this_end > vend)
1678 			this_end = vend;
1679 
1680 		while (vstart < this_end) {
1681 			pte_val(*pte) = (paddr | pgprot_val(prot));
1682 
1683 			vstart += PAGE_SIZE;
1684 			paddr += PAGE_SIZE;
1685 			pte++;
1686 		}
1687 	}
1688 
1689 	return alloc_bytes;
1690 }
1691 
1692 static void __init flush_all_kernel_tsbs(void)
1693 {
1694 	int i;
1695 
1696 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1697 		struct tsb *ent = &swapper_tsb[i];
1698 
1699 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1700 	}
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1703 		struct tsb *ent = &swapper_4m_tsb[i];
1704 
1705 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1706 	}
1707 #endif
1708 }
1709 
1710 extern unsigned int kvmap_linear_patch[1];
1711 
1712 static void __init kernel_physical_mapping_init(void)
1713 {
1714 	unsigned long i, mem_alloced = 0UL;
1715 	bool use_huge = true;
1716 
1717 #ifdef CONFIG_DEBUG_PAGEALLOC
1718 	use_huge = false;
1719 #endif
1720 	for (i = 0; i < pall_ents; i++) {
1721 		unsigned long phys_start, phys_end;
1722 
1723 		phys_start = pall[i].phys_addr;
1724 		phys_end = phys_start + pall[i].reg_size;
1725 
1726 		mem_alloced += kernel_map_range(phys_start, phys_end,
1727 						PAGE_KERNEL, use_huge);
1728 	}
1729 
1730 	printk("Allocated %ld bytes for kernel page tables.\n",
1731 	       mem_alloced);
1732 
1733 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1734 	flushi(&kvmap_linear_patch[0]);
1735 
1736 	flush_all_kernel_tsbs();
1737 
1738 	__flush_tlb_all();
1739 }
1740 
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 void __kernel_map_pages(struct page *page, int numpages, int enable)
1743 {
1744 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1745 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1746 
1747 	kernel_map_range(phys_start, phys_end,
1748 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1749 
1750 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1751 			       PAGE_OFFSET + phys_end);
1752 
1753 	/* we should perform an IPI and flush all tlbs,
1754 	 * but that can deadlock->flush only current cpu.
1755 	 */
1756 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1757 				 PAGE_OFFSET + phys_end);
1758 }
1759 #endif
1760 
1761 unsigned long __init find_ecache_flush_span(unsigned long size)
1762 {
1763 	int i;
1764 
1765 	for (i = 0; i < pavail_ents; i++) {
1766 		if (pavail[i].reg_size >= size)
1767 			return pavail[i].phys_addr;
1768 	}
1769 
1770 	return ~0UL;
1771 }
1772 
1773 unsigned long PAGE_OFFSET;
1774 EXPORT_SYMBOL(PAGE_OFFSET);
1775 
1776 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1777 EXPORT_SYMBOL(VMALLOC_END);
1778 
1779 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1780 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1781 
1782 static void __init setup_page_offset(void)
1783 {
1784 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1785 		/* Cheetah/Panther support a full 64-bit virtual
1786 		 * address, so we can use all that our page tables
1787 		 * support.
1788 		 */
1789 		sparc64_va_hole_top =    0xfff0000000000000UL;
1790 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1791 
1792 		max_phys_bits = 42;
1793 	} else if (tlb_type == hypervisor) {
1794 		switch (sun4v_chip_type) {
1795 		case SUN4V_CHIP_NIAGARA1:
1796 		case SUN4V_CHIP_NIAGARA2:
1797 			/* T1 and T2 support 48-bit virtual addresses.  */
1798 			sparc64_va_hole_top =    0xffff800000000000UL;
1799 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1800 
1801 			max_phys_bits = 39;
1802 			break;
1803 		case SUN4V_CHIP_NIAGARA3:
1804 			/* T3 supports 48-bit virtual addresses.  */
1805 			sparc64_va_hole_top =    0xffff800000000000UL;
1806 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1807 
1808 			max_phys_bits = 43;
1809 			break;
1810 		case SUN4V_CHIP_NIAGARA4:
1811 		case SUN4V_CHIP_NIAGARA5:
1812 		case SUN4V_CHIP_SPARC64X:
1813 		case SUN4V_CHIP_SPARC_M6:
1814 			/* T4 and later support 52-bit virtual addresses.  */
1815 			sparc64_va_hole_top =    0xfff8000000000000UL;
1816 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1817 			max_phys_bits = 47;
1818 			break;
1819 		case SUN4V_CHIP_SPARC_M7:
1820 		case SUN4V_CHIP_SPARC_SN:
1821 		default:
1822 			/* M7 and later support 52-bit virtual addresses.  */
1823 			sparc64_va_hole_top =    0xfff8000000000000UL;
1824 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1825 			max_phys_bits = 49;
1826 			break;
1827 		}
1828 	}
1829 
1830 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1831 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1832 			    max_phys_bits);
1833 		prom_halt();
1834 	}
1835 
1836 	PAGE_OFFSET = sparc64_va_hole_top;
1837 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1838 		       (sparc64_va_hole_bottom >> 2));
1839 
1840 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1841 		PAGE_OFFSET, max_phys_bits);
1842 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1843 		VMALLOC_START, VMALLOC_END);
1844 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1845 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1846 }
1847 
1848 static void __init tsb_phys_patch(void)
1849 {
1850 	struct tsb_ldquad_phys_patch_entry *pquad;
1851 	struct tsb_phys_patch_entry *p;
1852 
1853 	pquad = &__tsb_ldquad_phys_patch;
1854 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1855 		unsigned long addr = pquad->addr;
1856 
1857 		if (tlb_type == hypervisor)
1858 			*(unsigned int *) addr = pquad->sun4v_insn;
1859 		else
1860 			*(unsigned int *) addr = pquad->sun4u_insn;
1861 		wmb();
1862 		__asm__ __volatile__("flush	%0"
1863 				     : /* no outputs */
1864 				     : "r" (addr));
1865 
1866 		pquad++;
1867 	}
1868 
1869 	p = &__tsb_phys_patch;
1870 	while (p < &__tsb_phys_patch_end) {
1871 		unsigned long addr = p->addr;
1872 
1873 		*(unsigned int *) addr = p->insn;
1874 		wmb();
1875 		__asm__ __volatile__("flush	%0"
1876 				     : /* no outputs */
1877 				     : "r" (addr));
1878 
1879 		p++;
1880 	}
1881 }
1882 
1883 /* Don't mark as init, we give this to the Hypervisor.  */
1884 #ifndef CONFIG_DEBUG_PAGEALLOC
1885 #define NUM_KTSB_DESCR	2
1886 #else
1887 #define NUM_KTSB_DESCR	1
1888 #endif
1889 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1890 
1891 /* The swapper TSBs are loaded with a base sequence of:
1892  *
1893  *	sethi	%uhi(SYMBOL), REG1
1894  *	sethi	%hi(SYMBOL), REG2
1895  *	or	REG1, %ulo(SYMBOL), REG1
1896  *	or	REG2, %lo(SYMBOL), REG2
1897  *	sllx	REG1, 32, REG1
1898  *	or	REG1, REG2, REG1
1899  *
1900  * When we use physical addressing for the TSB accesses, we patch the
1901  * first four instructions in the above sequence.
1902  */
1903 
1904 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1905 {
1906 	unsigned long high_bits, low_bits;
1907 
1908 	high_bits = (pa >> 32) & 0xffffffff;
1909 	low_bits = (pa >> 0) & 0xffffffff;
1910 
1911 	while (start < end) {
1912 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1913 
1914 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1915 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1916 
1917 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1918 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1919 
1920 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1921 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1922 
1923 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1924 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1925 
1926 		start++;
1927 	}
1928 }
1929 
1930 static void ktsb_phys_patch(void)
1931 {
1932 	extern unsigned int __swapper_tsb_phys_patch;
1933 	extern unsigned int __swapper_tsb_phys_patch_end;
1934 	unsigned long ktsb_pa;
1935 
1936 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1937 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1938 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1939 #ifndef CONFIG_DEBUG_PAGEALLOC
1940 	{
1941 	extern unsigned int __swapper_4m_tsb_phys_patch;
1942 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1943 	ktsb_pa = (kern_base +
1944 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1945 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1946 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1947 	}
1948 #endif
1949 }
1950 
1951 static void __init sun4v_ktsb_init(void)
1952 {
1953 	unsigned long ktsb_pa;
1954 
1955 	/* First KTSB for PAGE_SIZE mappings.  */
1956 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1957 
1958 	switch (PAGE_SIZE) {
1959 	case 8 * 1024:
1960 	default:
1961 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1962 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1963 		break;
1964 
1965 	case 64 * 1024:
1966 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1967 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1968 		break;
1969 
1970 	case 512 * 1024:
1971 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1972 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1973 		break;
1974 
1975 	case 4 * 1024 * 1024:
1976 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1977 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1978 		break;
1979 	}
1980 
1981 	ktsb_descr[0].assoc = 1;
1982 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1983 	ktsb_descr[0].ctx_idx = 0;
1984 	ktsb_descr[0].tsb_base = ktsb_pa;
1985 	ktsb_descr[0].resv = 0;
1986 
1987 #ifndef CONFIG_DEBUG_PAGEALLOC
1988 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1989 	ktsb_pa = (kern_base +
1990 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1991 
1992 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1993 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1994 				    HV_PGSZ_MASK_256MB |
1995 				    HV_PGSZ_MASK_2GB |
1996 				    HV_PGSZ_MASK_16GB) &
1997 				   cpu_pgsz_mask);
1998 	ktsb_descr[1].assoc = 1;
1999 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2000 	ktsb_descr[1].ctx_idx = 0;
2001 	ktsb_descr[1].tsb_base = ktsb_pa;
2002 	ktsb_descr[1].resv = 0;
2003 #endif
2004 }
2005 
2006 void sun4v_ktsb_register(void)
2007 {
2008 	unsigned long pa, ret;
2009 
2010 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2011 
2012 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2013 	if (ret != 0) {
2014 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2015 			    "errors with %lx\n", pa, ret);
2016 		prom_halt();
2017 	}
2018 }
2019 
2020 static void __init sun4u_linear_pte_xor_finalize(void)
2021 {
2022 #ifndef CONFIG_DEBUG_PAGEALLOC
2023 	/* This is where we would add Panther support for
2024 	 * 32MB and 256MB pages.
2025 	 */
2026 #endif
2027 }
2028 
2029 static void __init sun4v_linear_pte_xor_finalize(void)
2030 {
2031 	unsigned long pagecv_flag;
2032 
2033 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2034 	 * enables MCD error. Do not set bit 9 on M7 processor.
2035 	 */
2036 	switch (sun4v_chip_type) {
2037 	case SUN4V_CHIP_SPARC_M7:
2038 	case SUN4V_CHIP_SPARC_SN:
2039 		pagecv_flag = 0x00;
2040 		break;
2041 	default:
2042 		pagecv_flag = _PAGE_CV_4V;
2043 		break;
2044 	}
2045 #ifndef CONFIG_DEBUG_PAGEALLOC
2046 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2047 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2048 			PAGE_OFFSET;
2049 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2050 					   _PAGE_P_4V | _PAGE_W_4V);
2051 	} else {
2052 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2053 	}
2054 
2055 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2056 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2057 			PAGE_OFFSET;
2058 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2059 					   _PAGE_P_4V | _PAGE_W_4V);
2060 	} else {
2061 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2062 	}
2063 
2064 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2065 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2066 			PAGE_OFFSET;
2067 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2068 					   _PAGE_P_4V | _PAGE_W_4V);
2069 	} else {
2070 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2071 	}
2072 #endif
2073 }
2074 
2075 /* paging_init() sets up the page tables */
2076 
2077 static unsigned long last_valid_pfn;
2078 
2079 static void sun4u_pgprot_init(void);
2080 static void sun4v_pgprot_init(void);
2081 
2082 static phys_addr_t __init available_memory(void)
2083 {
2084 	phys_addr_t available = 0ULL;
2085 	phys_addr_t pa_start, pa_end;
2086 	u64 i;
2087 
2088 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2089 				&pa_end, NULL)
2090 		available = available + (pa_end  - pa_start);
2091 
2092 	return available;
2093 }
2094 
2095 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2096 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2097 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2098 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2099 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2100 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2101 
2102 /* We need to exclude reserved regions. This exclusion will include
2103  * vmlinux and initrd. To be more precise the initrd size could be used to
2104  * compute a new lower limit because it is freed later during initialization.
2105  */
2106 static void __init reduce_memory(phys_addr_t limit_ram)
2107 {
2108 	phys_addr_t avail_ram = available_memory();
2109 	phys_addr_t pa_start, pa_end;
2110 	u64 i;
2111 
2112 	if (limit_ram >= avail_ram)
2113 		return;
2114 
2115 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2116 				&pa_end, NULL) {
2117 		phys_addr_t region_size = pa_end - pa_start;
2118 		phys_addr_t clip_start = pa_start;
2119 
2120 		avail_ram = avail_ram - region_size;
2121 		/* Are we consuming too much? */
2122 		if (avail_ram < limit_ram) {
2123 			phys_addr_t give_back = limit_ram - avail_ram;
2124 
2125 			region_size = region_size - give_back;
2126 			clip_start = clip_start + give_back;
2127 		}
2128 
2129 		memblock_remove(clip_start, region_size);
2130 
2131 		if (avail_ram <= limit_ram)
2132 			break;
2133 		i = 0UL;
2134 	}
2135 }
2136 
2137 void __init paging_init(void)
2138 {
2139 	unsigned long end_pfn, shift, phys_base;
2140 	unsigned long real_end, i;
2141 
2142 	setup_page_offset();
2143 
2144 	/* These build time checkes make sure that the dcache_dirty_cpu()
2145 	 * page->flags usage will work.
2146 	 *
2147 	 * When a page gets marked as dcache-dirty, we store the
2148 	 * cpu number starting at bit 32 in the page->flags.  Also,
2149 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2150 	 * in 13-bit signed-immediate instruction fields.
2151 	 */
2152 
2153 	/*
2154 	 * Page flags must not reach into upper 32 bits that are used
2155 	 * for the cpu number
2156 	 */
2157 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2158 
2159 	/*
2160 	 * The bit fields placed in the high range must not reach below
2161 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2162 	 * at the 32 bit boundary.
2163 	 */
2164 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2165 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2166 
2167 	BUILD_BUG_ON(NR_CPUS > 4096);
2168 
2169 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2170 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2171 
2172 	/* Invalidate both kernel TSBs.  */
2173 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2174 #ifndef CONFIG_DEBUG_PAGEALLOC
2175 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2176 #endif
2177 
2178 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2179 	 * bit on M7 processor. This is a conflicting usage of the same
2180 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2181 	 * Detection error on all pages and this will lead to problems
2182 	 * later. Kernel does not run with MCD enabled and hence rest
2183 	 * of the required steps to fully configure memory corruption
2184 	 * detection are not taken. We need to ensure TTE.mcde is not
2185 	 * set on M7 processor. Compute the value of cacheability
2186 	 * flag for use later taking this into consideration.
2187 	 */
2188 	switch (sun4v_chip_type) {
2189 	case SUN4V_CHIP_SPARC_M7:
2190 	case SUN4V_CHIP_SPARC_SN:
2191 		page_cache4v_flag = _PAGE_CP_4V;
2192 		break;
2193 	default:
2194 		page_cache4v_flag = _PAGE_CACHE_4V;
2195 		break;
2196 	}
2197 
2198 	if (tlb_type == hypervisor)
2199 		sun4v_pgprot_init();
2200 	else
2201 		sun4u_pgprot_init();
2202 
2203 	if (tlb_type == cheetah_plus ||
2204 	    tlb_type == hypervisor) {
2205 		tsb_phys_patch();
2206 		ktsb_phys_patch();
2207 	}
2208 
2209 	if (tlb_type == hypervisor)
2210 		sun4v_patch_tlb_handlers();
2211 
2212 	/* Find available physical memory...
2213 	 *
2214 	 * Read it twice in order to work around a bug in openfirmware.
2215 	 * The call to grab this table itself can cause openfirmware to
2216 	 * allocate memory, which in turn can take away some space from
2217 	 * the list of available memory.  Reading it twice makes sure
2218 	 * we really do get the final value.
2219 	 */
2220 	read_obp_translations();
2221 	read_obp_memory("reg", &pall[0], &pall_ents);
2222 	read_obp_memory("available", &pavail[0], &pavail_ents);
2223 	read_obp_memory("available", &pavail[0], &pavail_ents);
2224 
2225 	phys_base = 0xffffffffffffffffUL;
2226 	for (i = 0; i < pavail_ents; i++) {
2227 		phys_base = min(phys_base, pavail[i].phys_addr);
2228 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2229 	}
2230 
2231 	memblock_reserve(kern_base, kern_size);
2232 
2233 	find_ramdisk(phys_base);
2234 
2235 	if (cmdline_memory_size)
2236 		reduce_memory(cmdline_memory_size);
2237 
2238 	memblock_allow_resize();
2239 	memblock_dump_all();
2240 
2241 	set_bit(0, mmu_context_bmap);
2242 
2243 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2244 
2245 	real_end = (unsigned long)_end;
2246 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2247 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2248 	       num_kernel_image_mappings);
2249 
2250 	/* Set kernel pgd to upper alias so physical page computations
2251 	 * work.
2252 	 */
2253 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2254 
2255 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2256 
2257 	inherit_prom_mappings();
2258 
2259 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2260 	setup_tba();
2261 
2262 	__flush_tlb_all();
2263 
2264 	prom_build_devicetree();
2265 	of_populate_present_mask();
2266 #ifndef CONFIG_SMP
2267 	of_fill_in_cpu_data();
2268 #endif
2269 
2270 	if (tlb_type == hypervisor) {
2271 		sun4v_mdesc_init();
2272 		mdesc_populate_present_mask(cpu_all_mask);
2273 #ifndef CONFIG_SMP
2274 		mdesc_fill_in_cpu_data(cpu_all_mask);
2275 #endif
2276 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2277 
2278 		sun4v_linear_pte_xor_finalize();
2279 
2280 		sun4v_ktsb_init();
2281 		sun4v_ktsb_register();
2282 	} else {
2283 		unsigned long impl, ver;
2284 
2285 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2286 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2287 
2288 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2289 		impl = ((ver >> 32) & 0xffff);
2290 		if (impl == PANTHER_IMPL)
2291 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2292 					  HV_PGSZ_MASK_256MB);
2293 
2294 		sun4u_linear_pte_xor_finalize();
2295 	}
2296 
2297 	/* Flush the TLBs and the 4M TSB so that the updated linear
2298 	 * pte XOR settings are realized for all mappings.
2299 	 */
2300 	__flush_tlb_all();
2301 #ifndef CONFIG_DEBUG_PAGEALLOC
2302 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2303 #endif
2304 	__flush_tlb_all();
2305 
2306 	/* Setup bootmem... */
2307 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2308 
2309 	kernel_physical_mapping_init();
2310 
2311 	{
2312 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2313 
2314 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2315 
2316 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2317 
2318 		free_area_init_nodes(max_zone_pfns);
2319 	}
2320 
2321 	printk("Booting Linux...\n");
2322 }
2323 
2324 int page_in_phys_avail(unsigned long paddr)
2325 {
2326 	int i;
2327 
2328 	paddr &= PAGE_MASK;
2329 
2330 	for (i = 0; i < pavail_ents; i++) {
2331 		unsigned long start, end;
2332 
2333 		start = pavail[i].phys_addr;
2334 		end = start + pavail[i].reg_size;
2335 
2336 		if (paddr >= start && paddr < end)
2337 			return 1;
2338 	}
2339 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2340 		return 1;
2341 #ifdef CONFIG_BLK_DEV_INITRD
2342 	if (paddr >= __pa(initrd_start) &&
2343 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2344 		return 1;
2345 #endif
2346 
2347 	return 0;
2348 }
2349 
2350 static void __init register_page_bootmem_info(void)
2351 {
2352 #ifdef CONFIG_NEED_MULTIPLE_NODES
2353 	int i;
2354 
2355 	for_each_online_node(i)
2356 		if (NODE_DATA(i)->node_spanned_pages)
2357 			register_page_bootmem_info_node(NODE_DATA(i));
2358 #endif
2359 }
2360 void __init mem_init(void)
2361 {
2362 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2363 
2364 	register_page_bootmem_info();
2365 	free_all_bootmem();
2366 
2367 	/*
2368 	 * Set up the zero page, mark it reserved, so that page count
2369 	 * is not manipulated when freeing the page from user ptes.
2370 	 */
2371 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2372 	if (mem_map_zero == NULL) {
2373 		prom_printf("paging_init: Cannot alloc zero page.\n");
2374 		prom_halt();
2375 	}
2376 	mark_page_reserved(mem_map_zero);
2377 
2378 	mem_init_print_info(NULL);
2379 
2380 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2381 		cheetah_ecache_flush_init();
2382 }
2383 
2384 void free_initmem(void)
2385 {
2386 	unsigned long addr, initend;
2387 	int do_free = 1;
2388 
2389 	/* If the physical memory maps were trimmed by kernel command
2390 	 * line options, don't even try freeing this initmem stuff up.
2391 	 * The kernel image could have been in the trimmed out region
2392 	 * and if so the freeing below will free invalid page structs.
2393 	 */
2394 	if (cmdline_memory_size)
2395 		do_free = 0;
2396 
2397 	/*
2398 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2399 	 */
2400 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2401 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2402 	for (; addr < initend; addr += PAGE_SIZE) {
2403 		unsigned long page;
2404 
2405 		page = (addr +
2406 			((unsigned long) __va(kern_base)) -
2407 			((unsigned long) KERNBASE));
2408 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2409 
2410 		if (do_free)
2411 			free_reserved_page(virt_to_page(page));
2412 	}
2413 }
2414 
2415 #ifdef CONFIG_BLK_DEV_INITRD
2416 void free_initrd_mem(unsigned long start, unsigned long end)
2417 {
2418 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2419 			   "initrd");
2420 }
2421 #endif
2422 
2423 pgprot_t PAGE_KERNEL __read_mostly;
2424 EXPORT_SYMBOL(PAGE_KERNEL);
2425 
2426 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2427 pgprot_t PAGE_COPY __read_mostly;
2428 
2429 pgprot_t PAGE_SHARED __read_mostly;
2430 EXPORT_SYMBOL(PAGE_SHARED);
2431 
2432 unsigned long pg_iobits __read_mostly;
2433 
2434 unsigned long _PAGE_IE __read_mostly;
2435 EXPORT_SYMBOL(_PAGE_IE);
2436 
2437 unsigned long _PAGE_E __read_mostly;
2438 EXPORT_SYMBOL(_PAGE_E);
2439 
2440 unsigned long _PAGE_CACHE __read_mostly;
2441 EXPORT_SYMBOL(_PAGE_CACHE);
2442 
2443 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2444 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2445 			       int node)
2446 {
2447 	unsigned long pte_base;
2448 
2449 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2450 		    _PAGE_CP_4U | _PAGE_CV_4U |
2451 		    _PAGE_P_4U | _PAGE_W_4U);
2452 	if (tlb_type == hypervisor)
2453 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2454 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2455 
2456 	pte_base |= _PAGE_PMD_HUGE;
2457 
2458 	vstart = vstart & PMD_MASK;
2459 	vend = ALIGN(vend, PMD_SIZE);
2460 	for (; vstart < vend; vstart += PMD_SIZE) {
2461 		pgd_t *pgd = pgd_offset_k(vstart);
2462 		unsigned long pte;
2463 		pud_t *pud;
2464 		pmd_t *pmd;
2465 
2466 		if (pgd_none(*pgd)) {
2467 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2468 
2469 			if (!new)
2470 				return -ENOMEM;
2471 			pgd_populate(&init_mm, pgd, new);
2472 		}
2473 
2474 		pud = pud_offset(pgd, vstart);
2475 		if (pud_none(*pud)) {
2476 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2477 
2478 			if (!new)
2479 				return -ENOMEM;
2480 			pud_populate(&init_mm, pud, new);
2481 		}
2482 
2483 		pmd = pmd_offset(pud, vstart);
2484 
2485 		pte = pmd_val(*pmd);
2486 		if (!(pte & _PAGE_VALID)) {
2487 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2488 
2489 			if (!block)
2490 				return -ENOMEM;
2491 
2492 			pmd_val(*pmd) = pte_base | __pa(block);
2493 		}
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 void vmemmap_free(unsigned long start, unsigned long end)
2500 {
2501 }
2502 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2503 
2504 static void prot_init_common(unsigned long page_none,
2505 			     unsigned long page_shared,
2506 			     unsigned long page_copy,
2507 			     unsigned long page_readonly,
2508 			     unsigned long page_exec_bit)
2509 {
2510 	PAGE_COPY = __pgprot(page_copy);
2511 	PAGE_SHARED = __pgprot(page_shared);
2512 
2513 	protection_map[0x0] = __pgprot(page_none);
2514 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2515 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2516 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2517 	protection_map[0x4] = __pgprot(page_readonly);
2518 	protection_map[0x5] = __pgprot(page_readonly);
2519 	protection_map[0x6] = __pgprot(page_copy);
2520 	protection_map[0x7] = __pgprot(page_copy);
2521 	protection_map[0x8] = __pgprot(page_none);
2522 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2523 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2524 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2525 	protection_map[0xc] = __pgprot(page_readonly);
2526 	protection_map[0xd] = __pgprot(page_readonly);
2527 	protection_map[0xe] = __pgprot(page_shared);
2528 	protection_map[0xf] = __pgprot(page_shared);
2529 }
2530 
2531 static void __init sun4u_pgprot_init(void)
2532 {
2533 	unsigned long page_none, page_shared, page_copy, page_readonly;
2534 	unsigned long page_exec_bit;
2535 	int i;
2536 
2537 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2538 				_PAGE_CACHE_4U | _PAGE_P_4U |
2539 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2540 				_PAGE_EXEC_4U);
2541 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2542 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2543 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2544 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2545 
2546 	_PAGE_IE = _PAGE_IE_4U;
2547 	_PAGE_E = _PAGE_E_4U;
2548 	_PAGE_CACHE = _PAGE_CACHE_4U;
2549 
2550 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2551 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2552 
2553 #ifdef CONFIG_DEBUG_PAGEALLOC
2554 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2555 #else
2556 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2557 		PAGE_OFFSET;
2558 #endif
2559 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2560 				   _PAGE_P_4U | _PAGE_W_4U);
2561 
2562 	for (i = 1; i < 4; i++)
2563 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2564 
2565 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2566 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2567 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2568 
2569 
2570 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2571 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2572 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2573 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2574 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2575 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2576 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2577 
2578 	page_exec_bit = _PAGE_EXEC_4U;
2579 
2580 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2581 			 page_exec_bit);
2582 }
2583 
2584 static void __init sun4v_pgprot_init(void)
2585 {
2586 	unsigned long page_none, page_shared, page_copy, page_readonly;
2587 	unsigned long page_exec_bit;
2588 	int i;
2589 
2590 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2591 				page_cache4v_flag | _PAGE_P_4V |
2592 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2593 				_PAGE_EXEC_4V);
2594 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2595 
2596 	_PAGE_IE = _PAGE_IE_4V;
2597 	_PAGE_E = _PAGE_E_4V;
2598 	_PAGE_CACHE = page_cache4v_flag;
2599 
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2602 #else
2603 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2604 		PAGE_OFFSET;
2605 #endif
2606 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2607 				   _PAGE_W_4V);
2608 
2609 	for (i = 1; i < 4; i++)
2610 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2611 
2612 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2613 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2614 
2615 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2616 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2617 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2618 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2619 
2620 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2621 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2622 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2623 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2624 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2625 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2626 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2627 
2628 	page_exec_bit = _PAGE_EXEC_4V;
2629 
2630 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2631 			 page_exec_bit);
2632 }
2633 
2634 unsigned long pte_sz_bits(unsigned long sz)
2635 {
2636 	if (tlb_type == hypervisor) {
2637 		switch (sz) {
2638 		case 8 * 1024:
2639 		default:
2640 			return _PAGE_SZ8K_4V;
2641 		case 64 * 1024:
2642 			return _PAGE_SZ64K_4V;
2643 		case 512 * 1024:
2644 			return _PAGE_SZ512K_4V;
2645 		case 4 * 1024 * 1024:
2646 			return _PAGE_SZ4MB_4V;
2647 		}
2648 	} else {
2649 		switch (sz) {
2650 		case 8 * 1024:
2651 		default:
2652 			return _PAGE_SZ8K_4U;
2653 		case 64 * 1024:
2654 			return _PAGE_SZ64K_4U;
2655 		case 512 * 1024:
2656 			return _PAGE_SZ512K_4U;
2657 		case 4 * 1024 * 1024:
2658 			return _PAGE_SZ4MB_4U;
2659 		}
2660 	}
2661 }
2662 
2663 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2664 {
2665 	pte_t pte;
2666 
2667 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2668 	pte_val(pte) |= (((unsigned long)space) << 32);
2669 	pte_val(pte) |= pte_sz_bits(page_size);
2670 
2671 	return pte;
2672 }
2673 
2674 static unsigned long kern_large_tte(unsigned long paddr)
2675 {
2676 	unsigned long val;
2677 
2678 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2679 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2680 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2681 	if (tlb_type == hypervisor)
2682 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2683 		       page_cache4v_flag | _PAGE_P_4V |
2684 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2685 
2686 	return val | paddr;
2687 }
2688 
2689 /* If not locked, zap it. */
2690 void __flush_tlb_all(void)
2691 {
2692 	unsigned long pstate;
2693 	int i;
2694 
2695 	__asm__ __volatile__("flushw\n\t"
2696 			     "rdpr	%%pstate, %0\n\t"
2697 			     "wrpr	%0, %1, %%pstate"
2698 			     : "=r" (pstate)
2699 			     : "i" (PSTATE_IE));
2700 	if (tlb_type == hypervisor) {
2701 		sun4v_mmu_demap_all();
2702 	} else if (tlb_type == spitfire) {
2703 		for (i = 0; i < 64; i++) {
2704 			/* Spitfire Errata #32 workaround */
2705 			/* NOTE: Always runs on spitfire, so no
2706 			 *       cheetah+ page size encodings.
2707 			 */
2708 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2709 					     "flush	%%g6"
2710 					     : /* No outputs */
2711 					     : "r" (0),
2712 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2713 
2714 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2715 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2716 						     "membar #Sync"
2717 						     : /* no outputs */
2718 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2719 				spitfire_put_dtlb_data(i, 0x0UL);
2720 			}
2721 
2722 			/* Spitfire Errata #32 workaround */
2723 			/* NOTE: Always runs on spitfire, so no
2724 			 *       cheetah+ page size encodings.
2725 			 */
2726 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2727 					     "flush	%%g6"
2728 					     : /* No outputs */
2729 					     : "r" (0),
2730 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2731 
2732 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2733 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2734 						     "membar #Sync"
2735 						     : /* no outputs */
2736 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2737 				spitfire_put_itlb_data(i, 0x0UL);
2738 			}
2739 		}
2740 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2741 		cheetah_flush_dtlb_all();
2742 		cheetah_flush_itlb_all();
2743 	}
2744 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2745 			     : : "r" (pstate));
2746 }
2747 
2748 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2749 			    unsigned long address)
2750 {
2751 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2752 	pte_t *pte = NULL;
2753 
2754 	if (page)
2755 		pte = (pte_t *) page_address(page);
2756 
2757 	return pte;
2758 }
2759 
2760 pgtable_t pte_alloc_one(struct mm_struct *mm,
2761 			unsigned long address)
2762 {
2763 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2764 	if (!page)
2765 		return NULL;
2766 	if (!pgtable_page_ctor(page)) {
2767 		free_hot_cold_page(page, 0);
2768 		return NULL;
2769 	}
2770 	return (pte_t *) page_address(page);
2771 }
2772 
2773 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2774 {
2775 	free_page((unsigned long)pte);
2776 }
2777 
2778 static void __pte_free(pgtable_t pte)
2779 {
2780 	struct page *page = virt_to_page(pte);
2781 
2782 	pgtable_page_dtor(page);
2783 	__free_page(page);
2784 }
2785 
2786 void pte_free(struct mm_struct *mm, pgtable_t pte)
2787 {
2788 	__pte_free(pte);
2789 }
2790 
2791 void pgtable_free(void *table, bool is_page)
2792 {
2793 	if (is_page)
2794 		__pte_free(table);
2795 	else
2796 		kmem_cache_free(pgtable_cache, table);
2797 }
2798 
2799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2800 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2801 			  pmd_t *pmd)
2802 {
2803 	unsigned long pte, flags;
2804 	struct mm_struct *mm;
2805 	pmd_t entry = *pmd;
2806 
2807 	if (!pmd_large(entry) || !pmd_young(entry))
2808 		return;
2809 
2810 	pte = pmd_val(entry);
2811 
2812 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2813 	if (!(pte & _PAGE_VALID))
2814 		return;
2815 
2816 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2817 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2818 
2819 	mm = vma->vm_mm;
2820 
2821 	spin_lock_irqsave(&mm->context.lock, flags);
2822 
2823 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2824 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2825 					addr, pte);
2826 
2827 	spin_unlock_irqrestore(&mm->context.lock, flags);
2828 }
2829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2830 
2831 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2832 static void context_reload(void *__data)
2833 {
2834 	struct mm_struct *mm = __data;
2835 
2836 	if (mm == current->mm)
2837 		load_secondary_context(mm);
2838 }
2839 
2840 void hugetlb_setup(struct pt_regs *regs)
2841 {
2842 	struct mm_struct *mm = current->mm;
2843 	struct tsb_config *tp;
2844 
2845 	if (faulthandler_disabled() || !mm) {
2846 		const struct exception_table_entry *entry;
2847 
2848 		entry = search_exception_tables(regs->tpc);
2849 		if (entry) {
2850 			regs->tpc = entry->fixup;
2851 			regs->tnpc = regs->tpc + 4;
2852 			return;
2853 		}
2854 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2855 		die_if_kernel("HugeTSB in atomic", regs);
2856 	}
2857 
2858 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2859 	if (likely(tp->tsb == NULL))
2860 		tsb_grow(mm, MM_TSB_HUGE, 0);
2861 
2862 	tsb_context_switch(mm);
2863 	smp_tsb_sync(mm);
2864 
2865 	/* On UltraSPARC-III+ and later, configure the second half of
2866 	 * the Data-TLB for huge pages.
2867 	 */
2868 	if (tlb_type == cheetah_plus) {
2869 		bool need_context_reload = false;
2870 		unsigned long ctx;
2871 
2872 		spin_lock_irq(&ctx_alloc_lock);
2873 		ctx = mm->context.sparc64_ctx_val;
2874 		ctx &= ~CTX_PGSZ_MASK;
2875 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2876 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2877 
2878 		if (ctx != mm->context.sparc64_ctx_val) {
2879 			/* When changing the page size fields, we
2880 			 * must perform a context flush so that no
2881 			 * stale entries match.  This flush must
2882 			 * occur with the original context register
2883 			 * settings.
2884 			 */
2885 			do_flush_tlb_mm(mm);
2886 
2887 			/* Reload the context register of all processors
2888 			 * also executing in this address space.
2889 			 */
2890 			mm->context.sparc64_ctx_val = ctx;
2891 			need_context_reload = true;
2892 		}
2893 		spin_unlock_irq(&ctx_alloc_lock);
2894 
2895 		if (need_context_reload)
2896 			on_each_cpu(context_reload, mm, 0);
2897 	}
2898 }
2899 #endif
2900 
2901 static struct resource code_resource = {
2902 	.name	= "Kernel code",
2903 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2904 };
2905 
2906 static struct resource data_resource = {
2907 	.name	= "Kernel data",
2908 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2909 };
2910 
2911 static struct resource bss_resource = {
2912 	.name	= "Kernel bss",
2913 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2914 };
2915 
2916 static inline resource_size_t compute_kern_paddr(void *addr)
2917 {
2918 	return (resource_size_t) (addr - KERNBASE + kern_base);
2919 }
2920 
2921 static void __init kernel_lds_init(void)
2922 {
2923 	code_resource.start = compute_kern_paddr(_text);
2924 	code_resource.end   = compute_kern_paddr(_etext - 1);
2925 	data_resource.start = compute_kern_paddr(_etext);
2926 	data_resource.end   = compute_kern_paddr(_edata - 1);
2927 	bss_resource.start  = compute_kern_paddr(__bss_start);
2928 	bss_resource.end    = compute_kern_paddr(_end - 1);
2929 }
2930 
2931 static int __init report_memory(void)
2932 {
2933 	int i;
2934 	struct resource *res;
2935 
2936 	kernel_lds_init();
2937 
2938 	for (i = 0; i < pavail_ents; i++) {
2939 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2940 
2941 		if (!res) {
2942 			pr_warn("Failed to allocate source.\n");
2943 			break;
2944 		}
2945 
2946 		res->name = "System RAM";
2947 		res->start = pavail[i].phys_addr;
2948 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2949 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2950 
2951 		if (insert_resource(&iomem_resource, res) < 0) {
2952 			pr_warn("Resource insertion failed.\n");
2953 			break;
2954 		}
2955 
2956 		insert_resource(res, &code_resource);
2957 		insert_resource(res, &data_resource);
2958 		insert_resource(res, &bss_resource);
2959 	}
2960 
2961 	return 0;
2962 }
2963 arch_initcall(report_memory);
2964 
2965 #ifdef CONFIG_SMP
2966 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2967 #else
2968 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2969 #endif
2970 
2971 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2972 {
2973 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2974 		if (start < LOW_OBP_ADDRESS) {
2975 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2976 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2977 		}
2978 		if (end > HI_OBP_ADDRESS) {
2979 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2980 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2981 		}
2982 	} else {
2983 		flush_tsb_kernel_range(start, end);
2984 		do_flush_tlb_kernel_range(start, end);
2985 	}
2986 }
2987