xref: /linux/arch/s390/mm/fault.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (uweigand@de.ibm.com)
6  *
7  *  Derived from "arch/i386/mm/fault.c"
8  *    Copyright (C) 1995  Linus Torvalds
9  */
10 
11 #include <linux/kernel_stat.h>
12 #include <linux/perf_event.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
21 #include <linux/mm.h>
22 #include <linux/compat.h>
23 #include <linux/smp.h>
24 #include <linux/kdebug.h>
25 #include <linux/init.h>
26 #include <linux/console.h>
27 #include <linux/module.h>
28 #include <linux/hardirq.h>
29 #include <linux/kprobes.h>
30 #include <linux/uaccess.h>
31 #include <linux/hugetlb.h>
32 #include <asm/asm-offsets.h>
33 #include <asm/pgtable.h>
34 #include <asm/irq.h>
35 #include <asm/mmu_context.h>
36 #include <asm/facility.h>
37 #include "../kernel/entry.h"
38 
39 #ifndef CONFIG_64BIT
40 #define __FAIL_ADDR_MASK 0x7ffff000
41 #define __SUBCODE_MASK 0x0200
42 #define __PF_RES_FIELD 0ULL
43 #else /* CONFIG_64BIT */
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #endif /* CONFIG_64BIT */
48 
49 #define VM_FAULT_BADCONTEXT	0x010000
50 #define VM_FAULT_BADMAP		0x020000
51 #define VM_FAULT_BADACCESS	0x040000
52 #define VM_FAULT_SIGNAL	0x080000
53 
54 static unsigned long store_indication;
55 
56 void fault_init(void)
57 {
58 	if (test_facility(2) && test_facility(75))
59 		store_indication = 0xc00;
60 }
61 
62 static inline int notify_page_fault(struct pt_regs *regs)
63 {
64 	int ret = 0;
65 
66 	/* kprobe_running() needs smp_processor_id() */
67 	if (kprobes_built_in() && !user_mode(regs)) {
68 		preempt_disable();
69 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
70 			ret = 1;
71 		preempt_enable();
72 	}
73 	return ret;
74 }
75 
76 
77 /*
78  * Unlock any spinlocks which will prevent us from getting the
79  * message out.
80  */
81 void bust_spinlocks(int yes)
82 {
83 	if (yes) {
84 		oops_in_progress = 1;
85 	} else {
86 		int loglevel_save = console_loglevel;
87 		console_unblank();
88 		oops_in_progress = 0;
89 		/*
90 		 * OK, the message is on the console.  Now we call printk()
91 		 * without oops_in_progress set so that printk will give klogd
92 		 * a poke.  Hold onto your hats...
93 		 */
94 		console_loglevel = 15;
95 		printk(" ");
96 		console_loglevel = loglevel_save;
97 	}
98 }
99 
100 /*
101  * Returns the address space associated with the fault.
102  * Returns 0 for kernel space and 1 for user space.
103  */
104 static inline int user_space_fault(unsigned long trans_exc_code)
105 {
106 	/*
107 	 * The lowest two bits of the translation exception
108 	 * identification indicate which paging table was used.
109 	 */
110 	trans_exc_code &= 3;
111 	if (trans_exc_code == 2)
112 		/* Access via secondary space, set_fs setting decides */
113 		return current->thread.mm_segment.ar4;
114 	if (s390_user_mode == HOME_SPACE_MODE)
115 		/* User space if the access has been done via home space. */
116 		return trans_exc_code == 3;
117 	/*
118 	 * If the user space is not the home space the kernel runs in home
119 	 * space. Access via secondary space has already been covered,
120 	 * access via primary space or access register is from user space
121 	 * and access via home space is from the kernel.
122 	 */
123 	return trans_exc_code != 3;
124 }
125 
126 static inline void report_user_fault(struct pt_regs *regs, long signr)
127 {
128 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
129 		return;
130 	if (!unhandled_signal(current, signr))
131 		return;
132 	if (!printk_ratelimit())
133 		return;
134 	printk(KERN_ALERT "User process fault: interruption code 0x%X ",
135 	       regs->int_code);
136 	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
137 	printk(KERN_CONT "\n");
138 	printk(KERN_ALERT "failing address: %lX\n",
139 	       regs->int_parm_long & __FAIL_ADDR_MASK);
140 	show_regs(regs);
141 }
142 
143 /*
144  * Send SIGSEGV to task.  This is an external routine
145  * to keep the stack usage of do_page_fault small.
146  */
147 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
148 {
149 	struct siginfo si;
150 
151 	report_user_fault(regs, SIGSEGV);
152 	si.si_signo = SIGSEGV;
153 	si.si_code = si_code;
154 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
155 	force_sig_info(SIGSEGV, &si, current);
156 }
157 
158 static noinline void do_no_context(struct pt_regs *regs)
159 {
160 	const struct exception_table_entry *fixup;
161 	unsigned long address;
162 
163 	/* Are we prepared to handle this kernel fault?  */
164 	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
165 	if (fixup) {
166 		regs->psw.addr = extable_fixup(fixup) | PSW_ADDR_AMODE;
167 		return;
168 	}
169 
170 	/*
171 	 * Oops. The kernel tried to access some bad page. We'll have to
172 	 * terminate things with extreme prejudice.
173 	 */
174 	address = regs->int_parm_long & __FAIL_ADDR_MASK;
175 	if (!user_space_fault(regs->int_parm_long))
176 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
177 		       " at virtual kernel address %p\n", (void *)address);
178 	else
179 		printk(KERN_ALERT "Unable to handle kernel paging request"
180 		       " at virtual user address %p\n", (void *)address);
181 
182 	die(regs, "Oops");
183 	do_exit(SIGKILL);
184 }
185 
186 static noinline void do_low_address(struct pt_regs *regs)
187 {
188 	/* Low-address protection hit in kernel mode means
189 	   NULL pointer write access in kernel mode.  */
190 	if (regs->psw.mask & PSW_MASK_PSTATE) {
191 		/* Low-address protection hit in user mode 'cannot happen'. */
192 		die (regs, "Low-address protection");
193 		do_exit(SIGKILL);
194 	}
195 
196 	do_no_context(regs);
197 }
198 
199 static noinline void do_sigbus(struct pt_regs *regs)
200 {
201 	struct task_struct *tsk = current;
202 	struct siginfo si;
203 
204 	/*
205 	 * Send a sigbus, regardless of whether we were in kernel
206 	 * or user mode.
207 	 */
208 	si.si_signo = SIGBUS;
209 	si.si_errno = 0;
210 	si.si_code = BUS_ADRERR;
211 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
212 	force_sig_info(SIGBUS, &si, tsk);
213 }
214 
215 static noinline void do_fault_error(struct pt_regs *regs, int fault)
216 {
217 	int si_code;
218 
219 	switch (fault) {
220 	case VM_FAULT_BADACCESS:
221 	case VM_FAULT_BADMAP:
222 		/* Bad memory access. Check if it is kernel or user space. */
223 		if (user_mode(regs)) {
224 			/* User mode accesses just cause a SIGSEGV */
225 			si_code = (fault == VM_FAULT_BADMAP) ?
226 				SEGV_MAPERR : SEGV_ACCERR;
227 			do_sigsegv(regs, si_code);
228 			return;
229 		}
230 	case VM_FAULT_BADCONTEXT:
231 		do_no_context(regs);
232 		break;
233 	case VM_FAULT_SIGNAL:
234 		if (!user_mode(regs))
235 			do_no_context(regs);
236 		break;
237 	default: /* fault & VM_FAULT_ERROR */
238 		if (fault & VM_FAULT_OOM) {
239 			if (!user_mode(regs))
240 				do_no_context(regs);
241 			else
242 				pagefault_out_of_memory();
243 		} else if (fault & VM_FAULT_SIGBUS) {
244 			/* Kernel mode? Handle exceptions or die */
245 			if (!user_mode(regs))
246 				do_no_context(regs);
247 			else
248 				do_sigbus(regs);
249 		} else
250 			BUG();
251 		break;
252 	}
253 }
254 
255 /*
256  * This routine handles page faults.  It determines the address,
257  * and the problem, and then passes it off to one of the appropriate
258  * routines.
259  *
260  * interruption code (int_code):
261  *   04       Protection           ->  Write-Protection  (suprression)
262  *   10       Segment translation  ->  Not present       (nullification)
263  *   11       Page translation     ->  Not present       (nullification)
264  *   3b       Region third trans.  ->  Not present       (nullification)
265  */
266 static inline int do_exception(struct pt_regs *regs, int access)
267 {
268 	struct task_struct *tsk;
269 	struct mm_struct *mm;
270 	struct vm_area_struct *vma;
271 	unsigned long trans_exc_code;
272 	unsigned long address;
273 	unsigned int flags;
274 	int fault;
275 
276 	if (notify_page_fault(regs))
277 		return 0;
278 
279 	tsk = current;
280 	mm = tsk->mm;
281 	trans_exc_code = regs->int_parm_long;
282 
283 	/*
284 	 * Verify that the fault happened in user space, that
285 	 * we are not in an interrupt and that there is a
286 	 * user context.
287 	 */
288 	fault = VM_FAULT_BADCONTEXT;
289 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
290 		goto out;
291 
292 	address = trans_exc_code & __FAIL_ADDR_MASK;
293 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
294 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
295 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
296 		flags |= FAULT_FLAG_WRITE;
297 	down_read(&mm->mmap_sem);
298 
299 #ifdef CONFIG_PGSTE
300 	if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
301 		address = __gmap_fault(address,
302 				     (struct gmap *) S390_lowcore.gmap);
303 		if (address == -EFAULT) {
304 			fault = VM_FAULT_BADMAP;
305 			goto out_up;
306 		}
307 		if (address == -ENOMEM) {
308 			fault = VM_FAULT_OOM;
309 			goto out_up;
310 		}
311 	}
312 #endif
313 
314 retry:
315 	fault = VM_FAULT_BADMAP;
316 	vma = find_vma(mm, address);
317 	if (!vma)
318 		goto out_up;
319 
320 	if (unlikely(vma->vm_start > address)) {
321 		if (!(vma->vm_flags & VM_GROWSDOWN))
322 			goto out_up;
323 		if (expand_stack(vma, address))
324 			goto out_up;
325 	}
326 
327 	/*
328 	 * Ok, we have a good vm_area for this memory access, so
329 	 * we can handle it..
330 	 */
331 	fault = VM_FAULT_BADACCESS;
332 	if (unlikely(!(vma->vm_flags & access)))
333 		goto out_up;
334 
335 	if (is_vm_hugetlb_page(vma))
336 		address &= HPAGE_MASK;
337 	/*
338 	 * If for any reason at all we couldn't handle the fault,
339 	 * make sure we exit gracefully rather than endlessly redo
340 	 * the fault.
341 	 */
342 	fault = handle_mm_fault(mm, vma, address, flags);
343 	/* No reason to continue if interrupted by SIGKILL. */
344 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
345 		fault = VM_FAULT_SIGNAL;
346 		goto out;
347 	}
348 	if (unlikely(fault & VM_FAULT_ERROR))
349 		goto out_up;
350 
351 	/*
352 	 * Major/minor page fault accounting is only done on the
353 	 * initial attempt. If we go through a retry, it is extremely
354 	 * likely that the page will be found in page cache at that point.
355 	 */
356 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
357 		if (fault & VM_FAULT_MAJOR) {
358 			tsk->maj_flt++;
359 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
360 				      regs, address);
361 		} else {
362 			tsk->min_flt++;
363 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
364 				      regs, address);
365 		}
366 		if (fault & VM_FAULT_RETRY) {
367 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
368 			 * of starvation. */
369 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
370 			flags |= FAULT_FLAG_TRIED;
371 			down_read(&mm->mmap_sem);
372 			goto retry;
373 		}
374 	}
375 	/*
376 	 * The instruction that caused the program check will
377 	 * be repeated. Don't signal single step via SIGTRAP.
378 	 */
379 	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
380 	fault = 0;
381 out_up:
382 	up_read(&mm->mmap_sem);
383 out:
384 	return fault;
385 }
386 
387 void __kprobes do_protection_exception(struct pt_regs *regs)
388 {
389 	unsigned long trans_exc_code;
390 	int fault;
391 
392 	trans_exc_code = regs->int_parm_long;
393 	/* Protection exception is suppressing, decrement psw address. */
394 	regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
395 	/*
396 	 * Check for low-address protection.  This needs to be treated
397 	 * as a special case because the translation exception code
398 	 * field is not guaranteed to contain valid data in this case.
399 	 */
400 	if (unlikely(!(trans_exc_code & 4))) {
401 		do_low_address(regs);
402 		return;
403 	}
404 	fault = do_exception(regs, VM_WRITE);
405 	if (unlikely(fault))
406 		do_fault_error(regs, fault);
407 }
408 
409 void __kprobes do_dat_exception(struct pt_regs *regs)
410 {
411 	int access, fault;
412 
413 	access = VM_READ | VM_EXEC | VM_WRITE;
414 	fault = do_exception(regs, access);
415 	if (unlikely(fault))
416 		do_fault_error(regs, fault);
417 }
418 
419 #ifdef CONFIG_64BIT
420 void __kprobes do_asce_exception(struct pt_regs *regs)
421 {
422 	struct mm_struct *mm = current->mm;
423 	struct vm_area_struct *vma;
424 	unsigned long trans_exc_code;
425 
426 	trans_exc_code = regs->int_parm_long;
427 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
428 		goto no_context;
429 
430 	down_read(&mm->mmap_sem);
431 	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
432 	up_read(&mm->mmap_sem);
433 
434 	if (vma) {
435 		update_mm(mm, current);
436 		return;
437 	}
438 
439 	/* User mode accesses just cause a SIGSEGV */
440 	if (user_mode(regs)) {
441 		do_sigsegv(regs, SEGV_MAPERR);
442 		return;
443 	}
444 
445 no_context:
446 	do_no_context(regs);
447 }
448 #endif
449 
450 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
451 {
452 	struct pt_regs regs;
453 	int access, fault;
454 
455 	/* Emulate a uaccess fault from kernel mode. */
456 	regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
457 	if (!irqs_disabled())
458 		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
459 	regs.psw.addr = (unsigned long) __builtin_return_address(0);
460 	regs.psw.addr |= PSW_ADDR_AMODE;
461 	regs.int_code = pgm_int_code;
462 	regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
463 	access = write ? VM_WRITE : VM_READ;
464 	fault = do_exception(&regs, access);
465 	/*
466 	 * Since the fault happened in kernel mode while performing a uaccess
467 	 * all we need to do now is emulating a fixup in case "fault" is not
468 	 * zero.
469 	 * For the calling uaccess functions this results always in -EFAULT.
470 	 */
471 	return fault ? -EFAULT : 0;
472 }
473 
474 #ifdef CONFIG_PFAULT
475 /*
476  * 'pfault' pseudo page faults routines.
477  */
478 static int pfault_disable;
479 
480 static int __init nopfault(char *str)
481 {
482 	pfault_disable = 1;
483 	return 1;
484 }
485 
486 __setup("nopfault", nopfault);
487 
488 struct pfault_refbk {
489 	u16 refdiagc;
490 	u16 reffcode;
491 	u16 refdwlen;
492 	u16 refversn;
493 	u64 refgaddr;
494 	u64 refselmk;
495 	u64 refcmpmk;
496 	u64 reserved;
497 } __attribute__ ((packed, aligned(8)));
498 
499 int pfault_init(void)
500 {
501 	struct pfault_refbk refbk = {
502 		.refdiagc = 0x258,
503 		.reffcode = 0,
504 		.refdwlen = 5,
505 		.refversn = 2,
506 		.refgaddr = __LC_CURRENT_PID,
507 		.refselmk = 1ULL << 48,
508 		.refcmpmk = 1ULL << 48,
509 		.reserved = __PF_RES_FIELD };
510         int rc;
511 
512 	if (pfault_disable)
513 		return -1;
514 	asm volatile(
515 		"	diag	%1,%0,0x258\n"
516 		"0:	j	2f\n"
517 		"1:	la	%0,8\n"
518 		"2:\n"
519 		EX_TABLE(0b,1b)
520 		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
521         return rc;
522 }
523 
524 void pfault_fini(void)
525 {
526 	struct pfault_refbk refbk = {
527 		.refdiagc = 0x258,
528 		.reffcode = 1,
529 		.refdwlen = 5,
530 		.refversn = 2,
531 	};
532 
533 	if (pfault_disable)
534 		return;
535 	asm volatile(
536 		"	diag	%0,0,0x258\n"
537 		"0:\n"
538 		EX_TABLE(0b,0b)
539 		: : "a" (&refbk), "m" (refbk) : "cc");
540 }
541 
542 static DEFINE_SPINLOCK(pfault_lock);
543 static LIST_HEAD(pfault_list);
544 
545 static void pfault_interrupt(struct ext_code ext_code,
546 			     unsigned int param32, unsigned long param64)
547 {
548 	struct task_struct *tsk;
549 	__u16 subcode;
550 	pid_t pid;
551 
552 	/*
553 	 * Get the external interruption subcode & pfault
554 	 * initial/completion signal bit. VM stores this
555 	 * in the 'cpu address' field associated with the
556          * external interrupt.
557 	 */
558 	subcode = ext_code.subcode;
559 	if ((subcode & 0xff00) != __SUBCODE_MASK)
560 		return;
561 	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
562 	/* Get the token (= pid of the affected task). */
563 	pid = sizeof(void *) == 4 ? param32 : param64;
564 	rcu_read_lock();
565 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
566 	if (tsk)
567 		get_task_struct(tsk);
568 	rcu_read_unlock();
569 	if (!tsk)
570 		return;
571 	spin_lock(&pfault_lock);
572 	if (subcode & 0x0080) {
573 		/* signal bit is set -> a page has been swapped in by VM */
574 		if (tsk->thread.pfault_wait == 1) {
575 			/* Initial interrupt was faster than the completion
576 			 * interrupt. pfault_wait is valid. Set pfault_wait
577 			 * back to zero and wake up the process. This can
578 			 * safely be done because the task is still sleeping
579 			 * and can't produce new pfaults. */
580 			tsk->thread.pfault_wait = 0;
581 			list_del(&tsk->thread.list);
582 			wake_up_process(tsk);
583 			put_task_struct(tsk);
584 		} else {
585 			/* Completion interrupt was faster than initial
586 			 * interrupt. Set pfault_wait to -1 so the initial
587 			 * interrupt doesn't put the task to sleep.
588 			 * If the task is not running, ignore the completion
589 			 * interrupt since it must be a leftover of a PFAULT
590 			 * CANCEL operation which didn't remove all pending
591 			 * completion interrupts. */
592 			if (tsk->state == TASK_RUNNING)
593 				tsk->thread.pfault_wait = -1;
594 		}
595 	} else {
596 		/* signal bit not set -> a real page is missing. */
597 		if (WARN_ON_ONCE(tsk != current))
598 			goto out;
599 		if (tsk->thread.pfault_wait == 1) {
600 			/* Already on the list with a reference: put to sleep */
601 			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
602 			set_tsk_need_resched(tsk);
603 		} else if (tsk->thread.pfault_wait == -1) {
604 			/* Completion interrupt was faster than the initial
605 			 * interrupt (pfault_wait == -1). Set pfault_wait
606 			 * back to zero and exit. */
607 			tsk->thread.pfault_wait = 0;
608 		} else {
609 			/* Initial interrupt arrived before completion
610 			 * interrupt. Let the task sleep.
611 			 * An extra task reference is needed since a different
612 			 * cpu may set the task state to TASK_RUNNING again
613 			 * before the scheduler is reached. */
614 			get_task_struct(tsk);
615 			tsk->thread.pfault_wait = 1;
616 			list_add(&tsk->thread.list, &pfault_list);
617 			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
618 			set_tsk_need_resched(tsk);
619 		}
620 	}
621 out:
622 	spin_unlock(&pfault_lock);
623 	put_task_struct(tsk);
624 }
625 
626 static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
627 				       unsigned long action, void *hcpu)
628 {
629 	struct thread_struct *thread, *next;
630 	struct task_struct *tsk;
631 
632 	switch (action & ~CPU_TASKS_FROZEN) {
633 	case CPU_DEAD:
634 		spin_lock_irq(&pfault_lock);
635 		list_for_each_entry_safe(thread, next, &pfault_list, list) {
636 			thread->pfault_wait = 0;
637 			list_del(&thread->list);
638 			tsk = container_of(thread, struct task_struct, thread);
639 			wake_up_process(tsk);
640 			put_task_struct(tsk);
641 		}
642 		spin_unlock_irq(&pfault_lock);
643 		break;
644 	default:
645 		break;
646 	}
647 	return NOTIFY_OK;
648 }
649 
650 static int __init pfault_irq_init(void)
651 {
652 	int rc;
653 
654 	rc = register_external_interrupt(0x2603, pfault_interrupt);
655 	if (rc)
656 		goto out_extint;
657 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
658 	if (rc)
659 		goto out_pfault;
660 	service_subclass_irq_register();
661 	hotcpu_notifier(pfault_cpu_notify, 0);
662 	return 0;
663 
664 out_pfault:
665 	unregister_external_interrupt(0x2603, pfault_interrupt);
666 out_extint:
667 	pfault_disable = 1;
668 	return rc;
669 }
670 early_initcall(pfault_irq_init);
671 
672 #endif /* CONFIG_PFAULT */
673