xref: /linux/arch/s390/kernel/vtime.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7 
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14 
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20 
21 #include "entry.h"
22 
23 static void virt_timer_expire(void);
24 
25 static LIST_HEAD(virt_timer_list);
26 static DEFINE_SPINLOCK(virt_timer_lock);
27 static atomic64_t virt_timer_current;
28 static atomic64_t virt_timer_elapsed;
29 
30 DEFINE_PER_CPU(u64, mt_cycles[8]);
31 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
32 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
34 
35 static inline u64 get_vtimer(void)
36 {
37 	u64 timer;
38 
39 	asm volatile("stpt %0" : "=m" (timer));
40 	return timer;
41 }
42 
43 static inline void set_vtimer(u64 expires)
44 {
45 	u64 timer;
46 
47 	asm volatile(
48 		"	stpt	%0\n"	/* Store current cpu timer value */
49 		"	spt	%1"	/* Set new value imm. afterwards */
50 		: "=m" (timer) : "m" (expires));
51 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
52 	S390_lowcore.last_update_timer = expires;
53 }
54 
55 static inline int virt_timer_forward(u64 elapsed)
56 {
57 	BUG_ON(!irqs_disabled());
58 
59 	if (list_empty(&virt_timer_list))
60 		return 0;
61 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
62 	return elapsed >= atomic64_read(&virt_timer_current);
63 }
64 
65 static void update_mt_scaling(void)
66 {
67 	u64 cycles_new[8], *cycles_old;
68 	u64 delta, fac, mult, div;
69 	int i;
70 
71 	stcctm5(smp_cpu_mtid + 1, cycles_new);
72 	cycles_old = this_cpu_ptr(mt_cycles);
73 	fac = 1;
74 	mult = div = 0;
75 	for (i = 0; i <= smp_cpu_mtid; i++) {
76 		delta = cycles_new[i] - cycles_old[i];
77 		div += delta;
78 		mult *= i + 1;
79 		mult += delta * fac;
80 		fac *= i + 1;
81 	}
82 	div *= fac;
83 	if (div > 0) {
84 		/* Update scaling factor */
85 		__this_cpu_write(mt_scaling_mult, mult);
86 		__this_cpu_write(mt_scaling_div, div);
87 		memcpy(cycles_old, cycles_new,
88 		       sizeof(u64) * (smp_cpu_mtid + 1));
89 	}
90 	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
91 }
92 
93 /*
94  * Update process times based on virtual cpu times stored by entry.S
95  * to the lowcore fields user_timer, system_timer & steal_clock.
96  */
97 static int do_account_vtime(struct task_struct *tsk)
98 {
99 	u64 timer, clock, user, system, steal;
100 	u64 user_scaled, system_scaled;
101 
102 	timer = S390_lowcore.last_update_timer;
103 	clock = S390_lowcore.last_update_clock;
104 	asm volatile(
105 		"	stpt	%0\n"	/* Store current cpu timer value */
106 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
107 		"	stckf	%1"	/* Store current tod clock value */
108 #else
109 		"	stck	%1"	/* Store current tod clock value */
110 #endif
111 		: "=m" (S390_lowcore.last_update_timer),
112 		  "=m" (S390_lowcore.last_update_clock));
113 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
114 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
115 
116 	/* Update MT utilization calculation */
117 	if (smp_cpu_mtid &&
118 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
119 		update_mt_scaling();
120 
121 	user = S390_lowcore.user_timer - tsk->thread.user_timer;
122 	S390_lowcore.steal_timer -= user;
123 	tsk->thread.user_timer = S390_lowcore.user_timer;
124 
125 	system = S390_lowcore.system_timer - tsk->thread.system_timer;
126 	S390_lowcore.steal_timer -= system;
127 	tsk->thread.system_timer = S390_lowcore.system_timer;
128 
129 	user_scaled = user;
130 	system_scaled = system;
131 	/* Do MT utilization scaling */
132 	if (smp_cpu_mtid) {
133 		u64 mult = __this_cpu_read(mt_scaling_mult);
134 		u64 div = __this_cpu_read(mt_scaling_div);
135 
136 		user_scaled = (user_scaled * mult) / div;
137 		system_scaled = (system_scaled * mult) / div;
138 	}
139 	account_user_time(tsk, user);
140 	tsk->utimescaled += user_scaled;
141 	account_system_time(tsk, 0, system);
142 	tsk->stimescaled += system_scaled;
143 
144 	steal = S390_lowcore.steal_timer;
145 	if ((s64) steal > 0) {
146 		S390_lowcore.steal_timer = 0;
147 		account_steal_time(steal);
148 	}
149 
150 	return virt_timer_forward(user + system);
151 }
152 
153 void vtime_task_switch(struct task_struct *prev)
154 {
155 	do_account_vtime(prev);
156 	prev->thread.user_timer = S390_lowcore.user_timer;
157 	prev->thread.system_timer = S390_lowcore.system_timer;
158 	S390_lowcore.user_timer = current->thread.user_timer;
159 	S390_lowcore.system_timer = current->thread.system_timer;
160 }
161 
162 /*
163  * In s390, accounting pending user time also implies
164  * accounting system time in order to correctly compute
165  * the stolen time accounting.
166  */
167 void vtime_account_user(struct task_struct *tsk)
168 {
169 	if (do_account_vtime(tsk))
170 		virt_timer_expire();
171 }
172 
173 /*
174  * Update process times based on virtual cpu times stored by entry.S
175  * to the lowcore fields user_timer, system_timer & steal_clock.
176  */
177 void vtime_account_irq_enter(struct task_struct *tsk)
178 {
179 	u64 timer, system, system_scaled;
180 
181 	timer = S390_lowcore.last_update_timer;
182 	S390_lowcore.last_update_timer = get_vtimer();
183 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
184 
185 	/* Update MT utilization calculation */
186 	if (smp_cpu_mtid &&
187 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
188 		update_mt_scaling();
189 
190 	system = S390_lowcore.system_timer - tsk->thread.system_timer;
191 	S390_lowcore.steal_timer -= system;
192 	tsk->thread.system_timer = S390_lowcore.system_timer;
193 	system_scaled = system;
194 	/* Do MT utilization scaling */
195 	if (smp_cpu_mtid) {
196 		u64 mult = __this_cpu_read(mt_scaling_mult);
197 		u64 div = __this_cpu_read(mt_scaling_div);
198 
199 		system_scaled = (system_scaled * mult) / div;
200 	}
201 	account_system_time(tsk, 0, system);
202 	tsk->stimescaled += system_scaled;
203 
204 	virt_timer_forward(system);
205 }
206 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
207 
208 void vtime_account_system(struct task_struct *tsk)
209 __attribute__((alias("vtime_account_irq_enter")));
210 EXPORT_SYMBOL_GPL(vtime_account_system);
211 
212 /*
213  * Sorted add to a list. List is linear searched until first bigger
214  * element is found.
215  */
216 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
217 {
218 	struct vtimer_list *tmp;
219 
220 	list_for_each_entry(tmp, head, entry) {
221 		if (tmp->expires > timer->expires) {
222 			list_add_tail(&timer->entry, &tmp->entry);
223 			return;
224 		}
225 	}
226 	list_add_tail(&timer->entry, head);
227 }
228 
229 /*
230  * Handler for expired virtual CPU timer.
231  */
232 static void virt_timer_expire(void)
233 {
234 	struct vtimer_list *timer, *tmp;
235 	unsigned long elapsed;
236 	LIST_HEAD(cb_list);
237 
238 	/* walk timer list, fire all expired timers */
239 	spin_lock(&virt_timer_lock);
240 	elapsed = atomic64_read(&virt_timer_elapsed);
241 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
242 		if (timer->expires < elapsed)
243 			/* move expired timer to the callback queue */
244 			list_move_tail(&timer->entry, &cb_list);
245 		else
246 			timer->expires -= elapsed;
247 	}
248 	if (!list_empty(&virt_timer_list)) {
249 		timer = list_first_entry(&virt_timer_list,
250 					 struct vtimer_list, entry);
251 		atomic64_set(&virt_timer_current, timer->expires);
252 	}
253 	atomic64_sub(elapsed, &virt_timer_elapsed);
254 	spin_unlock(&virt_timer_lock);
255 
256 	/* Do callbacks and recharge periodic timers */
257 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
258 		list_del_init(&timer->entry);
259 		timer->function(timer->data);
260 		if (timer->interval) {
261 			/* Recharge interval timer */
262 			timer->expires = timer->interval +
263 				atomic64_read(&virt_timer_elapsed);
264 			spin_lock(&virt_timer_lock);
265 			list_add_sorted(timer, &virt_timer_list);
266 			spin_unlock(&virt_timer_lock);
267 		}
268 	}
269 }
270 
271 void init_virt_timer(struct vtimer_list *timer)
272 {
273 	timer->function = NULL;
274 	INIT_LIST_HEAD(&timer->entry);
275 }
276 EXPORT_SYMBOL(init_virt_timer);
277 
278 static inline int vtimer_pending(struct vtimer_list *timer)
279 {
280 	return !list_empty(&timer->entry);
281 }
282 
283 static void internal_add_vtimer(struct vtimer_list *timer)
284 {
285 	if (list_empty(&virt_timer_list)) {
286 		/* First timer, just program it. */
287 		atomic64_set(&virt_timer_current, timer->expires);
288 		atomic64_set(&virt_timer_elapsed, 0);
289 		list_add(&timer->entry, &virt_timer_list);
290 	} else {
291 		/* Update timer against current base. */
292 		timer->expires += atomic64_read(&virt_timer_elapsed);
293 		if (likely((s64) timer->expires <
294 			   (s64) atomic64_read(&virt_timer_current)))
295 			/* The new timer expires before the current timer. */
296 			atomic64_set(&virt_timer_current, timer->expires);
297 		/* Insert new timer into the list. */
298 		list_add_sorted(timer, &virt_timer_list);
299 	}
300 }
301 
302 static void __add_vtimer(struct vtimer_list *timer, int periodic)
303 {
304 	unsigned long flags;
305 
306 	timer->interval = periodic ? timer->expires : 0;
307 	spin_lock_irqsave(&virt_timer_lock, flags);
308 	internal_add_vtimer(timer);
309 	spin_unlock_irqrestore(&virt_timer_lock, flags);
310 }
311 
312 /*
313  * add_virt_timer - add an oneshot virtual CPU timer
314  */
315 void add_virt_timer(struct vtimer_list *timer)
316 {
317 	__add_vtimer(timer, 0);
318 }
319 EXPORT_SYMBOL(add_virt_timer);
320 
321 /*
322  * add_virt_timer_int - add an interval virtual CPU timer
323  */
324 void add_virt_timer_periodic(struct vtimer_list *timer)
325 {
326 	__add_vtimer(timer, 1);
327 }
328 EXPORT_SYMBOL(add_virt_timer_periodic);
329 
330 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
331 {
332 	unsigned long flags;
333 	int rc;
334 
335 	BUG_ON(!timer->function);
336 
337 	if (timer->expires == expires && vtimer_pending(timer))
338 		return 1;
339 	spin_lock_irqsave(&virt_timer_lock, flags);
340 	rc = vtimer_pending(timer);
341 	if (rc)
342 		list_del_init(&timer->entry);
343 	timer->interval = periodic ? expires : 0;
344 	timer->expires = expires;
345 	internal_add_vtimer(timer);
346 	spin_unlock_irqrestore(&virt_timer_lock, flags);
347 	return rc;
348 }
349 
350 /*
351  * returns whether it has modified a pending timer (1) or not (0)
352  */
353 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
354 {
355 	return __mod_vtimer(timer, expires, 0);
356 }
357 EXPORT_SYMBOL(mod_virt_timer);
358 
359 /*
360  * returns whether it has modified a pending timer (1) or not (0)
361  */
362 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
363 {
364 	return __mod_vtimer(timer, expires, 1);
365 }
366 EXPORT_SYMBOL(mod_virt_timer_periodic);
367 
368 /*
369  * Delete a virtual timer.
370  *
371  * returns whether the deleted timer was pending (1) or not (0)
372  */
373 int del_virt_timer(struct vtimer_list *timer)
374 {
375 	unsigned long flags;
376 
377 	if (!vtimer_pending(timer))
378 		return 0;
379 	spin_lock_irqsave(&virt_timer_lock, flags);
380 	list_del_init(&timer->entry);
381 	spin_unlock_irqrestore(&virt_timer_lock, flags);
382 	return 1;
383 }
384 EXPORT_SYMBOL(del_virt_timer);
385 
386 /*
387  * Start the virtual CPU timer on the current CPU.
388  */
389 void vtime_init(void)
390 {
391 	/* set initial cpu timer */
392 	set_vtimer(VTIMER_MAX_SLICE);
393 	/* Setup initial MT scaling values */
394 	if (smp_cpu_mtid) {
395 		__this_cpu_write(mt_scaling_jiffies, jiffies);
396 		__this_cpu_write(mt_scaling_mult, 1);
397 		__this_cpu_write(mt_scaling_div, 1);
398 		stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
399 	}
400 }
401