xref: /linux/arch/s390/kernel/process.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36 
37 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
38 
39 /*
40  * Return saved PC of a blocked thread. used in kernel/sched.
41  * resume in entry.S does not create a new stack frame, it
42  * just stores the registers %r6-%r15 to the frame given by
43  * schedule. We want to return the address of the caller of
44  * schedule, so we have to walk the backchain one time to
45  * find the frame schedule() store its return address.
46  */
47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49 	struct stack_frame *sf, *low, *high;
50 
51 	if (!tsk || !task_stack_page(tsk))
52 		return 0;
53 	low = task_stack_page(tsk);
54 	high = (struct stack_frame *) task_pt_regs(tsk);
55 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56 	if (sf <= low || sf > high)
57 		return 0;
58 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59 	if (sf <= low || sf > high)
60 		return 0;
61 	return sf->gprs[8];
62 }
63 
64 /*
65  * The idle loop on a S390...
66  */
67 static void default_idle(void)
68 {
69 	if (cpu_is_offline(smp_processor_id()))
70 		cpu_die();
71 	local_irq_disable();
72 	if (need_resched()) {
73 		local_irq_enable();
74 		return;
75 	}
76 	local_mcck_disable();
77 	if (test_thread_flag(TIF_MCCK_PENDING)) {
78 		local_mcck_enable();
79 		local_irq_enable();
80 		return;
81 	}
82 	/* Halt the cpu and keep track of cpu time accounting. */
83 	vtime_stop_cpu();
84 }
85 
86 void cpu_idle(void)
87 {
88 	for (;;) {
89 		tick_nohz_idle_enter();
90 		rcu_idle_enter();
91 		while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
92 			default_idle();
93 		rcu_idle_exit();
94 		tick_nohz_idle_exit();
95 		if (test_thread_flag(TIF_MCCK_PENDING))
96 			s390_handle_mcck();
97 		schedule_preempt_disabled();
98 	}
99 }
100 
101 extern void __kprobes kernel_thread_starter(void);
102 
103 asm(
104 	".section .kprobes.text, \"ax\"\n"
105 	".global kernel_thread_starter\n"
106 	"kernel_thread_starter:\n"
107 	"    la    2,0(10)\n"
108 	"    basr  14,9\n"
109 	"    la    2,0\n"
110 	"    br    11\n"
111 	".previous\n");
112 
113 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
114 {
115 	struct pt_regs regs;
116 
117 	memset(&regs, 0, sizeof(regs));
118 	regs.psw.mask = psw_kernel_bits |
119 		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
120 	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
121 	regs.gprs[9] = (unsigned long) fn;
122 	regs.gprs[10] = (unsigned long) arg;
123 	regs.gprs[11] = (unsigned long) do_exit;
124 	regs.orig_gpr2 = -1;
125 
126 	/* Ok, create the new process.. */
127 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
128 		       0, &regs, 0, NULL, NULL);
129 }
130 EXPORT_SYMBOL(kernel_thread);
131 
132 /*
133  * Free current thread data structures etc..
134  */
135 void exit_thread(void)
136 {
137 	exit_thread_runtime_instr();
138 }
139 
140 void flush_thread(void)
141 {
142 }
143 
144 void release_thread(struct task_struct *dead_task)
145 {
146 }
147 
148 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
149 		unsigned long unused,
150 		struct task_struct *p, struct pt_regs *regs)
151 {
152 	struct thread_info *ti;
153 	struct fake_frame
154 	{
155 		struct stack_frame sf;
156 		struct pt_regs childregs;
157 	} *frame;
158 
159 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
160 	p->thread.ksp = (unsigned long) frame;
161 	/* Store access registers to kernel stack of new process. */
162 	frame->childregs = *regs;
163 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
164 	frame->childregs.gprs[15] = new_stackp;
165 	frame->sf.back_chain = 0;
166 
167 	/* new return point is ret_from_fork */
168 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
169 
170 	/* fake return stack for resume(), don't go back to schedule */
171 	frame->sf.gprs[9] = (unsigned long) frame;
172 
173 	/* Save access registers to new thread structure. */
174 	save_access_regs(&p->thread.acrs[0]);
175 
176 	/* Don't copy runtime instrumentation info */
177 	p->thread.ri_cb = NULL;
178 	p->thread.ri_signum = 0;
179 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
180 
181 #ifndef CONFIG_64BIT
182 	/*
183 	 * save fprs to current->thread.fp_regs to merge them with
184 	 * the emulated registers and then copy the result to the child.
185 	 */
186 	save_fp_regs(&current->thread.fp_regs);
187 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
188 	       sizeof(s390_fp_regs));
189 	/* Set a new TLS ?  */
190 	if (clone_flags & CLONE_SETTLS)
191 		p->thread.acrs[0] = regs->gprs[6];
192 #else /* CONFIG_64BIT */
193 	/* Save the fpu registers to new thread structure. */
194 	save_fp_regs(&p->thread.fp_regs);
195 	/* Set a new TLS ?  */
196 	if (clone_flags & CLONE_SETTLS) {
197 		if (is_compat_task()) {
198 			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
199 		} else {
200 			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
201 			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
202 		}
203 	}
204 #endif /* CONFIG_64BIT */
205 	/* start new process with ar4 pointing to the correct address space */
206 	p->thread.mm_segment = get_fs();
207 	/* Don't copy debug registers */
208 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
209 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
210 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
211 	clear_tsk_thread_flag(p, TIF_PER_TRAP);
212 	/* Initialize per thread user and system timer values */
213 	ti = task_thread_info(p);
214 	ti->user_timer = 0;
215 	ti->system_timer = 0;
216 	return 0;
217 }
218 
219 SYSCALL_DEFINE0(fork)
220 {
221 	struct pt_regs *regs = task_pt_regs(current);
222 	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
223 }
224 
225 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
226 		int __user *, parent_tidptr, int __user *, child_tidptr)
227 {
228 	struct pt_regs *regs = task_pt_regs(current);
229 
230 	if (!newsp)
231 		newsp = regs->gprs[15];
232 	return do_fork(clone_flags, newsp, regs, 0,
233 		       parent_tidptr, child_tidptr);
234 }
235 
236 /*
237  * This is trivial, and on the face of it looks like it
238  * could equally well be done in user mode.
239  *
240  * Not so, for quite unobvious reasons - register pressure.
241  * In user mode vfork() cannot have a stack frame, and if
242  * done by calling the "clone()" system call directly, you
243  * do not have enough call-clobbered registers to hold all
244  * the information you need.
245  */
246 SYSCALL_DEFINE0(vfork)
247 {
248 	struct pt_regs *regs = task_pt_regs(current);
249 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
250 		       regs->gprs[15], regs, 0, NULL, NULL);
251 }
252 
253 asmlinkage void execve_tail(void)
254 {
255 	current->thread.fp_regs.fpc = 0;
256 	if (MACHINE_HAS_IEEE)
257 		asm volatile("sfpc %0,%0" : : "d" (0));
258 }
259 
260 /*
261  * sys_execve() executes a new program.
262  */
263 SYSCALL_DEFINE3(execve, const char __user *, name,
264 		const char __user *const __user *, argv,
265 		const char __user *const __user *, envp)
266 {
267 	struct pt_regs *regs = task_pt_regs(current);
268 	char *filename;
269 	long rc;
270 
271 	filename = getname(name);
272 	rc = PTR_ERR(filename);
273 	if (IS_ERR(filename))
274 		return rc;
275 	rc = do_execve(filename, argv, envp, regs);
276 	if (rc)
277 		goto out;
278 	execve_tail();
279 	rc = regs->gprs[2];
280 out:
281 	putname(filename);
282 	return rc;
283 }
284 
285 /*
286  * fill in the FPU structure for a core dump.
287  */
288 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
289 {
290 #ifndef CONFIG_64BIT
291 	/*
292 	 * save fprs to current->thread.fp_regs to merge them with
293 	 * the emulated registers and then copy the result to the dump.
294 	 */
295 	save_fp_regs(&current->thread.fp_regs);
296 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
297 #else /* CONFIG_64BIT */
298 	save_fp_regs(fpregs);
299 #endif /* CONFIG_64BIT */
300 	return 1;
301 }
302 EXPORT_SYMBOL(dump_fpu);
303 
304 unsigned long get_wchan(struct task_struct *p)
305 {
306 	struct stack_frame *sf, *low, *high;
307 	unsigned long return_address;
308 	int count;
309 
310 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
311 		return 0;
312 	low = task_stack_page(p);
313 	high = (struct stack_frame *) task_pt_regs(p);
314 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
315 	if (sf <= low || sf > high)
316 		return 0;
317 	for (count = 0; count < 16; count++) {
318 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
319 		if (sf <= low || sf > high)
320 			return 0;
321 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
322 		if (!in_sched_functions(return_address))
323 			return return_address;
324 	}
325 	return 0;
326 }
327 
328 unsigned long arch_align_stack(unsigned long sp)
329 {
330 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
331 		sp -= get_random_int() & ~PAGE_MASK;
332 	return sp & ~0xf;
333 }
334 
335 static inline unsigned long brk_rnd(void)
336 {
337 	/* 8MB for 32bit, 1GB for 64bit */
338 	if (is_32bit_task())
339 		return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
340 	else
341 		return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
342 }
343 
344 unsigned long arch_randomize_brk(struct mm_struct *mm)
345 {
346 	unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
347 
348 	if (ret < mm->brk)
349 		return mm->brk;
350 	return ret;
351 }
352 
353 unsigned long randomize_et_dyn(unsigned long base)
354 {
355 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
356 
357 	if (!(current->flags & PF_RANDOMIZE))
358 		return base;
359 	if (ret < base)
360 		return base;
361 	return ret;
362 }
363