xref: /linux/arch/riscv/net/bpf_jit_comp64.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include "bpf_jit.h"
15 
16 #define RV_FENTRY_NINSNS 2
17 
18 #define RV_REG_TCC RV_REG_A6
19 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
20 
21 static const int regmap[] = {
22 	[BPF_REG_0] =	RV_REG_A5,
23 	[BPF_REG_1] =	RV_REG_A0,
24 	[BPF_REG_2] =	RV_REG_A1,
25 	[BPF_REG_3] =	RV_REG_A2,
26 	[BPF_REG_4] =	RV_REG_A3,
27 	[BPF_REG_5] =	RV_REG_A4,
28 	[BPF_REG_6] =	RV_REG_S1,
29 	[BPF_REG_7] =	RV_REG_S2,
30 	[BPF_REG_8] =	RV_REG_S3,
31 	[BPF_REG_9] =	RV_REG_S4,
32 	[BPF_REG_FP] =	RV_REG_S5,
33 	[BPF_REG_AX] =	RV_REG_T0,
34 };
35 
36 static const int pt_regmap[] = {
37 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
38 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
39 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
40 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
41 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
42 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
43 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
44 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
45 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
46 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
47 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
48 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
49 };
50 
51 enum {
52 	RV_CTX_F_SEEN_TAIL_CALL =	0,
53 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
54 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
55 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
56 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
57 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
58 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
59 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
60 };
61 
62 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
63 {
64 	u8 reg = regmap[bpf_reg];
65 
66 	switch (reg) {
67 	case RV_CTX_F_SEEN_S1:
68 	case RV_CTX_F_SEEN_S2:
69 	case RV_CTX_F_SEEN_S3:
70 	case RV_CTX_F_SEEN_S4:
71 	case RV_CTX_F_SEEN_S5:
72 	case RV_CTX_F_SEEN_S6:
73 		__set_bit(reg, &ctx->flags);
74 	}
75 	return reg;
76 };
77 
78 static bool seen_reg(int reg, struct rv_jit_context *ctx)
79 {
80 	switch (reg) {
81 	case RV_CTX_F_SEEN_CALL:
82 	case RV_CTX_F_SEEN_S1:
83 	case RV_CTX_F_SEEN_S2:
84 	case RV_CTX_F_SEEN_S3:
85 	case RV_CTX_F_SEEN_S4:
86 	case RV_CTX_F_SEEN_S5:
87 	case RV_CTX_F_SEEN_S6:
88 		return test_bit(reg, &ctx->flags);
89 	}
90 	return false;
91 }
92 
93 static void mark_fp(struct rv_jit_context *ctx)
94 {
95 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
96 }
97 
98 static void mark_call(struct rv_jit_context *ctx)
99 {
100 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
101 }
102 
103 static bool seen_call(struct rv_jit_context *ctx)
104 {
105 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
106 }
107 
108 static void mark_tail_call(struct rv_jit_context *ctx)
109 {
110 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
111 }
112 
113 static bool seen_tail_call(struct rv_jit_context *ctx)
114 {
115 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
116 }
117 
118 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
119 {
120 	mark_tail_call(ctx);
121 
122 	if (seen_call(ctx)) {
123 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
124 		return RV_REG_S6;
125 	}
126 	return RV_REG_A6;
127 }
128 
129 static bool is_32b_int(s64 val)
130 {
131 	return -(1L << 31) <= val && val < (1L << 31);
132 }
133 
134 static bool in_auipc_jalr_range(s64 val)
135 {
136 	/*
137 	 * auipc+jalr can reach any signed PC-relative offset in the range
138 	 * [-2^31 - 2^11, 2^31 - 2^11).
139 	 */
140 	return (-(1L << 31) - (1L << 11)) <= val &&
141 		val < ((1L << 31) - (1L << 11));
142 }
143 
144 /* Emit fixed-length instructions for address */
145 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
146 {
147 	/*
148 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
149 	 * finally run from this memory region.
150 	 */
151 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
152 	s64 off = addr - ip;
153 	s64 upper = (off + (1 << 11)) >> 12;
154 	s64 lower = off & 0xfff;
155 
156 	if (extra_pass && !in_auipc_jalr_range(off)) {
157 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
158 		return -ERANGE;
159 	}
160 
161 	emit(rv_auipc(rd, upper), ctx);
162 	emit(rv_addi(rd, rd, lower), ctx);
163 	return 0;
164 }
165 
166 /* Emit variable-length instructions for 32-bit and 64-bit imm */
167 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
168 {
169 	/* Note that the immediate from the add is sign-extended,
170 	 * which means that we need to compensate this by adding 2^12,
171 	 * when the 12th bit is set. A simpler way of doing this, and
172 	 * getting rid of the check, is to just add 2**11 before the
173 	 * shift. The "Loading a 32-Bit constant" example from the
174 	 * "Computer Organization and Design, RISC-V edition" book by
175 	 * Patterson/Hennessy highlights this fact.
176 	 *
177 	 * This also means that we need to process LSB to MSB.
178 	 */
179 	s64 upper = (val + (1 << 11)) >> 12;
180 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
181 	 * and addi are signed and RVC checks will perform signed comparisons.
182 	 */
183 	s64 lower = ((val & 0xfff) << 52) >> 52;
184 	int shift;
185 
186 	if (is_32b_int(val)) {
187 		if (upper)
188 			emit_lui(rd, upper, ctx);
189 
190 		if (!upper) {
191 			emit_li(rd, lower, ctx);
192 			return;
193 		}
194 
195 		emit_addiw(rd, rd, lower, ctx);
196 		return;
197 	}
198 
199 	shift = __ffs(upper);
200 	upper >>= shift;
201 	shift += 12;
202 
203 	emit_imm(rd, upper, ctx);
204 
205 	emit_slli(rd, rd, shift, ctx);
206 	if (lower)
207 		emit_addi(rd, rd, lower, ctx);
208 }
209 
210 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
211 {
212 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
213 
214 	if (seen_reg(RV_REG_RA, ctx)) {
215 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
216 		store_offset -= 8;
217 	}
218 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
219 	store_offset -= 8;
220 	if (seen_reg(RV_REG_S1, ctx)) {
221 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
222 		store_offset -= 8;
223 	}
224 	if (seen_reg(RV_REG_S2, ctx)) {
225 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
226 		store_offset -= 8;
227 	}
228 	if (seen_reg(RV_REG_S3, ctx)) {
229 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
230 		store_offset -= 8;
231 	}
232 	if (seen_reg(RV_REG_S4, ctx)) {
233 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
234 		store_offset -= 8;
235 	}
236 	if (seen_reg(RV_REG_S5, ctx)) {
237 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
238 		store_offset -= 8;
239 	}
240 	if (seen_reg(RV_REG_S6, ctx)) {
241 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
242 		store_offset -= 8;
243 	}
244 
245 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
246 	/* Set return value. */
247 	if (!is_tail_call)
248 		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
249 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
250 		  is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
251 		  ctx);
252 }
253 
254 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
255 		     struct rv_jit_context *ctx)
256 {
257 	switch (cond) {
258 	case BPF_JEQ:
259 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
260 		return;
261 	case BPF_JGT:
262 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
263 		return;
264 	case BPF_JLT:
265 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
266 		return;
267 	case BPF_JGE:
268 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
269 		return;
270 	case BPF_JLE:
271 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
272 		return;
273 	case BPF_JNE:
274 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
275 		return;
276 	case BPF_JSGT:
277 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
278 		return;
279 	case BPF_JSLT:
280 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
281 		return;
282 	case BPF_JSGE:
283 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
284 		return;
285 	case BPF_JSLE:
286 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
287 	}
288 }
289 
290 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
291 			struct rv_jit_context *ctx)
292 {
293 	s64 upper, lower;
294 
295 	if (is_13b_int(rvoff)) {
296 		emit_bcc(cond, rd, rs, rvoff, ctx);
297 		return;
298 	}
299 
300 	/* Adjust for jal */
301 	rvoff -= 4;
302 
303 	/* Transform, e.g.:
304 	 *   bne rd,rs,foo
305 	 * to
306 	 *   beq rd,rs,<.L1>
307 	 *   (auipc foo)
308 	 *   jal(r) foo
309 	 * .L1
310 	 */
311 	cond = invert_bpf_cond(cond);
312 	if (is_21b_int(rvoff)) {
313 		emit_bcc(cond, rd, rs, 8, ctx);
314 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
315 		return;
316 	}
317 
318 	/* 32b No need for an additional rvoff adjustment, since we
319 	 * get that from the auipc at PC', where PC = PC' + 4.
320 	 */
321 	upper = (rvoff + (1 << 11)) >> 12;
322 	lower = rvoff & 0xfff;
323 
324 	emit_bcc(cond, rd, rs, 12, ctx);
325 	emit(rv_auipc(RV_REG_T1, upper), ctx);
326 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
327 }
328 
329 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
330 {
331 	emit_slli(reg, reg, 32, ctx);
332 	emit_srli(reg, reg, 32, ctx);
333 }
334 
335 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
336 {
337 	int tc_ninsn, off, start_insn = ctx->ninsns;
338 	u8 tcc = rv_tail_call_reg(ctx);
339 
340 	/* a0: &ctx
341 	 * a1: &array
342 	 * a2: index
343 	 *
344 	 * if (index >= array->map.max_entries)
345 	 *	goto out;
346 	 */
347 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
348 		   ctx->offset[0];
349 	emit_zext_32(RV_REG_A2, ctx);
350 
351 	off = offsetof(struct bpf_array, map.max_entries);
352 	if (is_12b_check(off, insn))
353 		return -1;
354 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
355 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
356 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
357 
358 	/* if (--TCC < 0)
359 	 *     goto out;
360 	 */
361 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
362 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
363 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
364 
365 	/* prog = array->ptrs[index];
366 	 * if (!prog)
367 	 *     goto out;
368 	 */
369 	emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
370 	emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
371 	off = offsetof(struct bpf_array, ptrs);
372 	if (is_12b_check(off, insn))
373 		return -1;
374 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
375 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
377 
378 	/* goto *(prog->bpf_func + 4); */
379 	off = offsetof(struct bpf_prog, bpf_func);
380 	if (is_12b_check(off, insn))
381 		return -1;
382 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
383 	__build_epilogue(true, ctx);
384 	return 0;
385 }
386 
387 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
388 		      struct rv_jit_context *ctx)
389 {
390 	u8 code = insn->code;
391 
392 	switch (code) {
393 	case BPF_JMP | BPF_JA:
394 	case BPF_JMP | BPF_CALL:
395 	case BPF_JMP | BPF_EXIT:
396 	case BPF_JMP | BPF_TAIL_CALL:
397 		break;
398 	default:
399 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
400 	}
401 
402 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
403 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
404 	    code & BPF_LDX || code & BPF_STX)
405 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
406 }
407 
408 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
409 {
410 	emit_mv(RV_REG_T2, *rd, ctx);
411 	emit_zext_32(RV_REG_T2, ctx);
412 	emit_mv(RV_REG_T1, *rs, ctx);
413 	emit_zext_32(RV_REG_T1, ctx);
414 	*rd = RV_REG_T2;
415 	*rs = RV_REG_T1;
416 }
417 
418 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
419 {
420 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
421 	emit_addiw(RV_REG_T1, *rs, 0, ctx);
422 	*rd = RV_REG_T2;
423 	*rs = RV_REG_T1;
424 }
425 
426 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
427 {
428 	emit_mv(RV_REG_T2, *rd, ctx);
429 	emit_zext_32(RV_REG_T2, ctx);
430 	emit_zext_32(RV_REG_T1, ctx);
431 	*rd = RV_REG_T2;
432 }
433 
434 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
435 {
436 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
437 	*rd = RV_REG_T2;
438 }
439 
440 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
441 			      struct rv_jit_context *ctx)
442 {
443 	s64 upper, lower;
444 
445 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
446 		emit(rv_jal(rd, rvoff >> 1), ctx);
447 		return 0;
448 	} else if (in_auipc_jalr_range(rvoff)) {
449 		upper = (rvoff + (1 << 11)) >> 12;
450 		lower = rvoff & 0xfff;
451 		emit(rv_auipc(RV_REG_T1, upper), ctx);
452 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
453 		return 0;
454 	}
455 
456 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
457 	return -ERANGE;
458 }
459 
460 static bool is_signed_bpf_cond(u8 cond)
461 {
462 	return cond == BPF_JSGT || cond == BPF_JSLT ||
463 		cond == BPF_JSGE || cond == BPF_JSLE;
464 }
465 
466 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
467 {
468 	s64 off = 0;
469 	u64 ip;
470 
471 	if (addr && ctx->insns && ctx->ro_insns) {
472 		/*
473 		 * Use the ro_insns(RX) to calculate the offset as the BPF
474 		 * program will finally run from this memory region.
475 		 */
476 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
477 		off = addr - ip;
478 	}
479 
480 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
481 }
482 
483 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
484 			struct rv_jit_context *ctx)
485 {
486 	u8 r0;
487 	int jmp_offset;
488 
489 	if (off) {
490 		if (is_12b_int(off)) {
491 			emit_addi(RV_REG_T1, rd, off, ctx);
492 		} else {
493 			emit_imm(RV_REG_T1, off, ctx);
494 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
495 		}
496 		rd = RV_REG_T1;
497 	}
498 
499 	switch (imm) {
500 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
501 	case BPF_ADD:
502 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
504 		break;
505 	case BPF_AND:
506 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
507 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
508 		break;
509 	case BPF_OR:
510 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
511 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
512 		break;
513 	case BPF_XOR:
514 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
515 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
516 		break;
517 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
518 	case BPF_ADD | BPF_FETCH:
519 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 0, 0) :
520 		     rv_amoadd_w(rs, rs, rd, 0, 0), ctx);
521 		if (!is64)
522 			emit_zext_32(rs, ctx);
523 		break;
524 	case BPF_AND | BPF_FETCH:
525 		emit(is64 ? rv_amoand_d(rs, rs, rd, 0, 0) :
526 		     rv_amoand_w(rs, rs, rd, 0, 0), ctx);
527 		if (!is64)
528 			emit_zext_32(rs, ctx);
529 		break;
530 	case BPF_OR | BPF_FETCH:
531 		emit(is64 ? rv_amoor_d(rs, rs, rd, 0, 0) :
532 		     rv_amoor_w(rs, rs, rd, 0, 0), ctx);
533 		if (!is64)
534 			emit_zext_32(rs, ctx);
535 		break;
536 	case BPF_XOR | BPF_FETCH:
537 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 0, 0) :
538 		     rv_amoxor_w(rs, rs, rd, 0, 0), ctx);
539 		if (!is64)
540 			emit_zext_32(rs, ctx);
541 		break;
542 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
543 	case BPF_XCHG:
544 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 0, 0) :
545 		     rv_amoswap_w(rs, rs, rd, 0, 0), ctx);
546 		if (!is64)
547 			emit_zext_32(rs, ctx);
548 		break;
549 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
550 	case BPF_CMPXCHG:
551 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
552 		emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
553 		     rv_addiw(RV_REG_T2, r0, 0), ctx);
554 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
555 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
556 		jmp_offset = ninsns_rvoff(8);
557 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
558 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
559 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
560 		jmp_offset = ninsns_rvoff(-6);
561 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
562 		emit(rv_fence(0x3, 0x3), ctx);
563 		break;
564 	}
565 }
566 
567 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
568 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
569 
570 bool ex_handler_bpf(const struct exception_table_entry *ex,
571 		    struct pt_regs *regs)
572 {
573 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
574 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
575 
576 	*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
577 	regs->epc = (unsigned long)&ex->fixup - offset;
578 
579 	return true;
580 }
581 
582 /* For accesses to BTF pointers, add an entry to the exception table */
583 static int add_exception_handler(const struct bpf_insn *insn,
584 				 struct rv_jit_context *ctx,
585 				 int dst_reg, int insn_len)
586 {
587 	struct exception_table_entry *ex;
588 	unsigned long pc;
589 	off_t ins_offset;
590 	off_t fixup_offset;
591 
592 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
593 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX))
594 		return 0;
595 
596 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
597 		return -EINVAL;
598 
599 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
600 		return -EINVAL;
601 
602 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
603 		return -EINVAL;
604 
605 	ex = &ctx->prog->aux->extable[ctx->nexentries];
606 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
607 
608 	/*
609 	 * This is the relative offset of the instruction that may fault from
610 	 * the exception table itself. This will be written to the exception
611 	 * table and if this instruction faults, the destination register will
612 	 * be set to '0' and the execution will jump to the next instruction.
613 	 */
614 	ins_offset = pc - (long)&ex->insn;
615 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
616 		return -ERANGE;
617 
618 	/*
619 	 * Since the extable follows the program, the fixup offset is always
620 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
621 	 * to keep things simple, and put the destination register in the upper
622 	 * bits. We don't need to worry about buildtime or runtime sort
623 	 * modifying the upper bits because the table is already sorted, and
624 	 * isn't part of the main exception table.
625 	 *
626 	 * The fixup_offset is set to the next instruction from the instruction
627 	 * that may fault. The execution will jump to this after handling the
628 	 * fault.
629 	 */
630 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
631 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
632 		return -ERANGE;
633 
634 	/*
635 	 * The offsets above have been calculated using the RO buffer but we
636 	 * need to use the R/W buffer for writes.
637 	 * switch ex to rw buffer for writing.
638 	 */
639 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
640 
641 	ex->insn = ins_offset;
642 
643 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
644 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
645 	ex->type = EX_TYPE_BPF;
646 
647 	ctx->nexentries++;
648 	return 0;
649 }
650 
651 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
652 {
653 	s64 rvoff;
654 	struct rv_jit_context ctx;
655 
656 	ctx.ninsns = 0;
657 	ctx.insns = (u16 *)insns;
658 
659 	if (!target) {
660 		emit(rv_nop(), &ctx);
661 		emit(rv_nop(), &ctx);
662 		return 0;
663 	}
664 
665 	rvoff = (s64)(target - ip);
666 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
667 }
668 
669 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
670 		       void *old_addr, void *new_addr)
671 {
672 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
673 	bool is_call = poke_type == BPF_MOD_CALL;
674 	int ret;
675 
676 	if (!is_kernel_text((unsigned long)ip) &&
677 	    !is_bpf_text_address((unsigned long)ip))
678 		return -ENOTSUPP;
679 
680 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
681 	if (ret)
682 		return ret;
683 
684 	if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
685 		return -EFAULT;
686 
687 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
688 	if (ret)
689 		return ret;
690 
691 	cpus_read_lock();
692 	mutex_lock(&text_mutex);
693 	if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
694 		ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
695 	mutex_unlock(&text_mutex);
696 	cpus_read_unlock();
697 
698 	return ret;
699 }
700 
701 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
702 {
703 	int i;
704 
705 	for (i = 0; i < nregs; i++) {
706 		emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
707 		args_off -= 8;
708 	}
709 }
710 
711 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
712 {
713 	int i;
714 
715 	for (i = 0; i < nregs; i++) {
716 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
717 		args_off -= 8;
718 	}
719 }
720 
721 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
722 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
723 {
724 	int ret, branch_off;
725 	struct bpf_prog *p = l->link.prog;
726 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
727 
728 	if (l->cookie) {
729 		emit_imm(RV_REG_T1, l->cookie, ctx);
730 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
731 	} else {
732 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
733 	}
734 
735 	/* arg1: prog */
736 	emit_imm(RV_REG_A0, (const s64)p, ctx);
737 	/* arg2: &run_ctx */
738 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
739 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
740 	if (ret)
741 		return ret;
742 
743 	/* if (__bpf_prog_enter(prog) == 0)
744 	 *	goto skip_exec_of_prog;
745 	 */
746 	branch_off = ctx->ninsns;
747 	/* nop reserved for conditional jump */
748 	emit(rv_nop(), ctx);
749 
750 	/* store prog start time */
751 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
752 
753 	/* arg1: &args_off */
754 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
755 	if (!p->jited)
756 		/* arg2: progs[i]->insnsi for interpreter */
757 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
758 	ret = emit_call((const u64)p->bpf_func, true, ctx);
759 	if (ret)
760 		return ret;
761 
762 	if (save_ret) {
763 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
764 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
765 	}
766 
767 	/* update branch with beqz */
768 	if (ctx->insns) {
769 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
770 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
771 		*(u32 *)(ctx->insns + branch_off) = insn;
772 	}
773 
774 	/* arg1: prog */
775 	emit_imm(RV_REG_A0, (const s64)p, ctx);
776 	/* arg2: prog start time */
777 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
778 	/* arg3: &run_ctx */
779 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
780 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
781 
782 	return ret;
783 }
784 
785 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
786 					 const struct btf_func_model *m,
787 					 struct bpf_tramp_links *tlinks,
788 					 void *func_addr, u32 flags,
789 					 struct rv_jit_context *ctx)
790 {
791 	int i, ret, offset;
792 	int *branches_off = NULL;
793 	int stack_size = 0, nregs = m->nr_args;
794 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
795 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
796 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
797 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
798 	bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
799 	void *orig_call = func_addr;
800 	bool save_ret;
801 	u32 insn;
802 
803 	/* Two types of generated trampoline stack layout:
804 	 *
805 	 * 1. trampoline called from function entry
806 	 * --------------------------------------
807 	 * FP + 8	    [ RA to parent func	] return address to parent
808 	 *					  function
809 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
810 	 *					  function
811 	 * FP - 8           [ T0 to traced func ] return address of traced
812 	 *					  function
813 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
814 	 *					  function
815 	 * --------------------------------------
816 	 *
817 	 * 2. trampoline called directly
818 	 * --------------------------------------
819 	 * FP - 8	    [ RA to caller func ] return address to caller
820 	 *					  function
821 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
822 	 *					  function
823 	 * --------------------------------------
824 	 *
825 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
826 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
827 	 *                  [ argN              ]
828 	 *                  [ ...               ]
829 	 * FP - args_off    [ arg1              ]
830 	 *
831 	 * FP - nregs_off   [ regs count        ]
832 	 *
833 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
834 	 *
835 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
836 	 *
837 	 * FP - sreg_off    [ callee saved reg	]
838 	 *
839 	 *		    [ pads              ] pads for 16 bytes alignment
840 	 */
841 
842 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
843 		return -ENOTSUPP;
844 
845 	/* extra regiters for struct arguments */
846 	for (i = 0; i < m->nr_args; i++)
847 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
848 			nregs += round_up(m->arg_size[i], 8) / 8 - 1;
849 
850 	/* 8 arguments passed by registers */
851 	if (nregs > 8)
852 		return -ENOTSUPP;
853 
854 	/* room of trampoline frame to store return address and frame pointer */
855 	stack_size += 16;
856 
857 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
858 	if (save_ret) {
859 		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
860 		retval_off = stack_size;
861 	}
862 
863 	stack_size += nregs * 8;
864 	args_off = stack_size;
865 
866 	stack_size += 8;
867 	nregs_off = stack_size;
868 
869 	if (flags & BPF_TRAMP_F_IP_ARG) {
870 		stack_size += 8;
871 		ip_off = stack_size;
872 	}
873 
874 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
875 	run_ctx_off = stack_size;
876 
877 	stack_size += 8;
878 	sreg_off = stack_size;
879 
880 	stack_size = round_up(stack_size, 16);
881 
882 	if (!is_struct_ops) {
883 		/* For the trampoline called from function entry,
884 		 * the frame of traced function and the frame of
885 		 * trampoline need to be considered.
886 		 */
887 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
888 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
889 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
890 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
891 
892 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
893 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
894 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
895 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
896 	} else {
897 		/* For the trampoline called directly, just handle
898 		 * the frame of trampoline.
899 		 */
900 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
901 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
902 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
903 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
904 	}
905 
906 	/* callee saved register S1 to pass start time */
907 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
908 
909 	/* store ip address of the traced function */
910 	if (flags & BPF_TRAMP_F_IP_ARG) {
911 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
912 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
913 	}
914 
915 	emit_li(RV_REG_T1, nregs, ctx);
916 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
917 
918 	store_args(nregs, args_off, ctx);
919 
920 	/* skip to actual body of traced function */
921 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
922 		orig_call += RV_FENTRY_NINSNS * 4;
923 
924 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
925 		emit_imm(RV_REG_A0, (const s64)im, ctx);
926 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	for (i = 0; i < fentry->nr_links; i++) {
932 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
933 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
934 		if (ret)
935 			return ret;
936 	}
937 
938 	if (fmod_ret->nr_links) {
939 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
940 		if (!branches_off)
941 			return -ENOMEM;
942 
943 		/* cleanup to avoid garbage return value confusion */
944 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
945 		for (i = 0; i < fmod_ret->nr_links; i++) {
946 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
947 					      run_ctx_off, true, ctx);
948 			if (ret)
949 				goto out;
950 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
951 			branches_off[i] = ctx->ninsns;
952 			/* nop reserved for conditional jump */
953 			emit(rv_nop(), ctx);
954 		}
955 	}
956 
957 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
958 		restore_args(nregs, args_off, ctx);
959 		ret = emit_call((const u64)orig_call, true, ctx);
960 		if (ret)
961 			goto out;
962 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
963 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
964 		im->ip_after_call = ctx->insns + ctx->ninsns;
965 		/* 2 nops reserved for auipc+jalr pair */
966 		emit(rv_nop(), ctx);
967 		emit(rv_nop(), ctx);
968 	}
969 
970 	/* update branches saved in invoke_bpf_mod_ret with bnez */
971 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
972 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
973 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
974 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
975 	}
976 
977 	for (i = 0; i < fexit->nr_links; i++) {
978 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
979 				      run_ctx_off, false, ctx);
980 		if (ret)
981 			goto out;
982 	}
983 
984 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
985 		im->ip_epilogue = ctx->insns + ctx->ninsns;
986 		emit_imm(RV_REG_A0, (const s64)im, ctx);
987 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
988 		if (ret)
989 			goto out;
990 	}
991 
992 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
993 		restore_args(nregs, args_off, ctx);
994 
995 	if (save_ret) {
996 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
997 		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
998 	}
999 
1000 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1001 
1002 	if (!is_struct_ops) {
1003 		/* trampoline called from function entry */
1004 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1005 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1006 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1007 
1008 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1009 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1010 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1011 
1012 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1013 			/* return to parent function */
1014 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1015 		else
1016 			/* return to traced function */
1017 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1018 	} else {
1019 		/* trampoline called directly */
1020 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1021 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1022 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1023 
1024 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1025 	}
1026 
1027 	ret = ctx->ninsns;
1028 out:
1029 	kfree(branches_off);
1030 	return ret;
1031 }
1032 
1033 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1034 			     struct bpf_tramp_links *tlinks, void *func_addr)
1035 {
1036 	struct bpf_tramp_image im;
1037 	struct rv_jit_context ctx;
1038 	int ret;
1039 
1040 	ctx.ninsns = 0;
1041 	ctx.insns = NULL;
1042 	ctx.ro_insns = NULL;
1043 	ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1044 
1045 	return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1046 }
1047 
1048 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1049 				void *image_end, const struct btf_func_model *m,
1050 				u32 flags, struct bpf_tramp_links *tlinks,
1051 				void *func_addr)
1052 {
1053 	int ret;
1054 	struct rv_jit_context ctx;
1055 
1056 	ctx.ninsns = 0;
1057 	/*
1058 	 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1059 	 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1060 	 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1061 	 * trampoline image uses the same memory area for writing and execution,
1062 	 * both ctx.insns and ctx.ro_insns can be set to image.
1063 	 */
1064 	ctx.insns = image;
1065 	ctx.ro_insns = image;
1066 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1071 
1072 	return ninsns_rvoff(ret);
1073 }
1074 
1075 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1076 		      bool extra_pass)
1077 {
1078 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1079 		    BPF_CLASS(insn->code) == BPF_JMP;
1080 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1081 	struct bpf_prog_aux *aux = ctx->prog->aux;
1082 	u8 rd = -1, rs = -1, code = insn->code;
1083 	s16 off = insn->off;
1084 	s32 imm = insn->imm;
1085 
1086 	init_regs(&rd, &rs, insn, ctx);
1087 
1088 	switch (code) {
1089 	/* dst = src */
1090 	case BPF_ALU | BPF_MOV | BPF_X:
1091 	case BPF_ALU64 | BPF_MOV | BPF_X:
1092 		if (imm == 1) {
1093 			/* Special mov32 for zext */
1094 			emit_zext_32(rd, ctx);
1095 			break;
1096 		}
1097 		switch (insn->off) {
1098 		case 0:
1099 			emit_mv(rd, rs, ctx);
1100 			break;
1101 		case 8:
1102 		case 16:
1103 			emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx);
1104 			emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx);
1105 			break;
1106 		case 32:
1107 			emit_addiw(rd, rs, 0, ctx);
1108 			break;
1109 		}
1110 		if (!is64 && !aux->verifier_zext)
1111 			emit_zext_32(rd, ctx);
1112 		break;
1113 
1114 	/* dst = dst OP src */
1115 	case BPF_ALU | BPF_ADD | BPF_X:
1116 	case BPF_ALU64 | BPF_ADD | BPF_X:
1117 		emit_add(rd, rd, rs, ctx);
1118 		if (!is64 && !aux->verifier_zext)
1119 			emit_zext_32(rd, ctx);
1120 		break;
1121 	case BPF_ALU | BPF_SUB | BPF_X:
1122 	case BPF_ALU64 | BPF_SUB | BPF_X:
1123 		if (is64)
1124 			emit_sub(rd, rd, rs, ctx);
1125 		else
1126 			emit_subw(rd, rd, rs, ctx);
1127 
1128 		if (!is64 && !aux->verifier_zext)
1129 			emit_zext_32(rd, ctx);
1130 		break;
1131 	case BPF_ALU | BPF_AND | BPF_X:
1132 	case BPF_ALU64 | BPF_AND | BPF_X:
1133 		emit_and(rd, rd, rs, ctx);
1134 		if (!is64 && !aux->verifier_zext)
1135 			emit_zext_32(rd, ctx);
1136 		break;
1137 	case BPF_ALU | BPF_OR | BPF_X:
1138 	case BPF_ALU64 | BPF_OR | BPF_X:
1139 		emit_or(rd, rd, rs, ctx);
1140 		if (!is64 && !aux->verifier_zext)
1141 			emit_zext_32(rd, ctx);
1142 		break;
1143 	case BPF_ALU | BPF_XOR | BPF_X:
1144 	case BPF_ALU64 | BPF_XOR | BPF_X:
1145 		emit_xor(rd, rd, rs, ctx);
1146 		if (!is64 && !aux->verifier_zext)
1147 			emit_zext_32(rd, ctx);
1148 		break;
1149 	case BPF_ALU | BPF_MUL | BPF_X:
1150 	case BPF_ALU64 | BPF_MUL | BPF_X:
1151 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1152 		if (!is64 && !aux->verifier_zext)
1153 			emit_zext_32(rd, ctx);
1154 		break;
1155 	case BPF_ALU | BPF_DIV | BPF_X:
1156 	case BPF_ALU64 | BPF_DIV | BPF_X:
1157 		if (off)
1158 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1159 		else
1160 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1161 		if (!is64 && !aux->verifier_zext)
1162 			emit_zext_32(rd, ctx);
1163 		break;
1164 	case BPF_ALU | BPF_MOD | BPF_X:
1165 	case BPF_ALU64 | BPF_MOD | BPF_X:
1166 		if (off)
1167 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1168 		else
1169 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1170 		if (!is64 && !aux->verifier_zext)
1171 			emit_zext_32(rd, ctx);
1172 		break;
1173 	case BPF_ALU | BPF_LSH | BPF_X:
1174 	case BPF_ALU64 | BPF_LSH | BPF_X:
1175 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1176 		if (!is64 && !aux->verifier_zext)
1177 			emit_zext_32(rd, ctx);
1178 		break;
1179 	case BPF_ALU | BPF_RSH | BPF_X:
1180 	case BPF_ALU64 | BPF_RSH | BPF_X:
1181 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1182 		if (!is64 && !aux->verifier_zext)
1183 			emit_zext_32(rd, ctx);
1184 		break;
1185 	case BPF_ALU | BPF_ARSH | BPF_X:
1186 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1187 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1188 		if (!is64 && !aux->verifier_zext)
1189 			emit_zext_32(rd, ctx);
1190 		break;
1191 
1192 	/* dst = -dst */
1193 	case BPF_ALU | BPF_NEG:
1194 	case BPF_ALU64 | BPF_NEG:
1195 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1196 		if (!is64 && !aux->verifier_zext)
1197 			emit_zext_32(rd, ctx);
1198 		break;
1199 
1200 	/* dst = BSWAP##imm(dst) */
1201 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1202 		switch (imm) {
1203 		case 16:
1204 			emit_slli(rd, rd, 48, ctx);
1205 			emit_srli(rd, rd, 48, ctx);
1206 			break;
1207 		case 32:
1208 			if (!aux->verifier_zext)
1209 				emit_zext_32(rd, ctx);
1210 			break;
1211 		case 64:
1212 			/* Do nothing */
1213 			break;
1214 		}
1215 		break;
1216 
1217 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1218 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1219 		emit_li(RV_REG_T2, 0, ctx);
1220 
1221 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1222 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1223 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1224 		emit_srli(rd, rd, 8, ctx);
1225 		if (imm == 16)
1226 			goto out_be;
1227 
1228 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1229 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1230 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1231 		emit_srli(rd, rd, 8, ctx);
1232 
1233 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1234 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1235 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1236 		emit_srli(rd, rd, 8, ctx);
1237 		if (imm == 32)
1238 			goto out_be;
1239 
1240 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1241 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1242 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1243 		emit_srli(rd, rd, 8, ctx);
1244 
1245 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1246 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1247 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1248 		emit_srli(rd, rd, 8, ctx);
1249 
1250 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1251 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1252 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1253 		emit_srli(rd, rd, 8, ctx);
1254 
1255 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1256 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1257 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1258 		emit_srli(rd, rd, 8, ctx);
1259 out_be:
1260 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1261 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1262 
1263 		emit_mv(rd, RV_REG_T2, ctx);
1264 		break;
1265 
1266 	/* dst = imm */
1267 	case BPF_ALU | BPF_MOV | BPF_K:
1268 	case BPF_ALU64 | BPF_MOV | BPF_K:
1269 		emit_imm(rd, imm, ctx);
1270 		if (!is64 && !aux->verifier_zext)
1271 			emit_zext_32(rd, ctx);
1272 		break;
1273 
1274 	/* dst = dst OP imm */
1275 	case BPF_ALU | BPF_ADD | BPF_K:
1276 	case BPF_ALU64 | BPF_ADD | BPF_K:
1277 		if (is_12b_int(imm)) {
1278 			emit_addi(rd, rd, imm, ctx);
1279 		} else {
1280 			emit_imm(RV_REG_T1, imm, ctx);
1281 			emit_add(rd, rd, RV_REG_T1, ctx);
1282 		}
1283 		if (!is64 && !aux->verifier_zext)
1284 			emit_zext_32(rd, ctx);
1285 		break;
1286 	case BPF_ALU | BPF_SUB | BPF_K:
1287 	case BPF_ALU64 | BPF_SUB | BPF_K:
1288 		if (is_12b_int(-imm)) {
1289 			emit_addi(rd, rd, -imm, ctx);
1290 		} else {
1291 			emit_imm(RV_REG_T1, imm, ctx);
1292 			emit_sub(rd, rd, RV_REG_T1, ctx);
1293 		}
1294 		if (!is64 && !aux->verifier_zext)
1295 			emit_zext_32(rd, ctx);
1296 		break;
1297 	case BPF_ALU | BPF_AND | BPF_K:
1298 	case BPF_ALU64 | BPF_AND | BPF_K:
1299 		if (is_12b_int(imm)) {
1300 			emit_andi(rd, rd, imm, ctx);
1301 		} else {
1302 			emit_imm(RV_REG_T1, imm, ctx);
1303 			emit_and(rd, rd, RV_REG_T1, ctx);
1304 		}
1305 		if (!is64 && !aux->verifier_zext)
1306 			emit_zext_32(rd, ctx);
1307 		break;
1308 	case BPF_ALU | BPF_OR | BPF_K:
1309 	case BPF_ALU64 | BPF_OR | BPF_K:
1310 		if (is_12b_int(imm)) {
1311 			emit(rv_ori(rd, rd, imm), ctx);
1312 		} else {
1313 			emit_imm(RV_REG_T1, imm, ctx);
1314 			emit_or(rd, rd, RV_REG_T1, ctx);
1315 		}
1316 		if (!is64 && !aux->verifier_zext)
1317 			emit_zext_32(rd, ctx);
1318 		break;
1319 	case BPF_ALU | BPF_XOR | BPF_K:
1320 	case BPF_ALU64 | BPF_XOR | BPF_K:
1321 		if (is_12b_int(imm)) {
1322 			emit(rv_xori(rd, rd, imm), ctx);
1323 		} else {
1324 			emit_imm(RV_REG_T1, imm, ctx);
1325 			emit_xor(rd, rd, RV_REG_T1, ctx);
1326 		}
1327 		if (!is64 && !aux->verifier_zext)
1328 			emit_zext_32(rd, ctx);
1329 		break;
1330 	case BPF_ALU | BPF_MUL | BPF_K:
1331 	case BPF_ALU64 | BPF_MUL | BPF_K:
1332 		emit_imm(RV_REG_T1, imm, ctx);
1333 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1334 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1335 		if (!is64 && !aux->verifier_zext)
1336 			emit_zext_32(rd, ctx);
1337 		break;
1338 	case BPF_ALU | BPF_DIV | BPF_K:
1339 	case BPF_ALU64 | BPF_DIV | BPF_K:
1340 		emit_imm(RV_REG_T1, imm, ctx);
1341 		if (off)
1342 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1343 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1344 		else
1345 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1346 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1347 		if (!is64 && !aux->verifier_zext)
1348 			emit_zext_32(rd, ctx);
1349 		break;
1350 	case BPF_ALU | BPF_MOD | BPF_K:
1351 	case BPF_ALU64 | BPF_MOD | BPF_K:
1352 		emit_imm(RV_REG_T1, imm, ctx);
1353 		if (off)
1354 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1355 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1356 		else
1357 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1358 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1359 		if (!is64 && !aux->verifier_zext)
1360 			emit_zext_32(rd, ctx);
1361 		break;
1362 	case BPF_ALU | BPF_LSH | BPF_K:
1363 	case BPF_ALU64 | BPF_LSH | BPF_K:
1364 		emit_slli(rd, rd, imm, ctx);
1365 
1366 		if (!is64 && !aux->verifier_zext)
1367 			emit_zext_32(rd, ctx);
1368 		break;
1369 	case BPF_ALU | BPF_RSH | BPF_K:
1370 	case BPF_ALU64 | BPF_RSH | BPF_K:
1371 		if (is64)
1372 			emit_srli(rd, rd, imm, ctx);
1373 		else
1374 			emit(rv_srliw(rd, rd, imm), ctx);
1375 
1376 		if (!is64 && !aux->verifier_zext)
1377 			emit_zext_32(rd, ctx);
1378 		break;
1379 	case BPF_ALU | BPF_ARSH | BPF_K:
1380 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1381 		if (is64)
1382 			emit_srai(rd, rd, imm, ctx);
1383 		else
1384 			emit(rv_sraiw(rd, rd, imm), ctx);
1385 
1386 		if (!is64 && !aux->verifier_zext)
1387 			emit_zext_32(rd, ctx);
1388 		break;
1389 
1390 	/* JUMP off */
1391 	case BPF_JMP | BPF_JA:
1392 	case BPF_JMP32 | BPF_JA:
1393 		if (BPF_CLASS(code) == BPF_JMP)
1394 			rvoff = rv_offset(i, off, ctx);
1395 		else
1396 			rvoff = rv_offset(i, imm, ctx);
1397 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1398 		if (ret)
1399 			return ret;
1400 		break;
1401 
1402 	/* IF (dst COND src) JUMP off */
1403 	case BPF_JMP | BPF_JEQ | BPF_X:
1404 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1405 	case BPF_JMP | BPF_JGT | BPF_X:
1406 	case BPF_JMP32 | BPF_JGT | BPF_X:
1407 	case BPF_JMP | BPF_JLT | BPF_X:
1408 	case BPF_JMP32 | BPF_JLT | BPF_X:
1409 	case BPF_JMP | BPF_JGE | BPF_X:
1410 	case BPF_JMP32 | BPF_JGE | BPF_X:
1411 	case BPF_JMP | BPF_JLE | BPF_X:
1412 	case BPF_JMP32 | BPF_JLE | BPF_X:
1413 	case BPF_JMP | BPF_JNE | BPF_X:
1414 	case BPF_JMP32 | BPF_JNE | BPF_X:
1415 	case BPF_JMP | BPF_JSGT | BPF_X:
1416 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1417 	case BPF_JMP | BPF_JSLT | BPF_X:
1418 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1419 	case BPF_JMP | BPF_JSGE | BPF_X:
1420 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1421 	case BPF_JMP | BPF_JSLE | BPF_X:
1422 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1423 	case BPF_JMP | BPF_JSET | BPF_X:
1424 	case BPF_JMP32 | BPF_JSET | BPF_X:
1425 		rvoff = rv_offset(i, off, ctx);
1426 		if (!is64) {
1427 			s = ctx->ninsns;
1428 			if (is_signed_bpf_cond(BPF_OP(code)))
1429 				emit_sext_32_rd_rs(&rd, &rs, ctx);
1430 			else
1431 				emit_zext_32_rd_rs(&rd, &rs, ctx);
1432 			e = ctx->ninsns;
1433 
1434 			/* Adjust for extra insns */
1435 			rvoff -= ninsns_rvoff(e - s);
1436 		}
1437 
1438 		if (BPF_OP(code) == BPF_JSET) {
1439 			/* Adjust for and */
1440 			rvoff -= 4;
1441 			emit_and(RV_REG_T1, rd, rs, ctx);
1442 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1443 				    ctx);
1444 		} else {
1445 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1446 		}
1447 		break;
1448 
1449 	/* IF (dst COND imm) JUMP off */
1450 	case BPF_JMP | BPF_JEQ | BPF_K:
1451 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1452 	case BPF_JMP | BPF_JGT | BPF_K:
1453 	case BPF_JMP32 | BPF_JGT | BPF_K:
1454 	case BPF_JMP | BPF_JLT | BPF_K:
1455 	case BPF_JMP32 | BPF_JLT | BPF_K:
1456 	case BPF_JMP | BPF_JGE | BPF_K:
1457 	case BPF_JMP32 | BPF_JGE | BPF_K:
1458 	case BPF_JMP | BPF_JLE | BPF_K:
1459 	case BPF_JMP32 | BPF_JLE | BPF_K:
1460 	case BPF_JMP | BPF_JNE | BPF_K:
1461 	case BPF_JMP32 | BPF_JNE | BPF_K:
1462 	case BPF_JMP | BPF_JSGT | BPF_K:
1463 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1464 	case BPF_JMP | BPF_JSLT | BPF_K:
1465 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1466 	case BPF_JMP | BPF_JSGE | BPF_K:
1467 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1468 	case BPF_JMP | BPF_JSLE | BPF_K:
1469 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1470 		rvoff = rv_offset(i, off, ctx);
1471 		s = ctx->ninsns;
1472 		if (imm) {
1473 			emit_imm(RV_REG_T1, imm, ctx);
1474 			rs = RV_REG_T1;
1475 		} else {
1476 			/* If imm is 0, simply use zero register. */
1477 			rs = RV_REG_ZERO;
1478 		}
1479 		if (!is64) {
1480 			if (is_signed_bpf_cond(BPF_OP(code)))
1481 				emit_sext_32_rd(&rd, ctx);
1482 			else
1483 				emit_zext_32_rd_t1(&rd, ctx);
1484 		}
1485 		e = ctx->ninsns;
1486 
1487 		/* Adjust for extra insns */
1488 		rvoff -= ninsns_rvoff(e - s);
1489 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1490 		break;
1491 
1492 	case BPF_JMP | BPF_JSET | BPF_K:
1493 	case BPF_JMP32 | BPF_JSET | BPF_K:
1494 		rvoff = rv_offset(i, off, ctx);
1495 		s = ctx->ninsns;
1496 		if (is_12b_int(imm)) {
1497 			emit_andi(RV_REG_T1, rd, imm, ctx);
1498 		} else {
1499 			emit_imm(RV_REG_T1, imm, ctx);
1500 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1501 		}
1502 		/* For jset32, we should clear the upper 32 bits of t1, but
1503 		 * sign-extension is sufficient here and saves one instruction,
1504 		 * as t1 is used only in comparison against zero.
1505 		 */
1506 		if (!is64 && imm < 0)
1507 			emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
1508 		e = ctx->ninsns;
1509 		rvoff -= ninsns_rvoff(e - s);
1510 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1511 		break;
1512 
1513 	/* function call */
1514 	case BPF_JMP | BPF_CALL:
1515 	{
1516 		bool fixed_addr;
1517 		u64 addr;
1518 
1519 		mark_call(ctx);
1520 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1521 					    &addr, &fixed_addr);
1522 		if (ret < 0)
1523 			return ret;
1524 
1525 		ret = emit_call(addr, fixed_addr, ctx);
1526 		if (ret)
1527 			return ret;
1528 
1529 		if (insn->src_reg != BPF_PSEUDO_CALL)
1530 			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1531 		break;
1532 	}
1533 	/* tail call */
1534 	case BPF_JMP | BPF_TAIL_CALL:
1535 		if (emit_bpf_tail_call(i, ctx))
1536 			return -1;
1537 		break;
1538 
1539 	/* function return */
1540 	case BPF_JMP | BPF_EXIT:
1541 		if (i == ctx->prog->len - 1)
1542 			break;
1543 
1544 		rvoff = epilogue_offset(ctx);
1545 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1546 		if (ret)
1547 			return ret;
1548 		break;
1549 
1550 	/* dst = imm64 */
1551 	case BPF_LD | BPF_IMM | BPF_DW:
1552 	{
1553 		struct bpf_insn insn1 = insn[1];
1554 		u64 imm64;
1555 
1556 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1557 		if (bpf_pseudo_func(insn)) {
1558 			/* fixed-length insns for extra jit pass */
1559 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1560 			if (ret)
1561 				return ret;
1562 		} else {
1563 			emit_imm(rd, imm64, ctx);
1564 		}
1565 
1566 		return 1;
1567 	}
1568 
1569 	/* LDX: dst = *(unsigned size *)(src + off) */
1570 	case BPF_LDX | BPF_MEM | BPF_B:
1571 	case BPF_LDX | BPF_MEM | BPF_H:
1572 	case BPF_LDX | BPF_MEM | BPF_W:
1573 	case BPF_LDX | BPF_MEM | BPF_DW:
1574 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1575 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1576 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1577 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1578 	/* LDSX: dst = *(signed size *)(src + off) */
1579 	case BPF_LDX | BPF_MEMSX | BPF_B:
1580 	case BPF_LDX | BPF_MEMSX | BPF_H:
1581 	case BPF_LDX | BPF_MEMSX | BPF_W:
1582 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1583 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1584 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1585 	{
1586 		int insn_len, insns_start;
1587 		bool sign_ext;
1588 
1589 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1590 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1591 
1592 		switch (BPF_SIZE(code)) {
1593 		case BPF_B:
1594 			if (is_12b_int(off)) {
1595 				insns_start = ctx->ninsns;
1596 				if (sign_ext)
1597 					emit(rv_lb(rd, off, rs), ctx);
1598 				else
1599 					emit(rv_lbu(rd, off, rs), ctx);
1600 				insn_len = ctx->ninsns - insns_start;
1601 				break;
1602 			}
1603 
1604 			emit_imm(RV_REG_T1, off, ctx);
1605 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1606 			insns_start = ctx->ninsns;
1607 			if (sign_ext)
1608 				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1609 			else
1610 				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1611 			insn_len = ctx->ninsns - insns_start;
1612 			break;
1613 		case BPF_H:
1614 			if (is_12b_int(off)) {
1615 				insns_start = ctx->ninsns;
1616 				if (sign_ext)
1617 					emit(rv_lh(rd, off, rs), ctx);
1618 				else
1619 					emit(rv_lhu(rd, off, rs), ctx);
1620 				insn_len = ctx->ninsns - insns_start;
1621 				break;
1622 			}
1623 
1624 			emit_imm(RV_REG_T1, off, ctx);
1625 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1626 			insns_start = ctx->ninsns;
1627 			if (sign_ext)
1628 				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1629 			else
1630 				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1631 			insn_len = ctx->ninsns - insns_start;
1632 			break;
1633 		case BPF_W:
1634 			if (is_12b_int(off)) {
1635 				insns_start = ctx->ninsns;
1636 				if (sign_ext)
1637 					emit(rv_lw(rd, off, rs), ctx);
1638 				else
1639 					emit(rv_lwu(rd, off, rs), ctx);
1640 				insn_len = ctx->ninsns - insns_start;
1641 				break;
1642 			}
1643 
1644 			emit_imm(RV_REG_T1, off, ctx);
1645 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1646 			insns_start = ctx->ninsns;
1647 			if (sign_ext)
1648 				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1649 			else
1650 				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1651 			insn_len = ctx->ninsns - insns_start;
1652 			break;
1653 		case BPF_DW:
1654 			if (is_12b_int(off)) {
1655 				insns_start = ctx->ninsns;
1656 				emit_ld(rd, off, rs, ctx);
1657 				insn_len = ctx->ninsns - insns_start;
1658 				break;
1659 			}
1660 
1661 			emit_imm(RV_REG_T1, off, ctx);
1662 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1663 			insns_start = ctx->ninsns;
1664 			emit_ld(rd, 0, RV_REG_T1, ctx);
1665 			insn_len = ctx->ninsns - insns_start;
1666 			break;
1667 		}
1668 
1669 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1670 		if (ret)
1671 			return ret;
1672 
1673 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1674 			return 1;
1675 		break;
1676 	}
1677 	/* speculation barrier */
1678 	case BPF_ST | BPF_NOSPEC:
1679 		break;
1680 
1681 	/* ST: *(size *)(dst + off) = imm */
1682 	case BPF_ST | BPF_MEM | BPF_B:
1683 		emit_imm(RV_REG_T1, imm, ctx);
1684 		if (is_12b_int(off)) {
1685 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1686 			break;
1687 		}
1688 
1689 		emit_imm(RV_REG_T2, off, ctx);
1690 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1691 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1692 		break;
1693 
1694 	case BPF_ST | BPF_MEM | BPF_H:
1695 		emit_imm(RV_REG_T1, imm, ctx);
1696 		if (is_12b_int(off)) {
1697 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1698 			break;
1699 		}
1700 
1701 		emit_imm(RV_REG_T2, off, ctx);
1702 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1703 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1704 		break;
1705 	case BPF_ST | BPF_MEM | BPF_W:
1706 		emit_imm(RV_REG_T1, imm, ctx);
1707 		if (is_12b_int(off)) {
1708 			emit_sw(rd, off, RV_REG_T1, ctx);
1709 			break;
1710 		}
1711 
1712 		emit_imm(RV_REG_T2, off, ctx);
1713 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1714 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1715 		break;
1716 	case BPF_ST | BPF_MEM | BPF_DW:
1717 		emit_imm(RV_REG_T1, imm, ctx);
1718 		if (is_12b_int(off)) {
1719 			emit_sd(rd, off, RV_REG_T1, ctx);
1720 			break;
1721 		}
1722 
1723 		emit_imm(RV_REG_T2, off, ctx);
1724 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1725 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1726 		break;
1727 
1728 	/* STX: *(size *)(dst + off) = src */
1729 	case BPF_STX | BPF_MEM | BPF_B:
1730 		if (is_12b_int(off)) {
1731 			emit(rv_sb(rd, off, rs), ctx);
1732 			break;
1733 		}
1734 
1735 		emit_imm(RV_REG_T1, off, ctx);
1736 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1737 		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1738 		break;
1739 	case BPF_STX | BPF_MEM | BPF_H:
1740 		if (is_12b_int(off)) {
1741 			emit(rv_sh(rd, off, rs), ctx);
1742 			break;
1743 		}
1744 
1745 		emit_imm(RV_REG_T1, off, ctx);
1746 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1747 		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1748 		break;
1749 	case BPF_STX | BPF_MEM | BPF_W:
1750 		if (is_12b_int(off)) {
1751 			emit_sw(rd, off, rs, ctx);
1752 			break;
1753 		}
1754 
1755 		emit_imm(RV_REG_T1, off, ctx);
1756 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1757 		emit_sw(RV_REG_T1, 0, rs, ctx);
1758 		break;
1759 	case BPF_STX | BPF_MEM | BPF_DW:
1760 		if (is_12b_int(off)) {
1761 			emit_sd(rd, off, rs, ctx);
1762 			break;
1763 		}
1764 
1765 		emit_imm(RV_REG_T1, off, ctx);
1766 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1767 		emit_sd(RV_REG_T1, 0, rs, ctx);
1768 		break;
1769 	case BPF_STX | BPF_ATOMIC | BPF_W:
1770 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1771 		emit_atomic(rd, rs, off, imm,
1772 			    BPF_SIZE(code) == BPF_DW, ctx);
1773 		break;
1774 	default:
1775 		pr_err("bpf-jit: unknown opcode %02x\n", code);
1776 		return -EINVAL;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1783 {
1784 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1785 
1786 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1787 	if (bpf_stack_adjust)
1788 		mark_fp(ctx);
1789 
1790 	if (seen_reg(RV_REG_RA, ctx))
1791 		stack_adjust += 8;
1792 	stack_adjust += 8; /* RV_REG_FP */
1793 	if (seen_reg(RV_REG_S1, ctx))
1794 		stack_adjust += 8;
1795 	if (seen_reg(RV_REG_S2, ctx))
1796 		stack_adjust += 8;
1797 	if (seen_reg(RV_REG_S3, ctx))
1798 		stack_adjust += 8;
1799 	if (seen_reg(RV_REG_S4, ctx))
1800 		stack_adjust += 8;
1801 	if (seen_reg(RV_REG_S5, ctx))
1802 		stack_adjust += 8;
1803 	if (seen_reg(RV_REG_S6, ctx))
1804 		stack_adjust += 8;
1805 
1806 	stack_adjust = round_up(stack_adjust, 16);
1807 	stack_adjust += bpf_stack_adjust;
1808 
1809 	store_offset = stack_adjust - 8;
1810 
1811 	/* nops reserved for auipc+jalr pair */
1812 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
1813 		emit(rv_nop(), ctx);
1814 
1815 	/* First instruction is always setting the tail-call-counter
1816 	 * (TCC) register. This instruction is skipped for tail calls.
1817 	 * Force using a 4-byte (non-compressed) instruction.
1818 	 */
1819 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1820 
1821 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1822 
1823 	if (seen_reg(RV_REG_RA, ctx)) {
1824 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1825 		store_offset -= 8;
1826 	}
1827 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1828 	store_offset -= 8;
1829 	if (seen_reg(RV_REG_S1, ctx)) {
1830 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1831 		store_offset -= 8;
1832 	}
1833 	if (seen_reg(RV_REG_S2, ctx)) {
1834 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1835 		store_offset -= 8;
1836 	}
1837 	if (seen_reg(RV_REG_S3, ctx)) {
1838 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1839 		store_offset -= 8;
1840 	}
1841 	if (seen_reg(RV_REG_S4, ctx)) {
1842 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1843 		store_offset -= 8;
1844 	}
1845 	if (seen_reg(RV_REG_S5, ctx)) {
1846 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1847 		store_offset -= 8;
1848 	}
1849 	if (seen_reg(RV_REG_S6, ctx)) {
1850 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1851 		store_offset -= 8;
1852 	}
1853 
1854 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1855 
1856 	if (bpf_stack_adjust)
1857 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1858 
1859 	/* Program contains calls and tail calls, so RV_REG_TCC need
1860 	 * to be saved across calls.
1861 	 */
1862 	if (seen_tail_call(ctx) && seen_call(ctx))
1863 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1864 
1865 	ctx->stack_size = stack_adjust;
1866 }
1867 
1868 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1869 {
1870 	__build_epilogue(false, ctx);
1871 }
1872 
1873 bool bpf_jit_supports_kfunc_call(void)
1874 {
1875 	return true;
1876 }
1877