xref: /linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision a13d7201d7deedcbb6ac6efa94a1a7d34d3d79ec)
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58 
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 			    const char *fmt, ...)
61 {
62 	struct va_format vaf;
63 	va_list args;
64 	char pfix[32];
65 
66 	va_start(args, fmt);
67 
68 	vaf.fmt = fmt;
69 	vaf.va = &args;
70 
71 	if (pe->flags & PNV_IODA_PE_DEV)
72 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 		sprintf(pfix, "%04x:%02x     ",
75 			pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 	else if (pe->flags & PNV_IODA_PE_VF)
78 		sprintf(pfix, "%04x:%02x:%2x.%d",
79 			pci_domain_nr(pe->parent_dev->bus),
80 			(pe->rid & 0xff00) >> 8,
81 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83 
84 	printk("%spci %s: [PE# %.3d] %pV",
85 	       level, pfix, pe->pe_number, &vaf);
86 
87 	va_end(args);
88 }
89 
90 #define pe_err(pe, fmt, ...)					\
91 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)					\
93 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)					\
95 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96 
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98 
99 static int __init iommu_setup(char *str)
100 {
101 	if (!str)
102 		return -EINVAL;
103 
104 	while (*str) {
105 		if (!strncmp(str, "nobypass", 8)) {
106 			pnv_iommu_bypass_disabled = true;
107 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 			break;
109 		}
110 		str += strcspn(str, ",");
111 		if (*str == ',')
112 			str++;
113 	}
114 
115 	return 0;
116 }
117 early_param("iommu", iommu_setup);
118 
119 /*
120  * stdcix is only supposed to be used in hypervisor real mode as per
121  * the architecture spec
122  */
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125 	__asm__ __volatile__("stdcix %0,0,%1"
126 		: : "r" (val), "r" (paddr) : "memory");
127 }
128 
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
144 		pr_warn("%s: PE %d was assigned on PHB#%x\n",
145 			__func__, pe_no, phb->hose->global_number);
146 		return;
147 	}
148 
149 	phb->ioda.pe_array[pe_no].phb = phb;
150 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
151 }
152 
153 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
154 {
155 	unsigned long pe;
156 
157 	do {
158 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
159 					phb->ioda.total_pe, 0);
160 		if (pe >= phb->ioda.total_pe)
161 			return IODA_INVALID_PE;
162 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
163 
164 	phb->ioda.pe_array[pe].phb = phb;
165 	phb->ioda.pe_array[pe].pe_number = pe;
166 	return pe;
167 }
168 
169 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
170 {
171 	WARN_ON(phb->ioda.pe_array[pe].pdev);
172 
173 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
174 	clear_bit(pe, phb->ioda.pe_alloc);
175 }
176 
177 /* The default M64 BAR is shared by all PEs */
178 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
179 {
180 	const char *desc;
181 	struct resource *r;
182 	s64 rc;
183 
184 	/* Configure the default M64 BAR */
185 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
186 					 OPAL_M64_WINDOW_TYPE,
187 					 phb->ioda.m64_bar_idx,
188 					 phb->ioda.m64_base,
189 					 0, /* unused */
190 					 phb->ioda.m64_size);
191 	if (rc != OPAL_SUCCESS) {
192 		desc = "configuring";
193 		goto fail;
194 	}
195 
196 	/* Enable the default M64 BAR */
197 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
198 				      OPAL_M64_WINDOW_TYPE,
199 				      phb->ioda.m64_bar_idx,
200 				      OPAL_ENABLE_M64_SPLIT);
201 	if (rc != OPAL_SUCCESS) {
202 		desc = "enabling";
203 		goto fail;
204 	}
205 
206 	/* Mark the M64 BAR assigned */
207 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
208 
209 	/*
210 	 * Strip off the segment used by the reserved PE, which is
211 	 * expected to be 0 or last one of PE capabicity.
212 	 */
213 	r = &phb->hose->mem_resources[1];
214 	if (phb->ioda.reserved_pe == 0)
215 		r->start += phb->ioda.m64_segsize;
216 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
217 		r->end -= phb->ioda.m64_segsize;
218 	else
219 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
220 			phb->ioda.reserved_pe);
221 
222 	return 0;
223 
224 fail:
225 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
226 		rc, desc, phb->ioda.m64_bar_idx);
227 	opal_pci_phb_mmio_enable(phb->opal_id,
228 				 OPAL_M64_WINDOW_TYPE,
229 				 phb->ioda.m64_bar_idx,
230 				 OPAL_DISABLE_M64);
231 	return -EIO;
232 }
233 
234 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
235 {
236 	resource_size_t sgsz = phb->ioda.m64_segsize;
237 	struct pci_dev *pdev;
238 	struct resource *r;
239 	int base, step, i;
240 
241 	/*
242 	 * Root bus always has full M64 range and root port has
243 	 * M64 range used in reality. So we're checking root port
244 	 * instead of root bus.
245 	 */
246 	list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
247 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
248 			r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
249 			if (!r->parent ||
250 			    !pnv_pci_is_mem_pref_64(r->flags))
251 				continue;
252 
253 			base = (r->start - phb->ioda.m64_base) / sgsz;
254 			for (step = 0; step < resource_size(r) / sgsz; step++)
255 				pnv_ioda_reserve_pe(phb, base + step);
256 		}
257 	}
258 }
259 
260 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
261 				 struct pci_bus *bus, int all)
262 {
263 	resource_size_t segsz = phb->ioda.m64_segsize;
264 	struct pci_dev *pdev;
265 	struct resource *r;
266 	struct pnv_ioda_pe *master_pe, *pe;
267 	unsigned long size, *pe_alloc;
268 	bool found;
269 	int start, i, j;
270 
271 	/* Root bus shouldn't use M64 */
272 	if (pci_is_root_bus(bus))
273 		return IODA_INVALID_PE;
274 
275 	/* We support only one M64 window on each bus */
276 	found = false;
277 	pci_bus_for_each_resource(bus, r, i) {
278 		if (r && r->parent &&
279 		    pnv_pci_is_mem_pref_64(r->flags)) {
280 			found = true;
281 			break;
282 		}
283 	}
284 
285 	/* No M64 window found ? */
286 	if (!found)
287 		return IODA_INVALID_PE;
288 
289 	/* Allocate bitmap */
290 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
291 	pe_alloc = kzalloc(size, GFP_KERNEL);
292 	if (!pe_alloc) {
293 		pr_warn("%s: Out of memory !\n",
294 			__func__);
295 		return IODA_INVALID_PE;
296 	}
297 
298 	/*
299 	 * Figure out reserved PE numbers by the PE
300 	 * the its child PEs.
301 	 */
302 	start = (r->start - phb->ioda.m64_base) / segsz;
303 	for (i = 0; i < resource_size(r) / segsz; i++)
304 		set_bit(start + i, pe_alloc);
305 
306 	if (all)
307 		goto done;
308 
309 	/*
310 	 * If the PE doesn't cover all subordinate buses,
311 	 * we need subtract from reserved PEs for children.
312 	 */
313 	list_for_each_entry(pdev, &bus->devices, bus_list) {
314 		if (!pdev->subordinate)
315 			continue;
316 
317 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
318 			if (!r || !r->parent ||
319 			    !pnv_pci_is_mem_pref_64(r->flags))
320 				continue;
321 
322 			start = (r->start - phb->ioda.m64_base) / segsz;
323 			for (j = 0; j < resource_size(r) / segsz ; j++)
324 				clear_bit(start + j, pe_alloc);
325                 }
326         }
327 
328 	/*
329 	 * the current bus might not own M64 window and that's all
330 	 * contributed by its child buses. For the case, we needn't
331 	 * pick M64 dependent PE#.
332 	 */
333 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
334 		kfree(pe_alloc);
335 		return IODA_INVALID_PE;
336 	}
337 
338 	/*
339 	 * Figure out the master PE and put all slave PEs to master
340 	 * PE's list to form compound PE.
341 	 */
342 done:
343 	master_pe = NULL;
344 	i = -1;
345 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
346 		phb->ioda.total_pe) {
347 		pe = &phb->ioda.pe_array[i];
348 
349 		if (!master_pe) {
350 			pe->flags |= PNV_IODA_PE_MASTER;
351 			INIT_LIST_HEAD(&pe->slaves);
352 			master_pe = pe;
353 		} else {
354 			pe->flags |= PNV_IODA_PE_SLAVE;
355 			pe->master = master_pe;
356 			list_add_tail(&pe->list, &master_pe->slaves);
357 		}
358 	}
359 
360 	kfree(pe_alloc);
361 	return master_pe->pe_number;
362 }
363 
364 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
365 {
366 	struct pci_controller *hose = phb->hose;
367 	struct device_node *dn = hose->dn;
368 	struct resource *res;
369 	const u32 *r;
370 	u64 pci_addr;
371 
372 	/* FIXME: Support M64 for P7IOC */
373 	if (phb->type != PNV_PHB_IODA2) {
374 		pr_info("  Not support M64 window\n");
375 		return;
376 	}
377 
378 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
379 		pr_info("  Firmware too old to support M64 window\n");
380 		return;
381 	}
382 
383 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
384 	if (!r) {
385 		pr_info("  No <ibm,opal-m64-window> on %s\n",
386 			dn->full_name);
387 		return;
388 	}
389 
390 	res = &hose->mem_resources[1];
391 	res->start = of_translate_address(dn, r + 2);
392 	res->end = res->start + of_read_number(r + 4, 2) - 1;
393 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
394 	pci_addr = of_read_number(r, 2);
395 	hose->mem_offset[1] = res->start - pci_addr;
396 
397 	phb->ioda.m64_size = resource_size(res);
398 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
399 	phb->ioda.m64_base = pci_addr;
400 
401 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
402 			res->start, res->end, pci_addr);
403 
404 	/* Use last M64 BAR to cover M64 window */
405 	phb->ioda.m64_bar_idx = 15;
406 	phb->init_m64 = pnv_ioda2_init_m64;
407 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
408 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
409 }
410 
411 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
412 {
413 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
414 	struct pnv_ioda_pe *slave;
415 	s64 rc;
416 
417 	/* Fetch master PE */
418 	if (pe->flags & PNV_IODA_PE_SLAVE) {
419 		pe = pe->master;
420 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
421 			return;
422 
423 		pe_no = pe->pe_number;
424 	}
425 
426 	/* Freeze master PE */
427 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
428 				     pe_no,
429 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
430 	if (rc != OPAL_SUCCESS) {
431 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
432 			__func__, rc, phb->hose->global_number, pe_no);
433 		return;
434 	}
435 
436 	/* Freeze slave PEs */
437 	if (!(pe->flags & PNV_IODA_PE_MASTER))
438 		return;
439 
440 	list_for_each_entry(slave, &pe->slaves, list) {
441 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
442 					     slave->pe_number,
443 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
444 		if (rc != OPAL_SUCCESS)
445 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
446 				__func__, rc, phb->hose->global_number,
447 				slave->pe_number);
448 	}
449 }
450 
451 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
452 {
453 	struct pnv_ioda_pe *pe, *slave;
454 	s64 rc;
455 
456 	/* Find master PE */
457 	pe = &phb->ioda.pe_array[pe_no];
458 	if (pe->flags & PNV_IODA_PE_SLAVE) {
459 		pe = pe->master;
460 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
461 		pe_no = pe->pe_number;
462 	}
463 
464 	/* Clear frozen state for master PE */
465 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
466 	if (rc != OPAL_SUCCESS) {
467 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
468 			__func__, rc, opt, phb->hose->global_number, pe_no);
469 		return -EIO;
470 	}
471 
472 	if (!(pe->flags & PNV_IODA_PE_MASTER))
473 		return 0;
474 
475 	/* Clear frozen state for slave PEs */
476 	list_for_each_entry(slave, &pe->slaves, list) {
477 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
478 					     slave->pe_number,
479 					     opt);
480 		if (rc != OPAL_SUCCESS) {
481 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
482 				__func__, rc, opt, phb->hose->global_number,
483 				slave->pe_number);
484 			return -EIO;
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
492 {
493 	struct pnv_ioda_pe *slave, *pe;
494 	u8 fstate, state;
495 	__be16 pcierr;
496 	s64 rc;
497 
498 	/* Sanity check on PE number */
499 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
500 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
501 
502 	/*
503 	 * Fetch the master PE and the PE instance might be
504 	 * not initialized yet.
505 	 */
506 	pe = &phb->ioda.pe_array[pe_no];
507 	if (pe->flags & PNV_IODA_PE_SLAVE) {
508 		pe = pe->master;
509 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
510 		pe_no = pe->pe_number;
511 	}
512 
513 	/* Check the master PE */
514 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
515 					&state, &pcierr, NULL);
516 	if (rc != OPAL_SUCCESS) {
517 		pr_warn("%s: Failure %lld getting "
518 			"PHB#%x-PE#%x state\n",
519 			__func__, rc,
520 			phb->hose->global_number, pe_no);
521 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
522 	}
523 
524 	/* Check the slave PE */
525 	if (!(pe->flags & PNV_IODA_PE_MASTER))
526 		return state;
527 
528 	list_for_each_entry(slave, &pe->slaves, list) {
529 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
530 						slave->pe_number,
531 						&fstate,
532 						&pcierr,
533 						NULL);
534 		if (rc != OPAL_SUCCESS) {
535 			pr_warn("%s: Failure %lld getting "
536 				"PHB#%x-PE#%x state\n",
537 				__func__, rc,
538 				phb->hose->global_number, slave->pe_number);
539 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
540 		}
541 
542 		/*
543 		 * Override the result based on the ascending
544 		 * priority.
545 		 */
546 		if (fstate > state)
547 			state = fstate;
548 	}
549 
550 	return state;
551 }
552 
553 /* Currently those 2 are only used when MSIs are enabled, this will change
554  * but in the meantime, we need to protect them to avoid warnings
555  */
556 #ifdef CONFIG_PCI_MSI
557 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
558 {
559 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
560 	struct pnv_phb *phb = hose->private_data;
561 	struct pci_dn *pdn = pci_get_pdn(dev);
562 
563 	if (!pdn)
564 		return NULL;
565 	if (pdn->pe_number == IODA_INVALID_PE)
566 		return NULL;
567 	return &phb->ioda.pe_array[pdn->pe_number];
568 }
569 #endif /* CONFIG_PCI_MSI */
570 
571 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
572 				  struct pnv_ioda_pe *parent,
573 				  struct pnv_ioda_pe *child,
574 				  bool is_add)
575 {
576 	const char *desc = is_add ? "adding" : "removing";
577 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
578 			      OPAL_REMOVE_PE_FROM_DOMAIN;
579 	struct pnv_ioda_pe *slave;
580 	long rc;
581 
582 	/* Parent PE affects child PE */
583 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
584 				child->pe_number, op);
585 	if (rc != OPAL_SUCCESS) {
586 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
587 			rc, desc);
588 		return -ENXIO;
589 	}
590 
591 	if (!(child->flags & PNV_IODA_PE_MASTER))
592 		return 0;
593 
594 	/* Compound case: parent PE affects slave PEs */
595 	list_for_each_entry(slave, &child->slaves, list) {
596 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
597 					slave->pe_number, op);
598 		if (rc != OPAL_SUCCESS) {
599 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
600 				rc, desc);
601 			return -ENXIO;
602 		}
603 	}
604 
605 	return 0;
606 }
607 
608 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
609 			      struct pnv_ioda_pe *pe,
610 			      bool is_add)
611 {
612 	struct pnv_ioda_pe *slave;
613 	struct pci_dev *pdev = NULL;
614 	int ret;
615 
616 	/*
617 	 * Clear PE frozen state. If it's master PE, we need
618 	 * clear slave PE frozen state as well.
619 	 */
620 	if (is_add) {
621 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
622 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
623 		if (pe->flags & PNV_IODA_PE_MASTER) {
624 			list_for_each_entry(slave, &pe->slaves, list)
625 				opal_pci_eeh_freeze_clear(phb->opal_id,
626 							  slave->pe_number,
627 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
628 		}
629 	}
630 
631 	/*
632 	 * Associate PE in PELT. We need add the PE into the
633 	 * corresponding PELT-V as well. Otherwise, the error
634 	 * originated from the PE might contribute to other
635 	 * PEs.
636 	 */
637 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
638 	if (ret)
639 		return ret;
640 
641 	/* For compound PEs, any one affects all of them */
642 	if (pe->flags & PNV_IODA_PE_MASTER) {
643 		list_for_each_entry(slave, &pe->slaves, list) {
644 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
645 			if (ret)
646 				return ret;
647 		}
648 	}
649 
650 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
651 		pdev = pe->pbus->self;
652 	else if (pe->flags & PNV_IODA_PE_DEV)
653 		pdev = pe->pdev->bus->self;
654 #ifdef CONFIG_PCI_IOV
655 	else if (pe->flags & PNV_IODA_PE_VF)
656 		pdev = pe->parent_dev->bus->self;
657 #endif /* CONFIG_PCI_IOV */
658 	while (pdev) {
659 		struct pci_dn *pdn = pci_get_pdn(pdev);
660 		struct pnv_ioda_pe *parent;
661 
662 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
663 			parent = &phb->ioda.pe_array[pdn->pe_number];
664 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
665 			if (ret)
666 				return ret;
667 		}
668 
669 		pdev = pdev->bus->self;
670 	}
671 
672 	return 0;
673 }
674 
675 #ifdef CONFIG_PCI_IOV
676 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
677 {
678 	struct pci_dev *parent;
679 	uint8_t bcomp, dcomp, fcomp;
680 	int64_t rc;
681 	long rid_end, rid;
682 
683 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
684 	if (pe->pbus) {
685 		int count;
686 
687 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
688 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
689 		parent = pe->pbus->self;
690 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
691 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
692 		else
693 			count = 1;
694 
695 		switch(count) {
696 		case  1: bcomp = OpalPciBusAll;         break;
697 		case  2: bcomp = OpalPciBus7Bits;       break;
698 		case  4: bcomp = OpalPciBus6Bits;       break;
699 		case  8: bcomp = OpalPciBus5Bits;       break;
700 		case 16: bcomp = OpalPciBus4Bits;       break;
701 		case 32: bcomp = OpalPciBus3Bits;       break;
702 		default:
703 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
704 			        count);
705 			/* Do an exact match only */
706 			bcomp = OpalPciBusAll;
707 		}
708 		rid_end = pe->rid + (count << 8);
709 	} else {
710 		if (pe->flags & PNV_IODA_PE_VF)
711 			parent = pe->parent_dev;
712 		else
713 			parent = pe->pdev->bus->self;
714 		bcomp = OpalPciBusAll;
715 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
716 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
717 		rid_end = pe->rid + 1;
718 	}
719 
720 	/* Clear the reverse map */
721 	for (rid = pe->rid; rid < rid_end; rid++)
722 		phb->ioda.pe_rmap[rid] = 0;
723 
724 	/* Release from all parents PELT-V */
725 	while (parent) {
726 		struct pci_dn *pdn = pci_get_pdn(parent);
727 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
728 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
729 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
730 			/* XXX What to do in case of error ? */
731 		}
732 		parent = parent->bus->self;
733 	}
734 
735 	opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
736 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
737 
738 	/* Disassociate PE in PELT */
739 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
740 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
741 	if (rc)
742 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
743 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
744 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
745 	if (rc)
746 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
747 
748 	pe->pbus = NULL;
749 	pe->pdev = NULL;
750 	pe->parent_dev = NULL;
751 
752 	return 0;
753 }
754 #endif /* CONFIG_PCI_IOV */
755 
756 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
757 {
758 	struct pci_dev *parent;
759 	uint8_t bcomp, dcomp, fcomp;
760 	long rc, rid_end, rid;
761 
762 	/* Bus validation ? */
763 	if (pe->pbus) {
764 		int count;
765 
766 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
767 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
768 		parent = pe->pbus->self;
769 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
770 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
771 		else
772 			count = 1;
773 
774 		switch(count) {
775 		case  1: bcomp = OpalPciBusAll;		break;
776 		case  2: bcomp = OpalPciBus7Bits;	break;
777 		case  4: bcomp = OpalPciBus6Bits;	break;
778 		case  8: bcomp = OpalPciBus5Bits;	break;
779 		case 16: bcomp = OpalPciBus4Bits;	break;
780 		case 32: bcomp = OpalPciBus3Bits;	break;
781 		default:
782 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
783 			        count);
784 			/* Do an exact match only */
785 			bcomp = OpalPciBusAll;
786 		}
787 		rid_end = pe->rid + (count << 8);
788 	} else {
789 #ifdef CONFIG_PCI_IOV
790 		if (pe->flags & PNV_IODA_PE_VF)
791 			parent = pe->parent_dev;
792 		else
793 #endif /* CONFIG_PCI_IOV */
794 			parent = pe->pdev->bus->self;
795 		bcomp = OpalPciBusAll;
796 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
797 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
798 		rid_end = pe->rid + 1;
799 	}
800 
801 	/*
802 	 * Associate PE in PELT. We need add the PE into the
803 	 * corresponding PELT-V as well. Otherwise, the error
804 	 * originated from the PE might contribute to other
805 	 * PEs.
806 	 */
807 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
808 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
809 	if (rc) {
810 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
811 		return -ENXIO;
812 	}
813 
814 	/* Configure PELTV */
815 	pnv_ioda_set_peltv(phb, pe, true);
816 
817 	/* Setup reverse map */
818 	for (rid = pe->rid; rid < rid_end; rid++)
819 		phb->ioda.pe_rmap[rid] = pe->pe_number;
820 
821 	/* Setup one MVTs on IODA1 */
822 	if (phb->type != PNV_PHB_IODA1) {
823 		pe->mve_number = 0;
824 		goto out;
825 	}
826 
827 	pe->mve_number = pe->pe_number;
828 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
829 	if (rc != OPAL_SUCCESS) {
830 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
831 		       rc, pe->mve_number);
832 		pe->mve_number = -1;
833 	} else {
834 		rc = opal_pci_set_mve_enable(phb->opal_id,
835 					     pe->mve_number, OPAL_ENABLE_MVE);
836 		if (rc) {
837 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
838 			       rc, pe->mve_number);
839 			pe->mve_number = -1;
840 		}
841 	}
842 
843 out:
844 	return 0;
845 }
846 
847 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
848 				       struct pnv_ioda_pe *pe)
849 {
850 	struct pnv_ioda_pe *lpe;
851 
852 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
853 		if (lpe->dma_weight < pe->dma_weight) {
854 			list_add_tail(&pe->dma_link, &lpe->dma_link);
855 			return;
856 		}
857 	}
858 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
859 }
860 
861 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
862 {
863 	/* This is quite simplistic. The "base" weight of a device
864 	 * is 10. 0 means no DMA is to be accounted for it.
865 	 */
866 
867 	/* If it's a bridge, no DMA */
868 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
869 		return 0;
870 
871 	/* Reduce the weight of slow USB controllers */
872 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
873 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
874 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
875 		return 3;
876 
877 	/* Increase the weight of RAID (includes Obsidian) */
878 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
879 		return 15;
880 
881 	/* Default */
882 	return 10;
883 }
884 
885 #ifdef CONFIG_PCI_IOV
886 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
887 {
888 	struct pci_dn *pdn = pci_get_pdn(dev);
889 	int i;
890 	struct resource *res, res2;
891 	resource_size_t size;
892 	u16 num_vfs;
893 
894 	if (!dev->is_physfn)
895 		return -EINVAL;
896 
897 	/*
898 	 * "offset" is in VFs.  The M64 windows are sized so that when they
899 	 * are segmented, each segment is the same size as the IOV BAR.
900 	 * Each segment is in a separate PE, and the high order bits of the
901 	 * address are the PE number.  Therefore, each VF's BAR is in a
902 	 * separate PE, and changing the IOV BAR start address changes the
903 	 * range of PEs the VFs are in.
904 	 */
905 	num_vfs = pdn->num_vfs;
906 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907 		res = &dev->resource[i + PCI_IOV_RESOURCES];
908 		if (!res->flags || !res->parent)
909 			continue;
910 
911 		if (!pnv_pci_is_mem_pref_64(res->flags))
912 			continue;
913 
914 		/*
915 		 * The actual IOV BAR range is determined by the start address
916 		 * and the actual size for num_vfs VFs BAR.  This check is to
917 		 * make sure that after shifting, the range will not overlap
918 		 * with another device.
919 		 */
920 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
921 		res2.flags = res->flags;
922 		res2.start = res->start + (size * offset);
923 		res2.end = res2.start + (size * num_vfs) - 1;
924 
925 		if (res2.end > res->end) {
926 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
927 				i, &res2, res, num_vfs, offset);
928 			return -EBUSY;
929 		}
930 	}
931 
932 	/*
933 	 * After doing so, there would be a "hole" in the /proc/iomem when
934 	 * offset is a positive value. It looks like the device return some
935 	 * mmio back to the system, which actually no one could use it.
936 	 */
937 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
938 		res = &dev->resource[i + PCI_IOV_RESOURCES];
939 		if (!res->flags || !res->parent)
940 			continue;
941 
942 		if (!pnv_pci_is_mem_pref_64(res->flags))
943 			continue;
944 
945 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
946 		res2 = *res;
947 		res->start += size * offset;
948 
949 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
950 			 i, &res2, res, num_vfs, offset);
951 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
952 	}
953 	return 0;
954 }
955 #endif /* CONFIG_PCI_IOV */
956 
957 #if 0
958 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
959 {
960 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
961 	struct pnv_phb *phb = hose->private_data;
962 	struct pci_dn *pdn = pci_get_pdn(dev);
963 	struct pnv_ioda_pe *pe;
964 	int pe_num;
965 
966 	if (!pdn) {
967 		pr_err("%s: Device tree node not associated properly\n",
968 			   pci_name(dev));
969 		return NULL;
970 	}
971 	if (pdn->pe_number != IODA_INVALID_PE)
972 		return NULL;
973 
974 	/* PE#0 has been pre-set */
975 	if (dev->bus->number == 0)
976 		pe_num = 0;
977 	else
978 		pe_num = pnv_ioda_alloc_pe(phb);
979 	if (pe_num == IODA_INVALID_PE) {
980 		pr_warning("%s: Not enough PE# available, disabling device\n",
981 			   pci_name(dev));
982 		return NULL;
983 	}
984 
985 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
986 	 * pointer in the PE data structure, both should be destroyed at the
987 	 * same time. However, this needs to be looked at more closely again
988 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
989 	 *
990 	 * At some point we want to remove the PDN completely anyways
991 	 */
992 	pe = &phb->ioda.pe_array[pe_num];
993 	pci_dev_get(dev);
994 	pdn->pcidev = dev;
995 	pdn->pe_number = pe_num;
996 	pe->pdev = dev;
997 	pe->pbus = NULL;
998 	pe->tce32_seg = -1;
999 	pe->mve_number = -1;
1000 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1001 
1002 	pe_info(pe, "Associated device to PE\n");
1003 
1004 	if (pnv_ioda_configure_pe(phb, pe)) {
1005 		/* XXX What do we do here ? */
1006 		if (pe_num)
1007 			pnv_ioda_free_pe(phb, pe_num);
1008 		pdn->pe_number = IODA_INVALID_PE;
1009 		pe->pdev = NULL;
1010 		pci_dev_put(dev);
1011 		return NULL;
1012 	}
1013 
1014 	/* Assign a DMA weight to the device */
1015 	pe->dma_weight = pnv_ioda_dma_weight(dev);
1016 	if (pe->dma_weight != 0) {
1017 		phb->ioda.dma_weight += pe->dma_weight;
1018 		phb->ioda.dma_pe_count++;
1019 	}
1020 
1021 	/* Link the PE */
1022 	pnv_ioda_link_pe_by_weight(phb, pe);
1023 
1024 	return pe;
1025 }
1026 #endif /* Useful for SRIOV case */
1027 
1028 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1029 {
1030 	struct pci_dev *dev;
1031 
1032 	list_for_each_entry(dev, &bus->devices, bus_list) {
1033 		struct pci_dn *pdn = pci_get_pdn(dev);
1034 
1035 		if (pdn == NULL) {
1036 			pr_warn("%s: No device node associated with device !\n",
1037 				pci_name(dev));
1038 			continue;
1039 		}
1040 		pdn->pe_number = pe->pe_number;
1041 		pe->dma_weight += pnv_ioda_dma_weight(dev);
1042 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1043 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1044 	}
1045 }
1046 
1047 /*
1048  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1049  * single PCI bus. Another one that contains the primary PCI bus and its
1050  * subordinate PCI devices and buses. The second type of PE is normally
1051  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1052  */
1053 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1054 {
1055 	struct pci_controller *hose = pci_bus_to_host(bus);
1056 	struct pnv_phb *phb = hose->private_data;
1057 	struct pnv_ioda_pe *pe;
1058 	int pe_num = IODA_INVALID_PE;
1059 
1060 	/* Check if PE is determined by M64 */
1061 	if (phb->pick_m64_pe)
1062 		pe_num = phb->pick_m64_pe(phb, bus, all);
1063 
1064 	/* The PE number isn't pinned by M64 */
1065 	if (pe_num == IODA_INVALID_PE)
1066 		pe_num = pnv_ioda_alloc_pe(phb);
1067 
1068 	if (pe_num == IODA_INVALID_PE) {
1069 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1070 			__func__, pci_domain_nr(bus), bus->number);
1071 		return;
1072 	}
1073 
1074 	pe = &phb->ioda.pe_array[pe_num];
1075 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076 	pe->pbus = bus;
1077 	pe->pdev = NULL;
1078 	pe->tce32_seg = -1;
1079 	pe->mve_number = -1;
1080 	pe->rid = bus->busn_res.start << 8;
1081 	pe->dma_weight = 0;
1082 
1083 	if (all)
1084 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1085 			bus->busn_res.start, bus->busn_res.end, pe_num);
1086 	else
1087 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1088 			bus->busn_res.start, pe_num);
1089 
1090 	if (pnv_ioda_configure_pe(phb, pe)) {
1091 		/* XXX What do we do here ? */
1092 		if (pe_num)
1093 			pnv_ioda_free_pe(phb, pe_num);
1094 		pe->pbus = NULL;
1095 		return;
1096 	}
1097 
1098 	/* Associate it with all child devices */
1099 	pnv_ioda_setup_same_PE(bus, pe);
1100 
1101 	/* Put PE to the list */
1102 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1103 
1104 	/* Account for one DMA PE if at least one DMA capable device exist
1105 	 * below the bridge
1106 	 */
1107 	if (pe->dma_weight != 0) {
1108 		phb->ioda.dma_weight += pe->dma_weight;
1109 		phb->ioda.dma_pe_count++;
1110 	}
1111 
1112 	/* Link the PE */
1113 	pnv_ioda_link_pe_by_weight(phb, pe);
1114 }
1115 
1116 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1117 {
1118 	struct pci_dev *dev;
1119 
1120 	pnv_ioda_setup_bus_PE(bus, 0);
1121 
1122 	list_for_each_entry(dev, &bus->devices, bus_list) {
1123 		if (dev->subordinate) {
1124 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1125 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1126 			else
1127 				pnv_ioda_setup_PEs(dev->subordinate);
1128 		}
1129 	}
1130 }
1131 
1132 /*
1133  * Configure PEs so that the downstream PCI buses and devices
1134  * could have their associated PE#. Unfortunately, we didn't
1135  * figure out the way to identify the PLX bridge yet. So we
1136  * simply put the PCI bus and the subordinate behind the root
1137  * port to PE# here. The game rule here is expected to be changed
1138  * as soon as we can detected PLX bridge correctly.
1139  */
1140 static void pnv_pci_ioda_setup_PEs(void)
1141 {
1142 	struct pci_controller *hose, *tmp;
1143 	struct pnv_phb *phb;
1144 
1145 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1146 		phb = hose->private_data;
1147 
1148 		/* M64 layout might affect PE allocation */
1149 		if (phb->reserve_m64_pe)
1150 			phb->reserve_m64_pe(phb);
1151 
1152 		pnv_ioda_setup_PEs(hose->bus);
1153 	}
1154 }
1155 
1156 #ifdef CONFIG_PCI_IOV
1157 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1158 {
1159 	struct pci_bus        *bus;
1160 	struct pci_controller *hose;
1161 	struct pnv_phb        *phb;
1162 	struct pci_dn         *pdn;
1163 	int                    i, j;
1164 
1165 	bus = pdev->bus;
1166 	hose = pci_bus_to_host(bus);
1167 	phb = hose->private_data;
1168 	pdn = pci_get_pdn(pdev);
1169 
1170 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1171 		for (j = 0; j < M64_PER_IOV; j++) {
1172 			if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1173 				continue;
1174 			opal_pci_phb_mmio_enable(phb->opal_id,
1175 				OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1176 			clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1177 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1178 		}
1179 
1180 	return 0;
1181 }
1182 
1183 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1184 {
1185 	struct pci_bus        *bus;
1186 	struct pci_controller *hose;
1187 	struct pnv_phb        *phb;
1188 	struct pci_dn         *pdn;
1189 	unsigned int           win;
1190 	struct resource       *res;
1191 	int                    i, j;
1192 	int64_t                rc;
1193 	int                    total_vfs;
1194 	resource_size_t        size, start;
1195 	int                    pe_num;
1196 	int                    vf_groups;
1197 	int                    vf_per_group;
1198 
1199 	bus = pdev->bus;
1200 	hose = pci_bus_to_host(bus);
1201 	phb = hose->private_data;
1202 	pdn = pci_get_pdn(pdev);
1203 	total_vfs = pci_sriov_get_totalvfs(pdev);
1204 
1205 	/* Initialize the m64_wins to IODA_INVALID_M64 */
1206 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1207 		for (j = 0; j < M64_PER_IOV; j++)
1208 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1209 
1210 	if (pdn->m64_per_iov == M64_PER_IOV) {
1211 		vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1212 		vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1213 			roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1214 	} else {
1215 		vf_groups = 1;
1216 		vf_per_group = 1;
1217 	}
1218 
1219 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1220 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1221 		if (!res->flags || !res->parent)
1222 			continue;
1223 
1224 		if (!pnv_pci_is_mem_pref_64(res->flags))
1225 			continue;
1226 
1227 		for (j = 0; j < vf_groups; j++) {
1228 			do {
1229 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1230 						phb->ioda.m64_bar_idx + 1, 0);
1231 
1232 				if (win >= phb->ioda.m64_bar_idx + 1)
1233 					goto m64_failed;
1234 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1235 
1236 			pdn->m64_wins[i][j] = win;
1237 
1238 			if (pdn->m64_per_iov == M64_PER_IOV) {
1239 				size = pci_iov_resource_size(pdev,
1240 							PCI_IOV_RESOURCES + i);
1241 				size = size * vf_per_group;
1242 				start = res->start + size * j;
1243 			} else {
1244 				size = resource_size(res);
1245 				start = res->start;
1246 			}
1247 
1248 			/* Map the M64 here */
1249 			if (pdn->m64_per_iov == M64_PER_IOV) {
1250 				pe_num = pdn->offset + j;
1251 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1252 						pe_num, OPAL_M64_WINDOW_TYPE,
1253 						pdn->m64_wins[i][j], 0);
1254 			}
1255 
1256 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1257 						 OPAL_M64_WINDOW_TYPE,
1258 						 pdn->m64_wins[i][j],
1259 						 start,
1260 						 0, /* unused */
1261 						 size);
1262 
1263 
1264 			if (rc != OPAL_SUCCESS) {
1265 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1266 					win, rc);
1267 				goto m64_failed;
1268 			}
1269 
1270 			if (pdn->m64_per_iov == M64_PER_IOV)
1271 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1272 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1273 			else
1274 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1275 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1276 
1277 			if (rc != OPAL_SUCCESS) {
1278 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1279 					win, rc);
1280 				goto m64_failed;
1281 			}
1282 		}
1283 	}
1284 	return 0;
1285 
1286 m64_failed:
1287 	pnv_pci_vf_release_m64(pdev);
1288 	return -EBUSY;
1289 }
1290 
1291 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1292 		int num);
1293 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1294 
1295 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1296 {
1297 	struct iommu_table    *tbl;
1298 	int64_t               rc;
1299 
1300 	tbl = pe->table_group.tables[0];
1301 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1302 	if (rc)
1303 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1304 
1305 	pnv_pci_ioda2_set_bypass(pe, false);
1306 	if (pe->table_group.group) {
1307 		iommu_group_put(pe->table_group.group);
1308 		BUG_ON(pe->table_group.group);
1309 	}
1310 	pnv_pci_ioda2_table_free_pages(tbl);
1311 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1312 }
1313 
1314 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1315 {
1316 	struct pci_bus        *bus;
1317 	struct pci_controller *hose;
1318 	struct pnv_phb        *phb;
1319 	struct pnv_ioda_pe    *pe, *pe_n;
1320 	struct pci_dn         *pdn;
1321 	u16                    vf_index;
1322 	int64_t                rc;
1323 
1324 	bus = pdev->bus;
1325 	hose = pci_bus_to_host(bus);
1326 	phb = hose->private_data;
1327 	pdn = pci_get_pdn(pdev);
1328 
1329 	if (!pdev->is_physfn)
1330 		return;
1331 
1332 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1333 		int   vf_group;
1334 		int   vf_per_group;
1335 		int   vf_index1;
1336 
1337 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1338 
1339 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1340 			for (vf_index = vf_group * vf_per_group;
1341 				vf_index < (vf_group + 1) * vf_per_group &&
1342 				vf_index < num_vfs;
1343 				vf_index++)
1344 				for (vf_index1 = vf_group * vf_per_group;
1345 					vf_index1 < (vf_group + 1) * vf_per_group &&
1346 					vf_index1 < num_vfs;
1347 					vf_index1++){
1348 
1349 					rc = opal_pci_set_peltv(phb->opal_id,
1350 						pdn->offset + vf_index,
1351 						pdn->offset + vf_index1,
1352 						OPAL_REMOVE_PE_FROM_DOMAIN);
1353 
1354 					if (rc)
1355 					    dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1356 						__func__,
1357 						pdn->offset + vf_index1, rc);
1358 				}
1359 	}
1360 
1361 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1362 		if (pe->parent_dev != pdev)
1363 			continue;
1364 
1365 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1366 
1367 		/* Remove from list */
1368 		mutex_lock(&phb->ioda.pe_list_mutex);
1369 		list_del(&pe->list);
1370 		mutex_unlock(&phb->ioda.pe_list_mutex);
1371 
1372 		pnv_ioda_deconfigure_pe(phb, pe);
1373 
1374 		pnv_ioda_free_pe(phb, pe->pe_number);
1375 	}
1376 }
1377 
1378 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1379 {
1380 	struct pci_bus        *bus;
1381 	struct pci_controller *hose;
1382 	struct pnv_phb        *phb;
1383 	struct pci_dn         *pdn;
1384 	struct pci_sriov      *iov;
1385 	u16 num_vfs;
1386 
1387 	bus = pdev->bus;
1388 	hose = pci_bus_to_host(bus);
1389 	phb = hose->private_data;
1390 	pdn = pci_get_pdn(pdev);
1391 	iov = pdev->sriov;
1392 	num_vfs = pdn->num_vfs;
1393 
1394 	/* Release VF PEs */
1395 	pnv_ioda_release_vf_PE(pdev, num_vfs);
1396 
1397 	if (phb->type == PNV_PHB_IODA2) {
1398 		if (pdn->m64_per_iov == 1)
1399 			pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1400 
1401 		/* Release M64 windows */
1402 		pnv_pci_vf_release_m64(pdev);
1403 
1404 		/* Release PE numbers */
1405 		bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1406 		pdn->offset = 0;
1407 	}
1408 }
1409 
1410 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1411 				       struct pnv_ioda_pe *pe);
1412 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1413 {
1414 	struct pci_bus        *bus;
1415 	struct pci_controller *hose;
1416 	struct pnv_phb        *phb;
1417 	struct pnv_ioda_pe    *pe;
1418 	int                    pe_num;
1419 	u16                    vf_index;
1420 	struct pci_dn         *pdn;
1421 	int64_t                rc;
1422 
1423 	bus = pdev->bus;
1424 	hose = pci_bus_to_host(bus);
1425 	phb = hose->private_data;
1426 	pdn = pci_get_pdn(pdev);
1427 
1428 	if (!pdev->is_physfn)
1429 		return;
1430 
1431 	/* Reserve PE for each VF */
1432 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1433 		pe_num = pdn->offset + vf_index;
1434 
1435 		pe = &phb->ioda.pe_array[pe_num];
1436 		pe->pe_number = pe_num;
1437 		pe->phb = phb;
1438 		pe->flags = PNV_IODA_PE_VF;
1439 		pe->pbus = NULL;
1440 		pe->parent_dev = pdev;
1441 		pe->tce32_seg = -1;
1442 		pe->mve_number = -1;
1443 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1444 			   pci_iov_virtfn_devfn(pdev, vf_index);
1445 
1446 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1447 			hose->global_number, pdev->bus->number,
1448 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1449 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1450 
1451 		if (pnv_ioda_configure_pe(phb, pe)) {
1452 			/* XXX What do we do here ? */
1453 			if (pe_num)
1454 				pnv_ioda_free_pe(phb, pe_num);
1455 			pe->pdev = NULL;
1456 			continue;
1457 		}
1458 
1459 		/* Put PE to the list */
1460 		mutex_lock(&phb->ioda.pe_list_mutex);
1461 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1462 		mutex_unlock(&phb->ioda.pe_list_mutex);
1463 
1464 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1465 	}
1466 
1467 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1468 		int   vf_group;
1469 		int   vf_per_group;
1470 		int   vf_index1;
1471 
1472 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1473 
1474 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1475 			for (vf_index = vf_group * vf_per_group;
1476 			     vf_index < (vf_group + 1) * vf_per_group &&
1477 			     vf_index < num_vfs;
1478 			     vf_index++) {
1479 				for (vf_index1 = vf_group * vf_per_group;
1480 				     vf_index1 < (vf_group + 1) * vf_per_group &&
1481 				     vf_index1 < num_vfs;
1482 				     vf_index1++) {
1483 
1484 					rc = opal_pci_set_peltv(phb->opal_id,
1485 						pdn->offset + vf_index,
1486 						pdn->offset + vf_index1,
1487 						OPAL_ADD_PE_TO_DOMAIN);
1488 
1489 					if (rc)
1490 					    dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1491 						__func__,
1492 						pdn->offset + vf_index1, rc);
1493 				}
1494 			}
1495 		}
1496 	}
1497 }
1498 
1499 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1500 {
1501 	struct pci_bus        *bus;
1502 	struct pci_controller *hose;
1503 	struct pnv_phb        *phb;
1504 	struct pci_dn         *pdn;
1505 	int                    ret;
1506 
1507 	bus = pdev->bus;
1508 	hose = pci_bus_to_host(bus);
1509 	phb = hose->private_data;
1510 	pdn = pci_get_pdn(pdev);
1511 
1512 	if (phb->type == PNV_PHB_IODA2) {
1513 		/* Calculate available PE for required VFs */
1514 		mutex_lock(&phb->ioda.pe_alloc_mutex);
1515 		pdn->offset = bitmap_find_next_zero_area(
1516 			phb->ioda.pe_alloc, phb->ioda.total_pe,
1517 			0, num_vfs, 0);
1518 		if (pdn->offset >= phb->ioda.total_pe) {
1519 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1520 			dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1521 			pdn->offset = 0;
1522 			return -EBUSY;
1523 		}
1524 		bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1525 		pdn->num_vfs = num_vfs;
1526 		mutex_unlock(&phb->ioda.pe_alloc_mutex);
1527 
1528 		/* Assign M64 window accordingly */
1529 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1530 		if (ret) {
1531 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1532 			goto m64_failed;
1533 		}
1534 
1535 		/*
1536 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1537 		 * the IOV BAR according to the PE# allocated to the VFs.
1538 		 * Otherwise, the PE# for the VF will conflict with others.
1539 		 */
1540 		if (pdn->m64_per_iov == 1) {
1541 			ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1542 			if (ret)
1543 				goto m64_failed;
1544 		}
1545 	}
1546 
1547 	/* Setup VF PEs */
1548 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1549 
1550 	return 0;
1551 
1552 m64_failed:
1553 	bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1554 	pdn->offset = 0;
1555 
1556 	return ret;
1557 }
1558 
1559 int pcibios_sriov_disable(struct pci_dev *pdev)
1560 {
1561 	pnv_pci_sriov_disable(pdev);
1562 
1563 	/* Release PCI data */
1564 	remove_dev_pci_data(pdev);
1565 	return 0;
1566 }
1567 
1568 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1569 {
1570 	/* Allocate PCI data */
1571 	add_dev_pci_data(pdev);
1572 
1573 	pnv_pci_sriov_enable(pdev, num_vfs);
1574 	return 0;
1575 }
1576 #endif /* CONFIG_PCI_IOV */
1577 
1578 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1579 {
1580 	struct pci_dn *pdn = pci_get_pdn(pdev);
1581 	struct pnv_ioda_pe *pe;
1582 
1583 	/*
1584 	 * The function can be called while the PE#
1585 	 * hasn't been assigned. Do nothing for the
1586 	 * case.
1587 	 */
1588 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1589 		return;
1590 
1591 	pe = &phb->ioda.pe_array[pdn->pe_number];
1592 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1593 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1594 	/*
1595 	 * Note: iommu_add_device() will fail here as
1596 	 * for physical PE: the device is already added by now;
1597 	 * for virtual PE: sysfs entries are not ready yet and
1598 	 * tce_iommu_bus_notifier will add the device to a group later.
1599 	 */
1600 }
1601 
1602 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1603 {
1604 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1605 	struct pnv_phb *phb = hose->private_data;
1606 	struct pci_dn *pdn = pci_get_pdn(pdev);
1607 	struct pnv_ioda_pe *pe;
1608 	uint64_t top;
1609 	bool bypass = false;
1610 
1611 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1612 		return -ENODEV;;
1613 
1614 	pe = &phb->ioda.pe_array[pdn->pe_number];
1615 	if (pe->tce_bypass_enabled) {
1616 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1617 		bypass = (dma_mask >= top);
1618 	}
1619 
1620 	if (bypass) {
1621 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1622 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1623 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1624 	} else {
1625 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1626 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1627 		set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1628 	}
1629 	*pdev->dev.dma_mask = dma_mask;
1630 	return 0;
1631 }
1632 
1633 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1634 					      struct pci_dev *pdev)
1635 {
1636 	struct pci_dn *pdn = pci_get_pdn(pdev);
1637 	struct pnv_ioda_pe *pe;
1638 	u64 end, mask;
1639 
1640 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1641 		return 0;
1642 
1643 	pe = &phb->ioda.pe_array[pdn->pe_number];
1644 	if (!pe->tce_bypass_enabled)
1645 		return __dma_get_required_mask(&pdev->dev);
1646 
1647 
1648 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1649 	mask = 1ULL << (fls64(end) - 1);
1650 	mask += mask - 1;
1651 
1652 	return mask;
1653 }
1654 
1655 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1656 				   struct pci_bus *bus)
1657 {
1658 	struct pci_dev *dev;
1659 
1660 	list_for_each_entry(dev, &bus->devices, bus_list) {
1661 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1662 		iommu_add_device(&dev->dev);
1663 
1664 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1665 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1666 	}
1667 }
1668 
1669 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1670 		unsigned long index, unsigned long npages, bool rm)
1671 {
1672 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1673 			&tbl->it_group_list, struct iommu_table_group_link,
1674 			next);
1675 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1676 			struct pnv_ioda_pe, table_group);
1677 	__be64 __iomem *invalidate = rm ?
1678 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1679 		pe->phb->ioda.tce_inval_reg;
1680 	unsigned long start, end, inc;
1681 	const unsigned shift = tbl->it_page_shift;
1682 
1683 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1684 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1685 			npages - 1);
1686 
1687 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1688 	if (tbl->it_busno) {
1689 		start <<= shift;
1690 		end <<= shift;
1691 		inc = 128ull << shift;
1692 		start |= tbl->it_busno;
1693 		end |= tbl->it_busno;
1694 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1695 		/* p7ioc-style invalidation, 2 TCEs per write */
1696 		start |= (1ull << 63);
1697 		end |= (1ull << 63);
1698 		inc = 16;
1699         } else {
1700 		/* Default (older HW) */
1701                 inc = 128;
1702 	}
1703 
1704         end |= inc - 1;	/* round up end to be different than start */
1705 
1706         mb(); /* Ensure above stores are visible */
1707         while (start <= end) {
1708 		if (rm)
1709 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1710 		else
1711 			__raw_writeq(cpu_to_be64(start), invalidate);
1712                 start += inc;
1713         }
1714 
1715 	/*
1716 	 * The iommu layer will do another mb() for us on build()
1717 	 * and we don't care on free()
1718 	 */
1719 }
1720 
1721 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1722 		long npages, unsigned long uaddr,
1723 		enum dma_data_direction direction,
1724 		struct dma_attrs *attrs)
1725 {
1726 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1727 			attrs);
1728 
1729 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1730 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1731 
1732 	return ret;
1733 }
1734 
1735 #ifdef CONFIG_IOMMU_API
1736 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1737 		unsigned long *hpa, enum dma_data_direction *direction)
1738 {
1739 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1740 
1741 	if (!ret && (tbl->it_type &
1742 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1743 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1744 
1745 	return ret;
1746 }
1747 #endif
1748 
1749 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1750 		long npages)
1751 {
1752 	pnv_tce_free(tbl, index, npages);
1753 
1754 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1755 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1756 }
1757 
1758 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1759 	.set = pnv_ioda1_tce_build,
1760 #ifdef CONFIG_IOMMU_API
1761 	.exchange = pnv_ioda1_tce_xchg,
1762 #endif
1763 	.clear = pnv_ioda1_tce_free,
1764 	.get = pnv_tce_get,
1765 };
1766 
1767 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1768 {
1769 	/* 01xb - invalidate TCEs that match the specified PE# */
1770 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1771 	struct pnv_phb *phb = pe->phb;
1772 
1773 	if (!phb->ioda.tce_inval_reg)
1774 		return;
1775 
1776 	mb(); /* Ensure above stores are visible */
1777 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1778 }
1779 
1780 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1781 		__be64 __iomem *invalidate, unsigned shift,
1782 		unsigned long index, unsigned long npages)
1783 {
1784 	unsigned long start, end, inc;
1785 
1786 	/* We'll invalidate DMA address in PE scope */
1787 	start = 0x2ull << 60;
1788 	start |= (pe_number & 0xFF);
1789 	end = start;
1790 
1791 	/* Figure out the start, end and step */
1792 	start |= (index << shift);
1793 	end |= ((index + npages - 1) << shift);
1794 	inc = (0x1ull << shift);
1795 	mb();
1796 
1797 	while (start <= end) {
1798 		if (rm)
1799 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1800 		else
1801 			__raw_writeq(cpu_to_be64(start), invalidate);
1802 		start += inc;
1803 	}
1804 }
1805 
1806 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1807 		unsigned long index, unsigned long npages, bool rm)
1808 {
1809 	struct iommu_table_group_link *tgl;
1810 
1811 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1812 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1813 				struct pnv_ioda_pe, table_group);
1814 		__be64 __iomem *invalidate = rm ?
1815 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1816 			pe->phb->ioda.tce_inval_reg;
1817 
1818 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1819 			invalidate, tbl->it_page_shift,
1820 			index, npages);
1821 	}
1822 }
1823 
1824 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1825 		long npages, unsigned long uaddr,
1826 		enum dma_data_direction direction,
1827 		struct dma_attrs *attrs)
1828 {
1829 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1830 			attrs);
1831 
1832 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1833 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1834 
1835 	return ret;
1836 }
1837 
1838 #ifdef CONFIG_IOMMU_API
1839 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1840 		unsigned long *hpa, enum dma_data_direction *direction)
1841 {
1842 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1843 
1844 	if (!ret && (tbl->it_type &
1845 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1846 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1847 
1848 	return ret;
1849 }
1850 #endif
1851 
1852 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1853 		long npages)
1854 {
1855 	pnv_tce_free(tbl, index, npages);
1856 
1857 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1858 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1859 }
1860 
1861 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1862 {
1863 	pnv_pci_ioda2_table_free_pages(tbl);
1864 	iommu_free_table(tbl, "pnv");
1865 }
1866 
1867 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1868 	.set = pnv_ioda2_tce_build,
1869 #ifdef CONFIG_IOMMU_API
1870 	.exchange = pnv_ioda2_tce_xchg,
1871 #endif
1872 	.clear = pnv_ioda2_tce_free,
1873 	.get = pnv_tce_get,
1874 	.free = pnv_ioda2_table_free,
1875 };
1876 
1877 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1878 				      struct pnv_ioda_pe *pe, unsigned int base,
1879 				      unsigned int segs)
1880 {
1881 
1882 	struct page *tce_mem = NULL;
1883 	struct iommu_table *tbl;
1884 	unsigned int i;
1885 	int64_t rc;
1886 	void *addr;
1887 
1888 	/* XXX FIXME: Handle 64-bit only DMA devices */
1889 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1890 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1891 
1892 	/* We shouldn't already have a 32-bit DMA associated */
1893 	if (WARN_ON(pe->tce32_seg >= 0))
1894 		return;
1895 
1896 	tbl = pnv_pci_table_alloc(phb->hose->node);
1897 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1898 			pe->pe_number);
1899 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1900 
1901 	/* Grab a 32-bit TCE table */
1902 	pe->tce32_seg = base;
1903 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1904 		(base << 28), ((base + segs) << 28) - 1);
1905 
1906 	/* XXX Currently, we allocate one big contiguous table for the
1907 	 * TCEs. We only really need one chunk per 256M of TCE space
1908 	 * (ie per segment) but that's an optimization for later, it
1909 	 * requires some added smarts with our get/put_tce implementation
1910 	 */
1911 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1912 				   get_order(TCE32_TABLE_SIZE * segs));
1913 	if (!tce_mem) {
1914 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1915 		goto fail;
1916 	}
1917 	addr = page_address(tce_mem);
1918 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1919 
1920 	/* Configure HW */
1921 	for (i = 0; i < segs; i++) {
1922 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1923 					      pe->pe_number,
1924 					      base + i, 1,
1925 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1926 					      TCE32_TABLE_SIZE, 0x1000);
1927 		if (rc) {
1928 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1929 			       " err %ld\n", rc);
1930 			goto fail;
1931 		}
1932 	}
1933 
1934 	/* Setup linux iommu table */
1935 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1936 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1937 
1938 	/* OPAL variant of P7IOC SW invalidated TCEs */
1939 	if (phb->ioda.tce_inval_reg)
1940 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1941 				 TCE_PCI_SWINV_FREE   |
1942 				 TCE_PCI_SWINV_PAIR);
1943 
1944 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1945 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1946 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1947 	iommu_init_table(tbl, phb->hose->node);
1948 
1949 	if (pe->flags & PNV_IODA_PE_DEV) {
1950 		/*
1951 		 * Setting table base here only for carrying iommu_group
1952 		 * further down to let iommu_add_device() do the job.
1953 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1954 		 */
1955 		set_iommu_table_base(&pe->pdev->dev, tbl);
1956 		iommu_add_device(&pe->pdev->dev);
1957 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1958 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1959 
1960 	return;
1961  fail:
1962 	/* XXX Failure: Try to fallback to 64-bit only ? */
1963 	if (pe->tce32_seg >= 0)
1964 		pe->tce32_seg = -1;
1965 	if (tce_mem)
1966 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1967 	if (tbl) {
1968 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1969 		iommu_free_table(tbl, "pnv");
1970 	}
1971 }
1972 
1973 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1974 		int num, struct iommu_table *tbl)
1975 {
1976 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1977 			table_group);
1978 	struct pnv_phb *phb = pe->phb;
1979 	int64_t rc;
1980 	const unsigned long size = tbl->it_indirect_levels ?
1981 			tbl->it_level_size : tbl->it_size;
1982 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1983 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1984 
1985 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1986 			start_addr, start_addr + win_size - 1,
1987 			IOMMU_PAGE_SIZE(tbl));
1988 
1989 	/*
1990 	 * Map TCE table through TVT. The TVE index is the PE number
1991 	 * shifted by 1 bit for 32-bits DMA space.
1992 	 */
1993 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1994 			pe->pe_number,
1995 			(pe->pe_number << 1) + num,
1996 			tbl->it_indirect_levels + 1,
1997 			__pa(tbl->it_base),
1998 			size << 3,
1999 			IOMMU_PAGE_SIZE(tbl));
2000 	if (rc) {
2001 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2002 		return rc;
2003 	}
2004 
2005 	pnv_pci_link_table_and_group(phb->hose->node, num,
2006 			tbl, &pe->table_group);
2007 	pnv_pci_ioda2_tce_invalidate_entire(pe);
2008 
2009 	return 0;
2010 }
2011 
2012 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2013 {
2014 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2015 	int64_t rc;
2016 
2017 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2018 	if (enable) {
2019 		phys_addr_t top = memblock_end_of_DRAM();
2020 
2021 		top = roundup_pow_of_two(top);
2022 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2023 						     pe->pe_number,
2024 						     window_id,
2025 						     pe->tce_bypass_base,
2026 						     top);
2027 	} else {
2028 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2029 						     pe->pe_number,
2030 						     window_id,
2031 						     pe->tce_bypass_base,
2032 						     0);
2033 	}
2034 	if (rc)
2035 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2036 	else
2037 		pe->tce_bypass_enabled = enable;
2038 }
2039 
2040 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2041 		__u32 page_shift, __u64 window_size, __u32 levels,
2042 		struct iommu_table *tbl);
2043 
2044 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2045 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2046 		struct iommu_table **ptbl)
2047 {
2048 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2049 			table_group);
2050 	int nid = pe->phb->hose->node;
2051 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2052 	long ret;
2053 	struct iommu_table *tbl;
2054 
2055 	tbl = pnv_pci_table_alloc(nid);
2056 	if (!tbl)
2057 		return -ENOMEM;
2058 
2059 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2060 			bus_offset, page_shift, window_size,
2061 			levels, tbl);
2062 	if (ret) {
2063 		iommu_free_table(tbl, "pnv");
2064 		return ret;
2065 	}
2066 
2067 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2068 	if (pe->phb->ioda.tce_inval_reg)
2069 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2070 
2071 	*ptbl = tbl;
2072 
2073 	return 0;
2074 }
2075 
2076 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2077 {
2078 	struct iommu_table *tbl = NULL;
2079 	long rc;
2080 
2081 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2082 			IOMMU_PAGE_SHIFT_4K,
2083 			pe->table_group.tce32_size,
2084 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2085 	if (rc) {
2086 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2087 				rc);
2088 		return rc;
2089 	}
2090 
2091 	iommu_init_table(tbl, pe->phb->hose->node);
2092 
2093 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2094 	if (rc) {
2095 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2096 				rc);
2097 		pnv_ioda2_table_free(tbl);
2098 		return rc;
2099 	}
2100 
2101 	if (!pnv_iommu_bypass_disabled)
2102 		pnv_pci_ioda2_set_bypass(pe, true);
2103 
2104 	/* OPAL variant of PHB3 invalidated TCEs */
2105 	if (pe->phb->ioda.tce_inval_reg)
2106 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2107 
2108 	/*
2109 	 * Setting table base here only for carrying iommu_group
2110 	 * further down to let iommu_add_device() do the job.
2111 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2112 	 */
2113 	if (pe->flags & PNV_IODA_PE_DEV)
2114 		set_iommu_table_base(&pe->pdev->dev, tbl);
2115 
2116 	return 0;
2117 }
2118 
2119 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2120 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2121 		int num)
2122 {
2123 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2124 			table_group);
2125 	struct pnv_phb *phb = pe->phb;
2126 	long ret;
2127 
2128 	pe_info(pe, "Removing DMA window #%d\n", num);
2129 
2130 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2131 			(pe->pe_number << 1) + num,
2132 			0/* levels */, 0/* table address */,
2133 			0/* table size */, 0/* page size */);
2134 	if (ret)
2135 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2136 	else
2137 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2138 
2139 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2140 
2141 	return ret;
2142 }
2143 #endif
2144 
2145 #ifdef CONFIG_IOMMU_API
2146 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2147 		__u64 window_size, __u32 levels)
2148 {
2149 	unsigned long bytes = 0;
2150 	const unsigned window_shift = ilog2(window_size);
2151 	unsigned entries_shift = window_shift - page_shift;
2152 	unsigned table_shift = entries_shift + 3;
2153 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2154 	unsigned long direct_table_size;
2155 
2156 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2157 			(window_size > memory_hotplug_max()) ||
2158 			!is_power_of_2(window_size))
2159 		return 0;
2160 
2161 	/* Calculate a direct table size from window_size and levels */
2162 	entries_shift = (entries_shift + levels - 1) / levels;
2163 	table_shift = entries_shift + 3;
2164 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2165 	direct_table_size =  1UL << table_shift;
2166 
2167 	for ( ; levels; --levels) {
2168 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2169 
2170 		tce_table_size /= direct_table_size;
2171 		tce_table_size <<= 3;
2172 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2173 	}
2174 
2175 	return bytes;
2176 }
2177 
2178 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2179 {
2180 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2181 						table_group);
2182 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2183 	struct iommu_table *tbl = pe->table_group.tables[0];
2184 
2185 	pnv_pci_ioda2_set_bypass(pe, false);
2186 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2187 	pnv_ioda2_table_free(tbl);
2188 }
2189 
2190 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2191 {
2192 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2193 						table_group);
2194 
2195 	pnv_pci_ioda2_setup_default_config(pe);
2196 }
2197 
2198 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2199 	.get_table_size = pnv_pci_ioda2_get_table_size,
2200 	.create_table = pnv_pci_ioda2_create_table,
2201 	.set_window = pnv_pci_ioda2_set_window,
2202 	.unset_window = pnv_pci_ioda2_unset_window,
2203 	.take_ownership = pnv_ioda2_take_ownership,
2204 	.release_ownership = pnv_ioda2_release_ownership,
2205 };
2206 #endif
2207 
2208 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2209 {
2210 	const __be64 *swinvp;
2211 
2212 	/* OPAL variant of PHB3 invalidated TCEs */
2213 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2214 	if (!swinvp)
2215 		return;
2216 
2217 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2218 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2219 }
2220 
2221 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2222 		unsigned levels, unsigned long limit,
2223 		unsigned long *current_offset, unsigned long *total_allocated)
2224 {
2225 	struct page *tce_mem = NULL;
2226 	__be64 *addr, *tmp;
2227 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2228 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2229 	unsigned entries = 1UL << (shift - 3);
2230 	long i;
2231 
2232 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2233 	if (!tce_mem) {
2234 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2235 		return NULL;
2236 	}
2237 	addr = page_address(tce_mem);
2238 	memset(addr, 0, allocated);
2239 	*total_allocated += allocated;
2240 
2241 	--levels;
2242 	if (!levels) {
2243 		*current_offset += allocated;
2244 		return addr;
2245 	}
2246 
2247 	for (i = 0; i < entries; ++i) {
2248 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2249 				levels, limit, current_offset, total_allocated);
2250 		if (!tmp)
2251 			break;
2252 
2253 		addr[i] = cpu_to_be64(__pa(tmp) |
2254 				TCE_PCI_READ | TCE_PCI_WRITE);
2255 
2256 		if (*current_offset >= limit)
2257 			break;
2258 	}
2259 
2260 	return addr;
2261 }
2262 
2263 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2264 		unsigned long size, unsigned level);
2265 
2266 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2267 		__u32 page_shift, __u64 window_size, __u32 levels,
2268 		struct iommu_table *tbl)
2269 {
2270 	void *addr;
2271 	unsigned long offset = 0, level_shift, total_allocated = 0;
2272 	const unsigned window_shift = ilog2(window_size);
2273 	unsigned entries_shift = window_shift - page_shift;
2274 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2275 	const unsigned long tce_table_size = 1UL << table_shift;
2276 
2277 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2278 		return -EINVAL;
2279 
2280 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2281 		return -EINVAL;
2282 
2283 	/* Adjust direct table size from window_size and levels */
2284 	entries_shift = (entries_shift + levels - 1) / levels;
2285 	level_shift = entries_shift + 3;
2286 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2287 
2288 	/* Allocate TCE table */
2289 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2290 			levels, tce_table_size, &offset, &total_allocated);
2291 
2292 	/* addr==NULL means that the first level allocation failed */
2293 	if (!addr)
2294 		return -ENOMEM;
2295 
2296 	/*
2297 	 * First level was allocated but some lower level failed as
2298 	 * we did not allocate as much as we wanted,
2299 	 * release partially allocated table.
2300 	 */
2301 	if (offset < tce_table_size) {
2302 		pnv_pci_ioda2_table_do_free_pages(addr,
2303 				1ULL << (level_shift - 3), levels - 1);
2304 		return -ENOMEM;
2305 	}
2306 
2307 	/* Setup linux iommu table */
2308 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2309 			page_shift);
2310 	tbl->it_level_size = 1ULL << (level_shift - 3);
2311 	tbl->it_indirect_levels = levels - 1;
2312 	tbl->it_allocated_size = total_allocated;
2313 
2314 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2315 			window_size, tce_table_size, bus_offset);
2316 
2317 	return 0;
2318 }
2319 
2320 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2321 		unsigned long size, unsigned level)
2322 {
2323 	const unsigned long addr_ul = (unsigned long) addr &
2324 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2325 
2326 	if (level) {
2327 		long i;
2328 		u64 *tmp = (u64 *) addr_ul;
2329 
2330 		for (i = 0; i < size; ++i) {
2331 			unsigned long hpa = be64_to_cpu(tmp[i]);
2332 
2333 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2334 				continue;
2335 
2336 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2337 					level - 1);
2338 		}
2339 	}
2340 
2341 	free_pages(addr_ul, get_order(size << 3));
2342 }
2343 
2344 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2345 {
2346 	const unsigned long size = tbl->it_indirect_levels ?
2347 			tbl->it_level_size : tbl->it_size;
2348 
2349 	if (!tbl->it_size)
2350 		return;
2351 
2352 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2353 			tbl->it_indirect_levels);
2354 }
2355 
2356 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2357 				       struct pnv_ioda_pe *pe)
2358 {
2359 	int64_t rc;
2360 
2361 	/* We shouldn't already have a 32-bit DMA associated */
2362 	if (WARN_ON(pe->tce32_seg >= 0))
2363 		return;
2364 
2365 	/* TVE #1 is selected by PCI address bit 59 */
2366 	pe->tce_bypass_base = 1ull << 59;
2367 
2368 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2369 			pe->pe_number);
2370 
2371 	/* The PE will reserve all possible 32-bits space */
2372 	pe->tce32_seg = 0;
2373 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2374 		phb->ioda.m32_pci_base);
2375 
2376 	/* Setup linux iommu table */
2377 	pe->table_group.tce32_start = 0;
2378 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2379 	pe->table_group.max_dynamic_windows_supported =
2380 			IOMMU_TABLE_GROUP_MAX_TABLES;
2381 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2382 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2383 #ifdef CONFIG_IOMMU_API
2384 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2385 #endif
2386 
2387 	rc = pnv_pci_ioda2_setup_default_config(pe);
2388 	if (rc) {
2389 		if (pe->tce32_seg >= 0)
2390 			pe->tce32_seg = -1;
2391 		return;
2392 	}
2393 
2394 	if (pe->flags & PNV_IODA_PE_DEV)
2395 		iommu_add_device(&pe->pdev->dev);
2396 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2397 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2398 }
2399 
2400 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2401 {
2402 	struct pci_controller *hose = phb->hose;
2403 	unsigned int residual, remaining, segs, tw, base;
2404 	struct pnv_ioda_pe *pe;
2405 
2406 	/* If we have more PE# than segments available, hand out one
2407 	 * per PE until we run out and let the rest fail. If not,
2408 	 * then we assign at least one segment per PE, plus more based
2409 	 * on the amount of devices under that PE
2410 	 */
2411 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2412 		residual = 0;
2413 	else
2414 		residual = phb->ioda.tce32_count -
2415 			phb->ioda.dma_pe_count;
2416 
2417 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2418 		hose->global_number, phb->ioda.tce32_count);
2419 	pr_info("PCI: %d PE# for a total weight of %d\n",
2420 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2421 
2422 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2423 
2424 	/* Walk our PE list and configure their DMA segments, hand them
2425 	 * out one base segment plus any residual segments based on
2426 	 * weight
2427 	 */
2428 	remaining = phb->ioda.tce32_count;
2429 	tw = phb->ioda.dma_weight;
2430 	base = 0;
2431 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2432 		if (!pe->dma_weight)
2433 			continue;
2434 		if (!remaining) {
2435 			pe_warn(pe, "No DMA32 resources available\n");
2436 			continue;
2437 		}
2438 		segs = 1;
2439 		if (residual) {
2440 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2441 			if (segs > remaining)
2442 				segs = remaining;
2443 		}
2444 
2445 		/*
2446 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2447 		 * The all available 32-bits DMA space will be assigned to
2448 		 * the specific PE.
2449 		 */
2450 		if (phb->type == PNV_PHB_IODA1) {
2451 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2452 				pe->dma_weight, segs);
2453 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2454 		} else {
2455 			pe_info(pe, "Assign DMA32 space\n");
2456 			segs = 0;
2457 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2458 		}
2459 
2460 		remaining -= segs;
2461 		base += segs;
2462 	}
2463 }
2464 
2465 #ifdef CONFIG_PCI_MSI
2466 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2467 {
2468 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2469 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2470 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2471 					   ioda.irq_chip);
2472 	int64_t rc;
2473 
2474 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2475 	WARN_ON_ONCE(rc);
2476 
2477 	icp_native_eoi(d);
2478 }
2479 
2480 
2481 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2482 {
2483 	struct irq_data *idata;
2484 	struct irq_chip *ichip;
2485 
2486 	if (phb->type != PNV_PHB_IODA2)
2487 		return;
2488 
2489 	if (!phb->ioda.irq_chip_init) {
2490 		/*
2491 		 * First time we setup an MSI IRQ, we need to setup the
2492 		 * corresponding IRQ chip to route correctly.
2493 		 */
2494 		idata = irq_get_irq_data(virq);
2495 		ichip = irq_data_get_irq_chip(idata);
2496 		phb->ioda.irq_chip_init = 1;
2497 		phb->ioda.irq_chip = *ichip;
2498 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2499 	}
2500 	irq_set_chip(virq, &phb->ioda.irq_chip);
2501 }
2502 
2503 #ifdef CONFIG_CXL_BASE
2504 
2505 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2506 {
2507 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2508 
2509 	return of_node_get(hose->dn);
2510 }
2511 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2512 
2513 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2514 {
2515 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2516 	struct pnv_phb *phb = hose->private_data;
2517 	struct pnv_ioda_pe *pe;
2518 	int rc;
2519 
2520 	pe = pnv_ioda_get_pe(dev);
2521 	if (!pe)
2522 		return -ENODEV;
2523 
2524 	pe_info(pe, "Switching PHB to CXL\n");
2525 
2526 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2527 	if (rc)
2528 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2529 
2530 	return rc;
2531 }
2532 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2533 
2534 /* Find PHB for cxl dev and allocate MSI hwirqs?
2535  * Returns the absolute hardware IRQ number
2536  */
2537 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2538 {
2539 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2540 	struct pnv_phb *phb = hose->private_data;
2541 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2542 
2543 	if (hwirq < 0) {
2544 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2545 		return -ENOSPC;
2546 	}
2547 
2548 	return phb->msi_base + hwirq;
2549 }
2550 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2551 
2552 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2553 {
2554 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2555 	struct pnv_phb *phb = hose->private_data;
2556 
2557 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2558 }
2559 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2560 
2561 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2562 				  struct pci_dev *dev)
2563 {
2564 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2565 	struct pnv_phb *phb = hose->private_data;
2566 	int i, hwirq;
2567 
2568 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2569 		if (!irqs->range[i])
2570 			continue;
2571 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2572 			 i, irqs->offset[i],
2573 			 irqs->range[i]);
2574 		hwirq = irqs->offset[i] - phb->msi_base;
2575 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2576 				       irqs->range[i]);
2577 	}
2578 }
2579 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2580 
2581 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2582 			       struct pci_dev *dev, int num)
2583 {
2584 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2585 	struct pnv_phb *phb = hose->private_data;
2586 	int i, hwirq, try;
2587 
2588 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2589 
2590 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2591 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2592 		try = num;
2593 		while (try) {
2594 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2595 			if (hwirq >= 0)
2596 				break;
2597 			try /= 2;
2598 		}
2599 		if (!try)
2600 			goto fail;
2601 
2602 		irqs->offset[i] = phb->msi_base + hwirq;
2603 		irqs->range[i] = try;
2604 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2605 			 i, irqs->offset[i], irqs->range[i]);
2606 		num -= try;
2607 	}
2608 	if (num)
2609 		goto fail;
2610 
2611 	return 0;
2612 fail:
2613 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2614 	return -ENOSPC;
2615 }
2616 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2617 
2618 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2619 {
2620 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2621 	struct pnv_phb *phb = hose->private_data;
2622 
2623 	return phb->msi_bmp.irq_count;
2624 }
2625 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2626 
2627 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2628 			   unsigned int virq)
2629 {
2630 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2631 	struct pnv_phb *phb = hose->private_data;
2632 	unsigned int xive_num = hwirq - phb->msi_base;
2633 	struct pnv_ioda_pe *pe;
2634 	int rc;
2635 
2636 	if (!(pe = pnv_ioda_get_pe(dev)))
2637 		return -ENODEV;
2638 
2639 	/* Assign XIVE to PE */
2640 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2641 	if (rc) {
2642 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2643 			"hwirq 0x%x XIVE 0x%x PE\n",
2644 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2645 		return -EIO;
2646 	}
2647 	set_msi_irq_chip(phb, virq);
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2652 #endif
2653 
2654 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2655 				  unsigned int hwirq, unsigned int virq,
2656 				  unsigned int is_64, struct msi_msg *msg)
2657 {
2658 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2659 	unsigned int xive_num = hwirq - phb->msi_base;
2660 	__be32 data;
2661 	int rc;
2662 
2663 	/* No PE assigned ? bail out ... no MSI for you ! */
2664 	if (pe == NULL)
2665 		return -ENXIO;
2666 
2667 	/* Check if we have an MVE */
2668 	if (pe->mve_number < 0)
2669 		return -ENXIO;
2670 
2671 	/* Force 32-bit MSI on some broken devices */
2672 	if (dev->no_64bit_msi)
2673 		is_64 = 0;
2674 
2675 	/* Assign XIVE to PE */
2676 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2677 	if (rc) {
2678 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2679 			pci_name(dev), rc, xive_num);
2680 		return -EIO;
2681 	}
2682 
2683 	if (is_64) {
2684 		__be64 addr64;
2685 
2686 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2687 				     &addr64, &data);
2688 		if (rc) {
2689 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2690 				pci_name(dev), rc);
2691 			return -EIO;
2692 		}
2693 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2694 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2695 	} else {
2696 		__be32 addr32;
2697 
2698 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2699 				     &addr32, &data);
2700 		if (rc) {
2701 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2702 				pci_name(dev), rc);
2703 			return -EIO;
2704 		}
2705 		msg->address_hi = 0;
2706 		msg->address_lo = be32_to_cpu(addr32);
2707 	}
2708 	msg->data = be32_to_cpu(data);
2709 
2710 	set_msi_irq_chip(phb, virq);
2711 
2712 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2713 		 " address=%x_%08x data=%x PE# %d\n",
2714 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2715 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2716 
2717 	return 0;
2718 }
2719 
2720 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2721 {
2722 	unsigned int count;
2723 	const __be32 *prop = of_get_property(phb->hose->dn,
2724 					     "ibm,opal-msi-ranges", NULL);
2725 	if (!prop) {
2726 		/* BML Fallback */
2727 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2728 	}
2729 	if (!prop)
2730 		return;
2731 
2732 	phb->msi_base = be32_to_cpup(prop);
2733 	count = be32_to_cpup(prop + 1);
2734 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2735 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2736 		       phb->hose->global_number);
2737 		return;
2738 	}
2739 
2740 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2741 	phb->msi32_support = 1;
2742 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2743 		count, phb->msi_base);
2744 }
2745 #else
2746 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2747 #endif /* CONFIG_PCI_MSI */
2748 
2749 #ifdef CONFIG_PCI_IOV
2750 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2751 {
2752 	struct pci_controller *hose;
2753 	struct pnv_phb *phb;
2754 	struct resource *res;
2755 	int i;
2756 	resource_size_t size;
2757 	struct pci_dn *pdn;
2758 	int mul, total_vfs;
2759 
2760 	if (!pdev->is_physfn || pdev->is_added)
2761 		return;
2762 
2763 	hose = pci_bus_to_host(pdev->bus);
2764 	phb = hose->private_data;
2765 
2766 	pdn = pci_get_pdn(pdev);
2767 	pdn->vfs_expanded = 0;
2768 
2769 	total_vfs = pci_sriov_get_totalvfs(pdev);
2770 	pdn->m64_per_iov = 1;
2771 	mul = phb->ioda.total_pe;
2772 
2773 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2774 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2775 		if (!res->flags || res->parent)
2776 			continue;
2777 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2778 			dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2779 				 i, res);
2780 			continue;
2781 		}
2782 
2783 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2784 
2785 		/* bigger than 64M */
2786 		if (size > (1 << 26)) {
2787 			dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2788 				 i, res);
2789 			pdn->m64_per_iov = M64_PER_IOV;
2790 			mul = roundup_pow_of_two(total_vfs);
2791 			break;
2792 		}
2793 	}
2794 
2795 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2796 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2797 		if (!res->flags || res->parent)
2798 			continue;
2799 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2800 			dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2801 				 i, res);
2802 			continue;
2803 		}
2804 
2805 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2806 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2807 		res->end = res->start + size * mul - 1;
2808 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2809 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2810 			 i, res, mul);
2811 	}
2812 	pdn->vfs_expanded = mul;
2813 }
2814 #endif /* CONFIG_PCI_IOV */
2815 
2816 /*
2817  * This function is supposed to be called on basis of PE from top
2818  * to bottom style. So the the I/O or MMIO segment assigned to
2819  * parent PE could be overrided by its child PEs if necessary.
2820  */
2821 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2822 				  struct pnv_ioda_pe *pe)
2823 {
2824 	struct pnv_phb *phb = hose->private_data;
2825 	struct pci_bus_region region;
2826 	struct resource *res;
2827 	int i, index;
2828 	int rc;
2829 
2830 	/*
2831 	 * NOTE: We only care PCI bus based PE for now. For PCI
2832 	 * device based PE, for example SRIOV sensitive VF should
2833 	 * be figured out later.
2834 	 */
2835 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2836 
2837 	pci_bus_for_each_resource(pe->pbus, res, i) {
2838 		if (!res || !res->flags ||
2839 		    res->start > res->end)
2840 			continue;
2841 
2842 		if (res->flags & IORESOURCE_IO) {
2843 			region.start = res->start - phb->ioda.io_pci_base;
2844 			region.end   = res->end - phb->ioda.io_pci_base;
2845 			index = region.start / phb->ioda.io_segsize;
2846 
2847 			while (index < phb->ioda.total_pe &&
2848 			       region.start <= region.end) {
2849 				phb->ioda.io_segmap[index] = pe->pe_number;
2850 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2851 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2852 				if (rc != OPAL_SUCCESS) {
2853 					pr_err("%s: OPAL error %d when mapping IO "
2854 					       "segment #%d to PE#%d\n",
2855 					       __func__, rc, index, pe->pe_number);
2856 					break;
2857 				}
2858 
2859 				region.start += phb->ioda.io_segsize;
2860 				index++;
2861 			}
2862 		} else if ((res->flags & IORESOURCE_MEM) &&
2863 			   !pnv_pci_is_mem_pref_64(res->flags)) {
2864 			region.start = res->start -
2865 				       hose->mem_offset[0] -
2866 				       phb->ioda.m32_pci_base;
2867 			region.end   = res->end -
2868 				       hose->mem_offset[0] -
2869 				       phb->ioda.m32_pci_base;
2870 			index = region.start / phb->ioda.m32_segsize;
2871 
2872 			while (index < phb->ioda.total_pe &&
2873 			       region.start <= region.end) {
2874 				phb->ioda.m32_segmap[index] = pe->pe_number;
2875 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2876 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2877 				if (rc != OPAL_SUCCESS) {
2878 					pr_err("%s: OPAL error %d when mapping M32 "
2879 					       "segment#%d to PE#%d",
2880 					       __func__, rc, index, pe->pe_number);
2881 					break;
2882 				}
2883 
2884 				region.start += phb->ioda.m32_segsize;
2885 				index++;
2886 			}
2887 		}
2888 	}
2889 }
2890 
2891 static void pnv_pci_ioda_setup_seg(void)
2892 {
2893 	struct pci_controller *tmp, *hose;
2894 	struct pnv_phb *phb;
2895 	struct pnv_ioda_pe *pe;
2896 
2897 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2898 		phb = hose->private_data;
2899 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2900 			pnv_ioda_setup_pe_seg(hose, pe);
2901 		}
2902 	}
2903 }
2904 
2905 static void pnv_pci_ioda_setup_DMA(void)
2906 {
2907 	struct pci_controller *hose, *tmp;
2908 	struct pnv_phb *phb;
2909 
2910 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2911 		pnv_ioda_setup_dma(hose->private_data);
2912 
2913 		/* Mark the PHB initialization done */
2914 		phb = hose->private_data;
2915 		phb->initialized = 1;
2916 	}
2917 }
2918 
2919 static void pnv_pci_ioda_create_dbgfs(void)
2920 {
2921 #ifdef CONFIG_DEBUG_FS
2922 	struct pci_controller *hose, *tmp;
2923 	struct pnv_phb *phb;
2924 	char name[16];
2925 
2926 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2927 		phb = hose->private_data;
2928 
2929 		sprintf(name, "PCI%04x", hose->global_number);
2930 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2931 		if (!phb->dbgfs)
2932 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2933 				__func__, hose->global_number);
2934 	}
2935 #endif /* CONFIG_DEBUG_FS */
2936 }
2937 
2938 static void pnv_pci_ioda_fixup(void)
2939 {
2940 	pnv_pci_ioda_setup_PEs();
2941 	pnv_pci_ioda_setup_seg();
2942 	pnv_pci_ioda_setup_DMA();
2943 
2944 	pnv_pci_ioda_create_dbgfs();
2945 
2946 #ifdef CONFIG_EEH
2947 	eeh_init();
2948 	eeh_addr_cache_build();
2949 #endif
2950 }
2951 
2952 /*
2953  * Returns the alignment for I/O or memory windows for P2P
2954  * bridges. That actually depends on how PEs are segmented.
2955  * For now, we return I/O or M32 segment size for PE sensitive
2956  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2957  * 1MiB for memory) will be returned.
2958  *
2959  * The current PCI bus might be put into one PE, which was
2960  * create against the parent PCI bridge. For that case, we
2961  * needn't enlarge the alignment so that we can save some
2962  * resources.
2963  */
2964 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2965 						unsigned long type)
2966 {
2967 	struct pci_dev *bridge;
2968 	struct pci_controller *hose = pci_bus_to_host(bus);
2969 	struct pnv_phb *phb = hose->private_data;
2970 	int num_pci_bridges = 0;
2971 
2972 	bridge = bus->self;
2973 	while (bridge) {
2974 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2975 			num_pci_bridges++;
2976 			if (num_pci_bridges >= 2)
2977 				return 1;
2978 		}
2979 
2980 		bridge = bridge->bus->self;
2981 	}
2982 
2983 	/* We fail back to M32 if M64 isn't supported */
2984 	if (phb->ioda.m64_segsize &&
2985 	    pnv_pci_is_mem_pref_64(type))
2986 		return phb->ioda.m64_segsize;
2987 	if (type & IORESOURCE_MEM)
2988 		return phb->ioda.m32_segsize;
2989 
2990 	return phb->ioda.io_segsize;
2991 }
2992 
2993 #ifdef CONFIG_PCI_IOV
2994 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2995 						      int resno)
2996 {
2997 	struct pci_dn *pdn = pci_get_pdn(pdev);
2998 	resource_size_t align, iov_align;
2999 
3000 	iov_align = resource_size(&pdev->resource[resno]);
3001 	if (iov_align)
3002 		return iov_align;
3003 
3004 	align = pci_iov_resource_size(pdev, resno);
3005 	if (pdn->vfs_expanded)
3006 		return pdn->vfs_expanded * align;
3007 
3008 	return align;
3009 }
3010 #endif /* CONFIG_PCI_IOV */
3011 
3012 /* Prevent enabling devices for which we couldn't properly
3013  * assign a PE
3014  */
3015 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3016 {
3017 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3018 	struct pnv_phb *phb = hose->private_data;
3019 	struct pci_dn *pdn;
3020 
3021 	/* The function is probably called while the PEs have
3022 	 * not be created yet. For example, resource reassignment
3023 	 * during PCI probe period. We just skip the check if
3024 	 * PEs isn't ready.
3025 	 */
3026 	if (!phb->initialized)
3027 		return true;
3028 
3029 	pdn = pci_get_pdn(dev);
3030 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3031 		return false;
3032 
3033 	return true;
3034 }
3035 
3036 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3037 			       u32 devfn)
3038 {
3039 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3040 }
3041 
3042 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3043 {
3044 	struct pnv_phb *phb = hose->private_data;
3045 
3046 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3047 		       OPAL_ASSERT_RESET);
3048 }
3049 
3050 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3051        .dma_dev_setup = pnv_pci_dma_dev_setup,
3052 #ifdef CONFIG_PCI_MSI
3053        .setup_msi_irqs = pnv_setup_msi_irqs,
3054        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3055 #endif
3056        .enable_device_hook = pnv_pci_enable_device_hook,
3057        .window_alignment = pnv_pci_window_alignment,
3058        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3059        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3060        .shutdown = pnv_pci_ioda_shutdown,
3061 };
3062 
3063 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3064 					 u64 hub_id, int ioda_type)
3065 {
3066 	struct pci_controller *hose;
3067 	struct pnv_phb *phb;
3068 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3069 	const __be64 *prop64;
3070 	const __be32 *prop32;
3071 	int len;
3072 	u64 phb_id;
3073 	void *aux;
3074 	long rc;
3075 
3076 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3077 
3078 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3079 	if (!prop64) {
3080 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3081 		return;
3082 	}
3083 	phb_id = be64_to_cpup(prop64);
3084 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3085 
3086 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3087 
3088 	/* Allocate PCI controller */
3089 	phb->hose = hose = pcibios_alloc_controller(np);
3090 	if (!phb->hose) {
3091 		pr_err("  Can't allocate PCI controller for %s\n",
3092 		       np->full_name);
3093 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3094 		return;
3095 	}
3096 
3097 	spin_lock_init(&phb->lock);
3098 	prop32 = of_get_property(np, "bus-range", &len);
3099 	if (prop32 && len == 8) {
3100 		hose->first_busno = be32_to_cpu(prop32[0]);
3101 		hose->last_busno = be32_to_cpu(prop32[1]);
3102 	} else {
3103 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3104 		hose->first_busno = 0;
3105 		hose->last_busno = 0xff;
3106 	}
3107 	hose->private_data = phb;
3108 	phb->hub_id = hub_id;
3109 	phb->opal_id = phb_id;
3110 	phb->type = ioda_type;
3111 	mutex_init(&phb->ioda.pe_alloc_mutex);
3112 
3113 	/* Detect specific models for error handling */
3114 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3115 		phb->model = PNV_PHB_MODEL_P7IOC;
3116 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3117 		phb->model = PNV_PHB_MODEL_PHB3;
3118 	else
3119 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3120 
3121 	/* Parse 32-bit and IO ranges (if any) */
3122 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3123 
3124 	/* Get registers */
3125 	phb->regs = of_iomap(np, 0);
3126 	if (phb->regs == NULL)
3127 		pr_err("  Failed to map registers !\n");
3128 
3129 	/* Initialize more IODA stuff */
3130 	phb->ioda.total_pe = 1;
3131 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3132 	if (prop32)
3133 		phb->ioda.total_pe = be32_to_cpup(prop32);
3134 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3135 	if (prop32)
3136 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
3137 
3138 	/* Parse 64-bit MMIO range */
3139 	pnv_ioda_parse_m64_window(phb);
3140 
3141 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3142 	/* FW Has already off top 64k of M32 space (MSI space) */
3143 	phb->ioda.m32_size += 0x10000;
3144 
3145 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3146 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3147 	phb->ioda.io_size = hose->pci_io_size;
3148 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3149 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3150 
3151 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3152 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3153 	m32map_off = size;
3154 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3155 	if (phb->type == PNV_PHB_IODA1) {
3156 		iomap_off = size;
3157 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3158 	}
3159 	pemap_off = size;
3160 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3161 	aux = memblock_virt_alloc(size, 0);
3162 	phb->ioda.pe_alloc = aux;
3163 	phb->ioda.m32_segmap = aux + m32map_off;
3164 	if (phb->type == PNV_PHB_IODA1)
3165 		phb->ioda.io_segmap = aux + iomap_off;
3166 	phb->ioda.pe_array = aux + pemap_off;
3167 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3168 
3169 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3170 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3171 	mutex_init(&phb->ioda.pe_list_mutex);
3172 
3173 	/* Calculate how many 32-bit TCE segments we have */
3174 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3175 
3176 #if 0 /* We should really do that ... */
3177 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3178 					 window_type,
3179 					 window_num,
3180 					 starting_real_address,
3181 					 starting_pci_address,
3182 					 segment_size);
3183 #endif
3184 
3185 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3186 		phb->ioda.total_pe, phb->ioda.reserved_pe,
3187 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3188 	if (phb->ioda.m64_size)
3189 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3190 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3191 	if (phb->ioda.io_size)
3192 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3193 			phb->ioda.io_size, phb->ioda.io_segsize);
3194 
3195 
3196 	phb->hose->ops = &pnv_pci_ops;
3197 	phb->get_pe_state = pnv_ioda_get_pe_state;
3198 	phb->freeze_pe = pnv_ioda_freeze_pe;
3199 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3200 
3201 	/* Setup RID -> PE mapping function */
3202 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3203 
3204 	/* Setup TCEs */
3205 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3206 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
3207 
3208 	/* Setup MSI support */
3209 	pnv_pci_init_ioda_msis(phb);
3210 
3211 	/*
3212 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3213 	 * to let the PCI core do resource assignment. It's supposed
3214 	 * that the PCI core will do correct I/O and MMIO alignment
3215 	 * for the P2P bridge bars so that each PCI bus (excluding
3216 	 * the child P2P bridges) can form individual PE.
3217 	 */
3218 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3219 	hose->controller_ops = pnv_pci_ioda_controller_ops;
3220 
3221 #ifdef CONFIG_PCI_IOV
3222 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3223 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3224 #endif
3225 
3226 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3227 
3228 	/* Reset IODA tables to a clean state */
3229 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3230 	if (rc)
3231 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3232 
3233 	/* If we're running in kdump kerenl, the previous kerenl never
3234 	 * shutdown PCI devices correctly. We already got IODA table
3235 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3236 	 * transactions from previous kerenl.
3237 	 */
3238 	if (is_kdump_kernel()) {
3239 		pr_info("  Issue PHB reset ...\n");
3240 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3241 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3242 	}
3243 
3244 	/* Remove M64 resource if we can't configure it successfully */
3245 	if (!phb->init_m64 || phb->init_m64(phb))
3246 		hose->mem_resources[1].flags = 0;
3247 }
3248 
3249 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3250 {
3251 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3252 }
3253 
3254 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3255 {
3256 	struct device_node *phbn;
3257 	const __be64 *prop64;
3258 	u64 hub_id;
3259 
3260 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3261 
3262 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3263 	if (!prop64) {
3264 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3265 		return;
3266 	}
3267 	hub_id = be64_to_cpup(prop64);
3268 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3269 
3270 	/* Count child PHBs */
3271 	for_each_child_of_node(np, phbn) {
3272 		/* Look for IODA1 PHBs */
3273 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3274 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3275 	}
3276 }
3277