xref: /linux/arch/powerpc/platforms/cell/spufs/file.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.owner	 = THIS_MODULE,						\
153 	.open	 = __fops ## _open,					\
154 	.release = spufs_attr_release,					\
155 	.read	 = spufs_attr_read,					\
156 	.write	 = spufs_attr_write,					\
157 	.llseek  = generic_file_llseek,					\
158 };
159 
160 
161 static int
162 spufs_mem_open(struct inode *inode, struct file *file)
163 {
164 	struct spufs_inode_info *i = SPUFS_I(inode);
165 	struct spu_context *ctx = i->i_ctx;
166 
167 	mutex_lock(&ctx->mapping_lock);
168 	file->private_data = ctx;
169 	if (!i->i_openers++)
170 		ctx->local_store = inode->i_mapping;
171 	mutex_unlock(&ctx->mapping_lock);
172 	return 0;
173 }
174 
175 static int
176 spufs_mem_release(struct inode *inode, struct file *file)
177 {
178 	struct spufs_inode_info *i = SPUFS_I(inode);
179 	struct spu_context *ctx = i->i_ctx;
180 
181 	mutex_lock(&ctx->mapping_lock);
182 	if (!--i->i_openers)
183 		ctx->local_store = NULL;
184 	mutex_unlock(&ctx->mapping_lock);
185 	return 0;
186 }
187 
188 static ssize_t
189 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
190 			size_t size, loff_t *pos)
191 {
192 	char *local_store = ctx->ops->get_ls(ctx);
193 	return simple_read_from_buffer(buffer, size, pos, local_store,
194 					LS_SIZE);
195 }
196 
197 static ssize_t
198 spufs_mem_read(struct file *file, char __user *buffer,
199 				size_t size, loff_t *pos)
200 {
201 	struct spu_context *ctx = file->private_data;
202 	ssize_t ret;
203 
204 	ret = spu_acquire(ctx);
205 	if (ret)
206 		return ret;
207 	ret = __spufs_mem_read(ctx, buffer, size, pos);
208 	spu_release(ctx);
209 
210 	return ret;
211 }
212 
213 static ssize_t
214 spufs_mem_write(struct file *file, const char __user *buffer,
215 					size_t size, loff_t *ppos)
216 {
217 	struct spu_context *ctx = file->private_data;
218 	char *local_store;
219 	loff_t pos = *ppos;
220 	int ret;
221 
222 	if (pos > LS_SIZE)
223 		return -EFBIG;
224 
225 	ret = spu_acquire(ctx);
226 	if (ret)
227 		return ret;
228 
229 	local_store = ctx->ops->get_ls(ctx);
230 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
231 	spu_release(ctx);
232 
233 	return size;
234 }
235 
236 static int
237 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
238 {
239 	struct spu_context *ctx	= vma->vm_file->private_data;
240 	unsigned long address = (unsigned long)vmf->virtual_address;
241 	unsigned long pfn, offset;
242 
243 #ifdef CONFIG_SPU_FS_64K_LS
244 	struct spu_state *csa = &ctx->csa;
245 	int psize;
246 
247 	/* Check what page size we are using */
248 	psize = get_slice_psize(vma->vm_mm, address);
249 
250 	/* Some sanity checking */
251 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
252 
253 	/* Wow, 64K, cool, we need to align the address though */
254 	if (csa->use_big_pages) {
255 		BUG_ON(vma->vm_start & 0xffff);
256 		address &= ~0xfffful;
257 	}
258 #endif /* CONFIG_SPU_FS_64K_LS */
259 
260 	offset = vmf->pgoff << PAGE_SHIFT;
261 	if (offset >= LS_SIZE)
262 		return VM_FAULT_SIGBUS;
263 
264 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
265 			address, offset);
266 
267 	if (spu_acquire(ctx))
268 		return VM_FAULT_NOPAGE;
269 
270 	if (ctx->state == SPU_STATE_SAVED) {
271 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
272 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
273 	} else {
274 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
275 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
276 	}
277 	vm_insert_pfn(vma, address, pfn);
278 
279 	spu_release(ctx);
280 
281 	return VM_FAULT_NOPAGE;
282 }
283 
284 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
285 				unsigned long address,
286 				void *buf, int len, int write)
287 {
288 	struct spu_context *ctx = vma->vm_file->private_data;
289 	unsigned long offset = address - vma->vm_start;
290 	char *local_store;
291 
292 	if (write && !(vma->vm_flags & VM_WRITE))
293 		return -EACCES;
294 	if (spu_acquire(ctx))
295 		return -EINTR;
296 	if ((offset + len) > vma->vm_end)
297 		len = vma->vm_end - offset;
298 	local_store = ctx->ops->get_ls(ctx);
299 	if (write)
300 		memcpy_toio(local_store + offset, buf, len);
301 	else
302 		memcpy_fromio(buf, local_store + offset, len);
303 	spu_release(ctx);
304 	return len;
305 }
306 
307 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
308 	.fault = spufs_mem_mmap_fault,
309 	.access = spufs_mem_mmap_access,
310 };
311 
312 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
313 {
314 #ifdef CONFIG_SPU_FS_64K_LS
315 	struct spu_context	*ctx = file->private_data;
316 	struct spu_state	*csa = &ctx->csa;
317 
318 	/* Sanity check VMA alignment */
319 	if (csa->use_big_pages) {
320 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
321 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
322 			 vma->vm_pgoff);
323 		if (vma->vm_start & 0xffff)
324 			return -EINVAL;
325 		if (vma->vm_pgoff & 0xf)
326 			return -EINVAL;
327 	}
328 #endif /* CONFIG_SPU_FS_64K_LS */
329 
330 	if (!(vma->vm_flags & VM_SHARED))
331 		return -EINVAL;
332 
333 	vma->vm_flags |= VM_IO | VM_PFNMAP;
334 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
335 
336 	vma->vm_ops = &spufs_mem_mmap_vmops;
337 	return 0;
338 }
339 
340 #ifdef CONFIG_SPU_FS_64K_LS
341 static unsigned long spufs_get_unmapped_area(struct file *file,
342 		unsigned long addr, unsigned long len, unsigned long pgoff,
343 		unsigned long flags)
344 {
345 	struct spu_context	*ctx = file->private_data;
346 	struct spu_state	*csa = &ctx->csa;
347 
348 	/* If not using big pages, fallback to normal MM g_u_a */
349 	if (!csa->use_big_pages)
350 		return current->mm->get_unmapped_area(file, addr, len,
351 						      pgoff, flags);
352 
353 	/* Else, try to obtain a 64K pages slice */
354 	return slice_get_unmapped_area(addr, len, flags,
355 				       MMU_PAGE_64K, 1, 0);
356 }
357 #endif /* CONFIG_SPU_FS_64K_LS */
358 
359 static const struct file_operations spufs_mem_fops = {
360 	.open			= spufs_mem_open,
361 	.release		= spufs_mem_release,
362 	.read			= spufs_mem_read,
363 	.write			= spufs_mem_write,
364 	.llseek			= generic_file_llseek,
365 	.mmap			= spufs_mem_mmap,
366 #ifdef CONFIG_SPU_FS_64K_LS
367 	.get_unmapped_area	= spufs_get_unmapped_area,
368 #endif
369 };
370 
371 static int spufs_ps_fault(struct vm_area_struct *vma,
372 				    struct vm_fault *vmf,
373 				    unsigned long ps_offs,
374 				    unsigned long ps_size)
375 {
376 	struct spu_context *ctx = vma->vm_file->private_data;
377 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
378 	int ret = 0;
379 
380 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
381 
382 	if (offset >= ps_size)
383 		return VM_FAULT_SIGBUS;
384 
385 	if (fatal_signal_pending(current))
386 		return VM_FAULT_SIGBUS;
387 
388 	/*
389 	 * Because we release the mmap_sem, the context may be destroyed while
390 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
391 	 * in the meantime.
392 	 */
393 	get_spu_context(ctx);
394 
395 	/*
396 	 * We have to wait for context to be loaded before we have
397 	 * pages to hand out to the user, but we don't want to wait
398 	 * with the mmap_sem held.
399 	 * It is possible to drop the mmap_sem here, but then we need
400 	 * to return VM_FAULT_NOPAGE because the mappings may have
401 	 * hanged.
402 	 */
403 	if (spu_acquire(ctx))
404 		goto refault;
405 
406 	if (ctx->state == SPU_STATE_SAVED) {
407 		up_read(&current->mm->mmap_sem);
408 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
409 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
410 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
411 		down_read(&current->mm->mmap_sem);
412 	} else {
413 		area = ctx->spu->problem_phys + ps_offs;
414 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
415 					(area + offset) >> PAGE_SHIFT);
416 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
417 	}
418 
419 	if (!ret)
420 		spu_release(ctx);
421 
422 refault:
423 	put_spu_context(ctx);
424 	return VM_FAULT_NOPAGE;
425 }
426 
427 #if SPUFS_MMAP_4K
428 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
429 					   struct vm_fault *vmf)
430 {
431 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
432 }
433 
434 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
435 	.fault = spufs_cntl_mmap_fault,
436 };
437 
438 /*
439  * mmap support for problem state control area [0x4000 - 0x4fff].
440  */
441 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
442 {
443 	if (!(vma->vm_flags & VM_SHARED))
444 		return -EINVAL;
445 
446 	vma->vm_flags |= VM_IO | VM_PFNMAP;
447 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
448 
449 	vma->vm_ops = &spufs_cntl_mmap_vmops;
450 	return 0;
451 }
452 #else /* SPUFS_MMAP_4K */
453 #define spufs_cntl_mmap NULL
454 #endif /* !SPUFS_MMAP_4K */
455 
456 static int spufs_cntl_get(void *data, u64 *val)
457 {
458 	struct spu_context *ctx = data;
459 	int ret;
460 
461 	ret = spu_acquire(ctx);
462 	if (ret)
463 		return ret;
464 	*val = ctx->ops->status_read(ctx);
465 	spu_release(ctx);
466 
467 	return 0;
468 }
469 
470 static int spufs_cntl_set(void *data, u64 val)
471 {
472 	struct spu_context *ctx = data;
473 	int ret;
474 
475 	ret = spu_acquire(ctx);
476 	if (ret)
477 		return ret;
478 	ctx->ops->runcntl_write(ctx, val);
479 	spu_release(ctx);
480 
481 	return 0;
482 }
483 
484 static int spufs_cntl_open(struct inode *inode, struct file *file)
485 {
486 	struct spufs_inode_info *i = SPUFS_I(inode);
487 	struct spu_context *ctx = i->i_ctx;
488 
489 	mutex_lock(&ctx->mapping_lock);
490 	file->private_data = ctx;
491 	if (!i->i_openers++)
492 		ctx->cntl = inode->i_mapping;
493 	mutex_unlock(&ctx->mapping_lock);
494 	return simple_attr_open(inode, file, spufs_cntl_get,
495 					spufs_cntl_set, "0x%08lx");
496 }
497 
498 static int
499 spufs_cntl_release(struct inode *inode, struct file *file)
500 {
501 	struct spufs_inode_info *i = SPUFS_I(inode);
502 	struct spu_context *ctx = i->i_ctx;
503 
504 	simple_attr_release(inode, file);
505 
506 	mutex_lock(&ctx->mapping_lock);
507 	if (!--i->i_openers)
508 		ctx->cntl = NULL;
509 	mutex_unlock(&ctx->mapping_lock);
510 	return 0;
511 }
512 
513 static const struct file_operations spufs_cntl_fops = {
514 	.open = spufs_cntl_open,
515 	.release = spufs_cntl_release,
516 	.read = simple_attr_read,
517 	.write = simple_attr_write,
518 	.llseek	= generic_file_llseek,
519 	.mmap = spufs_cntl_mmap,
520 };
521 
522 static int
523 spufs_regs_open(struct inode *inode, struct file *file)
524 {
525 	struct spufs_inode_info *i = SPUFS_I(inode);
526 	file->private_data = i->i_ctx;
527 	return 0;
528 }
529 
530 static ssize_t
531 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
532 			size_t size, loff_t *pos)
533 {
534 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
535 	return simple_read_from_buffer(buffer, size, pos,
536 				      lscsa->gprs, sizeof lscsa->gprs);
537 }
538 
539 static ssize_t
540 spufs_regs_read(struct file *file, char __user *buffer,
541 		size_t size, loff_t *pos)
542 {
543 	int ret;
544 	struct spu_context *ctx = file->private_data;
545 
546 	/* pre-check for file position: if we'd return EOF, there's no point
547 	 * causing a deschedule */
548 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
549 		return 0;
550 
551 	ret = spu_acquire_saved(ctx);
552 	if (ret)
553 		return ret;
554 	ret = __spufs_regs_read(ctx, buffer, size, pos);
555 	spu_release_saved(ctx);
556 	return ret;
557 }
558 
559 static ssize_t
560 spufs_regs_write(struct file *file, const char __user *buffer,
561 		 size_t size, loff_t *pos)
562 {
563 	struct spu_context *ctx = file->private_data;
564 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
565 	int ret;
566 
567 	if (*pos >= sizeof(lscsa->gprs))
568 		return -EFBIG;
569 
570 	ret = spu_acquire_saved(ctx);
571 	if (ret)
572 		return ret;
573 
574 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
575 					buffer, size);
576 
577 	spu_release_saved(ctx);
578 	return size;
579 }
580 
581 static const struct file_operations spufs_regs_fops = {
582 	.open	 = spufs_regs_open,
583 	.read    = spufs_regs_read,
584 	.write   = spufs_regs_write,
585 	.llseek  = generic_file_llseek,
586 };
587 
588 static ssize_t
589 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
590 			size_t size, loff_t * pos)
591 {
592 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
593 	return simple_read_from_buffer(buffer, size, pos,
594 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
595 }
596 
597 static ssize_t
598 spufs_fpcr_read(struct file *file, char __user * buffer,
599 		size_t size, loff_t * pos)
600 {
601 	int ret;
602 	struct spu_context *ctx = file->private_data;
603 
604 	ret = spu_acquire_saved(ctx);
605 	if (ret)
606 		return ret;
607 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
608 	spu_release_saved(ctx);
609 	return ret;
610 }
611 
612 static ssize_t
613 spufs_fpcr_write(struct file *file, const char __user * buffer,
614 		 size_t size, loff_t * pos)
615 {
616 	struct spu_context *ctx = file->private_data;
617 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
618 	int ret;
619 
620 	if (*pos >= sizeof(lscsa->fpcr))
621 		return -EFBIG;
622 
623 	ret = spu_acquire_saved(ctx);
624 	if (ret)
625 		return ret;
626 
627 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
628 					buffer, size);
629 
630 	spu_release_saved(ctx);
631 	return size;
632 }
633 
634 static const struct file_operations spufs_fpcr_fops = {
635 	.open = spufs_regs_open,
636 	.read = spufs_fpcr_read,
637 	.write = spufs_fpcr_write,
638 	.llseek = generic_file_llseek,
639 };
640 
641 /* generic open function for all pipe-like files */
642 static int spufs_pipe_open(struct inode *inode, struct file *file)
643 {
644 	struct spufs_inode_info *i = SPUFS_I(inode);
645 	file->private_data = i->i_ctx;
646 
647 	return nonseekable_open(inode, file);
648 }
649 
650 /*
651  * Read as many bytes from the mailbox as possible, until
652  * one of the conditions becomes true:
653  *
654  * - no more data available in the mailbox
655  * - end of the user provided buffer
656  * - end of the mapped area
657  */
658 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
659 			size_t len, loff_t *pos)
660 {
661 	struct spu_context *ctx = file->private_data;
662 	u32 mbox_data, __user *udata;
663 	ssize_t count;
664 
665 	if (len < 4)
666 		return -EINVAL;
667 
668 	if (!access_ok(VERIFY_WRITE, buf, len))
669 		return -EFAULT;
670 
671 	udata = (void __user *)buf;
672 
673 	count = spu_acquire(ctx);
674 	if (count)
675 		return count;
676 
677 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
678 		int ret;
679 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
680 		if (ret == 0)
681 			break;
682 
683 		/*
684 		 * at the end of the mapped area, we can fault
685 		 * but still need to return the data we have
686 		 * read successfully so far.
687 		 */
688 		ret = __put_user(mbox_data, udata);
689 		if (ret) {
690 			if (!count)
691 				count = -EFAULT;
692 			break;
693 		}
694 	}
695 	spu_release(ctx);
696 
697 	if (!count)
698 		count = -EAGAIN;
699 
700 	return count;
701 }
702 
703 static const struct file_operations spufs_mbox_fops = {
704 	.open	= spufs_pipe_open,
705 	.read	= spufs_mbox_read,
706 	.llseek	= no_llseek,
707 };
708 
709 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
710 			size_t len, loff_t *pos)
711 {
712 	struct spu_context *ctx = file->private_data;
713 	ssize_t ret;
714 	u32 mbox_stat;
715 
716 	if (len < 4)
717 		return -EINVAL;
718 
719 	ret = spu_acquire(ctx);
720 	if (ret)
721 		return ret;
722 
723 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
724 
725 	spu_release(ctx);
726 
727 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
728 		return -EFAULT;
729 
730 	return 4;
731 }
732 
733 static const struct file_operations spufs_mbox_stat_fops = {
734 	.open	= spufs_pipe_open,
735 	.read	= spufs_mbox_stat_read,
736 	.llseek = no_llseek,
737 };
738 
739 /* low-level ibox access function */
740 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
741 {
742 	return ctx->ops->ibox_read(ctx, data);
743 }
744 
745 static int spufs_ibox_fasync(int fd, struct file *file, int on)
746 {
747 	struct spu_context *ctx = file->private_data;
748 
749 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
750 }
751 
752 /* interrupt-level ibox callback function. */
753 void spufs_ibox_callback(struct spu *spu)
754 {
755 	struct spu_context *ctx = spu->ctx;
756 
757 	if (!ctx)
758 		return;
759 
760 	wake_up_all(&ctx->ibox_wq);
761 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
762 }
763 
764 /*
765  * Read as many bytes from the interrupt mailbox as possible, until
766  * one of the conditions becomes true:
767  *
768  * - no more data available in the mailbox
769  * - end of the user provided buffer
770  * - end of the mapped area
771  *
772  * If the file is opened without O_NONBLOCK, we wait here until
773  * any data is available, but return when we have been able to
774  * read something.
775  */
776 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
777 			size_t len, loff_t *pos)
778 {
779 	struct spu_context *ctx = file->private_data;
780 	u32 ibox_data, __user *udata;
781 	ssize_t count;
782 
783 	if (len < 4)
784 		return -EINVAL;
785 
786 	if (!access_ok(VERIFY_WRITE, buf, len))
787 		return -EFAULT;
788 
789 	udata = (void __user *)buf;
790 
791 	count = spu_acquire(ctx);
792 	if (count)
793 		goto out;
794 
795 	/* wait only for the first element */
796 	count = 0;
797 	if (file->f_flags & O_NONBLOCK) {
798 		if (!spu_ibox_read(ctx, &ibox_data)) {
799 			count = -EAGAIN;
800 			goto out_unlock;
801 		}
802 	} else {
803 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
804 		if (count)
805 			goto out;
806 	}
807 
808 	/* if we can't write at all, return -EFAULT */
809 	count = __put_user(ibox_data, udata);
810 	if (count)
811 		goto out_unlock;
812 
813 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
814 		int ret;
815 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
816 		if (ret == 0)
817 			break;
818 		/*
819 		 * at the end of the mapped area, we can fault
820 		 * but still need to return the data we have
821 		 * read successfully so far.
822 		 */
823 		ret = __put_user(ibox_data, udata);
824 		if (ret)
825 			break;
826 	}
827 
828 out_unlock:
829 	spu_release(ctx);
830 out:
831 	return count;
832 }
833 
834 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
835 {
836 	struct spu_context *ctx = file->private_data;
837 	unsigned int mask;
838 
839 	poll_wait(file, &ctx->ibox_wq, wait);
840 
841 	/*
842 	 * For now keep this uninterruptible and also ignore the rule
843 	 * that poll should not sleep.  Will be fixed later.
844 	 */
845 	mutex_lock(&ctx->state_mutex);
846 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
847 	spu_release(ctx);
848 
849 	return mask;
850 }
851 
852 static const struct file_operations spufs_ibox_fops = {
853 	.open	= spufs_pipe_open,
854 	.read	= spufs_ibox_read,
855 	.poll	= spufs_ibox_poll,
856 	.fasync	= spufs_ibox_fasync,
857 	.llseek = no_llseek,
858 };
859 
860 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
861 			size_t len, loff_t *pos)
862 {
863 	struct spu_context *ctx = file->private_data;
864 	ssize_t ret;
865 	u32 ibox_stat;
866 
867 	if (len < 4)
868 		return -EINVAL;
869 
870 	ret = spu_acquire(ctx);
871 	if (ret)
872 		return ret;
873 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
874 	spu_release(ctx);
875 
876 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
877 		return -EFAULT;
878 
879 	return 4;
880 }
881 
882 static const struct file_operations spufs_ibox_stat_fops = {
883 	.open	= spufs_pipe_open,
884 	.read	= spufs_ibox_stat_read,
885 	.llseek = no_llseek,
886 };
887 
888 /* low-level mailbox write */
889 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
890 {
891 	return ctx->ops->wbox_write(ctx, data);
892 }
893 
894 static int spufs_wbox_fasync(int fd, struct file *file, int on)
895 {
896 	struct spu_context *ctx = file->private_data;
897 	int ret;
898 
899 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
900 
901 	return ret;
902 }
903 
904 /* interrupt-level wbox callback function. */
905 void spufs_wbox_callback(struct spu *spu)
906 {
907 	struct spu_context *ctx = spu->ctx;
908 
909 	if (!ctx)
910 		return;
911 
912 	wake_up_all(&ctx->wbox_wq);
913 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
914 }
915 
916 /*
917  * Write as many bytes to the interrupt mailbox as possible, until
918  * one of the conditions becomes true:
919  *
920  * - the mailbox is full
921  * - end of the user provided buffer
922  * - end of the mapped area
923  *
924  * If the file is opened without O_NONBLOCK, we wait here until
925  * space is availabyl, but return when we have been able to
926  * write something.
927  */
928 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
929 			size_t len, loff_t *pos)
930 {
931 	struct spu_context *ctx = file->private_data;
932 	u32 wbox_data, __user *udata;
933 	ssize_t count;
934 
935 	if (len < 4)
936 		return -EINVAL;
937 
938 	udata = (void __user *)buf;
939 	if (!access_ok(VERIFY_READ, buf, len))
940 		return -EFAULT;
941 
942 	if (__get_user(wbox_data, udata))
943 		return -EFAULT;
944 
945 	count = spu_acquire(ctx);
946 	if (count)
947 		goto out;
948 
949 	/*
950 	 * make sure we can at least write one element, by waiting
951 	 * in case of !O_NONBLOCK
952 	 */
953 	count = 0;
954 	if (file->f_flags & O_NONBLOCK) {
955 		if (!spu_wbox_write(ctx, wbox_data)) {
956 			count = -EAGAIN;
957 			goto out_unlock;
958 		}
959 	} else {
960 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
961 		if (count)
962 			goto out;
963 	}
964 
965 
966 	/* write as much as possible */
967 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
968 		int ret;
969 		ret = __get_user(wbox_data, udata);
970 		if (ret)
971 			break;
972 
973 		ret = spu_wbox_write(ctx, wbox_data);
974 		if (ret == 0)
975 			break;
976 	}
977 
978 out_unlock:
979 	spu_release(ctx);
980 out:
981 	return count;
982 }
983 
984 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
985 {
986 	struct spu_context *ctx = file->private_data;
987 	unsigned int mask;
988 
989 	poll_wait(file, &ctx->wbox_wq, wait);
990 
991 	/*
992 	 * For now keep this uninterruptible and also ignore the rule
993 	 * that poll should not sleep.  Will be fixed later.
994 	 */
995 	mutex_lock(&ctx->state_mutex);
996 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
997 	spu_release(ctx);
998 
999 	return mask;
1000 }
1001 
1002 static const struct file_operations spufs_wbox_fops = {
1003 	.open	= spufs_pipe_open,
1004 	.write	= spufs_wbox_write,
1005 	.poll	= spufs_wbox_poll,
1006 	.fasync	= spufs_wbox_fasync,
1007 	.llseek = no_llseek,
1008 };
1009 
1010 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1011 			size_t len, loff_t *pos)
1012 {
1013 	struct spu_context *ctx = file->private_data;
1014 	ssize_t ret;
1015 	u32 wbox_stat;
1016 
1017 	if (len < 4)
1018 		return -EINVAL;
1019 
1020 	ret = spu_acquire(ctx);
1021 	if (ret)
1022 		return ret;
1023 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1024 	spu_release(ctx);
1025 
1026 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1027 		return -EFAULT;
1028 
1029 	return 4;
1030 }
1031 
1032 static const struct file_operations spufs_wbox_stat_fops = {
1033 	.open	= spufs_pipe_open,
1034 	.read	= spufs_wbox_stat_read,
1035 	.llseek = no_llseek,
1036 };
1037 
1038 static int spufs_signal1_open(struct inode *inode, struct file *file)
1039 {
1040 	struct spufs_inode_info *i = SPUFS_I(inode);
1041 	struct spu_context *ctx = i->i_ctx;
1042 
1043 	mutex_lock(&ctx->mapping_lock);
1044 	file->private_data = ctx;
1045 	if (!i->i_openers++)
1046 		ctx->signal1 = inode->i_mapping;
1047 	mutex_unlock(&ctx->mapping_lock);
1048 	return nonseekable_open(inode, file);
1049 }
1050 
1051 static int
1052 spufs_signal1_release(struct inode *inode, struct file *file)
1053 {
1054 	struct spufs_inode_info *i = SPUFS_I(inode);
1055 	struct spu_context *ctx = i->i_ctx;
1056 
1057 	mutex_lock(&ctx->mapping_lock);
1058 	if (!--i->i_openers)
1059 		ctx->signal1 = NULL;
1060 	mutex_unlock(&ctx->mapping_lock);
1061 	return 0;
1062 }
1063 
1064 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1065 			size_t len, loff_t *pos)
1066 {
1067 	int ret = 0;
1068 	u32 data;
1069 
1070 	if (len < 4)
1071 		return -EINVAL;
1072 
1073 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1074 		data = ctx->csa.spu_chnldata_RW[3];
1075 		ret = 4;
1076 	}
1077 
1078 	if (!ret)
1079 		goto out;
1080 
1081 	if (copy_to_user(buf, &data, 4))
1082 		return -EFAULT;
1083 
1084 out:
1085 	return ret;
1086 }
1087 
1088 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1089 			size_t len, loff_t *pos)
1090 {
1091 	int ret;
1092 	struct spu_context *ctx = file->private_data;
1093 
1094 	ret = spu_acquire_saved(ctx);
1095 	if (ret)
1096 		return ret;
1097 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1098 	spu_release_saved(ctx);
1099 
1100 	return ret;
1101 }
1102 
1103 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1104 			size_t len, loff_t *pos)
1105 {
1106 	struct spu_context *ctx;
1107 	ssize_t ret;
1108 	u32 data;
1109 
1110 	ctx = file->private_data;
1111 
1112 	if (len < 4)
1113 		return -EINVAL;
1114 
1115 	if (copy_from_user(&data, buf, 4))
1116 		return -EFAULT;
1117 
1118 	ret = spu_acquire(ctx);
1119 	if (ret)
1120 		return ret;
1121 	ctx->ops->signal1_write(ctx, data);
1122 	spu_release(ctx);
1123 
1124 	return 4;
1125 }
1126 
1127 static int
1128 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1129 {
1130 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1131 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1132 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1133 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1134 	 * signal 1 and 2 area
1135 	 */
1136 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1137 #else
1138 #error unsupported page size
1139 #endif
1140 }
1141 
1142 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1143 	.fault = spufs_signal1_mmap_fault,
1144 };
1145 
1146 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1147 {
1148 	if (!(vma->vm_flags & VM_SHARED))
1149 		return -EINVAL;
1150 
1151 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1152 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1153 
1154 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1155 	return 0;
1156 }
1157 
1158 static const struct file_operations spufs_signal1_fops = {
1159 	.open = spufs_signal1_open,
1160 	.release = spufs_signal1_release,
1161 	.read = spufs_signal1_read,
1162 	.write = spufs_signal1_write,
1163 	.mmap = spufs_signal1_mmap,
1164 	.llseek = no_llseek,
1165 };
1166 
1167 static const struct file_operations spufs_signal1_nosched_fops = {
1168 	.open = spufs_signal1_open,
1169 	.release = spufs_signal1_release,
1170 	.write = spufs_signal1_write,
1171 	.mmap = spufs_signal1_mmap,
1172 	.llseek = no_llseek,
1173 };
1174 
1175 static int spufs_signal2_open(struct inode *inode, struct file *file)
1176 {
1177 	struct spufs_inode_info *i = SPUFS_I(inode);
1178 	struct spu_context *ctx = i->i_ctx;
1179 
1180 	mutex_lock(&ctx->mapping_lock);
1181 	file->private_data = ctx;
1182 	if (!i->i_openers++)
1183 		ctx->signal2 = inode->i_mapping;
1184 	mutex_unlock(&ctx->mapping_lock);
1185 	return nonseekable_open(inode, file);
1186 }
1187 
1188 static int
1189 spufs_signal2_release(struct inode *inode, struct file *file)
1190 {
1191 	struct spufs_inode_info *i = SPUFS_I(inode);
1192 	struct spu_context *ctx = i->i_ctx;
1193 
1194 	mutex_lock(&ctx->mapping_lock);
1195 	if (!--i->i_openers)
1196 		ctx->signal2 = NULL;
1197 	mutex_unlock(&ctx->mapping_lock);
1198 	return 0;
1199 }
1200 
1201 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202 			size_t len, loff_t *pos)
1203 {
1204 	int ret = 0;
1205 	u32 data;
1206 
1207 	if (len < 4)
1208 		return -EINVAL;
1209 
1210 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1211 		data =  ctx->csa.spu_chnldata_RW[4];
1212 		ret = 4;
1213 	}
1214 
1215 	if (!ret)
1216 		goto out;
1217 
1218 	if (copy_to_user(buf, &data, 4))
1219 		return -EFAULT;
1220 
1221 out:
1222 	return ret;
1223 }
1224 
1225 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1226 			size_t len, loff_t *pos)
1227 {
1228 	struct spu_context *ctx = file->private_data;
1229 	int ret;
1230 
1231 	ret = spu_acquire_saved(ctx);
1232 	if (ret)
1233 		return ret;
1234 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1235 	spu_release_saved(ctx);
1236 
1237 	return ret;
1238 }
1239 
1240 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1241 			size_t len, loff_t *pos)
1242 {
1243 	struct spu_context *ctx;
1244 	ssize_t ret;
1245 	u32 data;
1246 
1247 	ctx = file->private_data;
1248 
1249 	if (len < 4)
1250 		return -EINVAL;
1251 
1252 	if (copy_from_user(&data, buf, 4))
1253 		return -EFAULT;
1254 
1255 	ret = spu_acquire(ctx);
1256 	if (ret)
1257 		return ret;
1258 	ctx->ops->signal2_write(ctx, data);
1259 	spu_release(ctx);
1260 
1261 	return 4;
1262 }
1263 
1264 #if SPUFS_MMAP_4K
1265 static int
1266 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1267 {
1268 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1270 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272 	 * signal 1 and 2 area
1273 	 */
1274 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1275 #else
1276 #error unsupported page size
1277 #endif
1278 }
1279 
1280 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1281 	.fault = spufs_signal2_mmap_fault,
1282 };
1283 
1284 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1285 {
1286 	if (!(vma->vm_flags & VM_SHARED))
1287 		return -EINVAL;
1288 
1289 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1290 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1291 
1292 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1293 	return 0;
1294 }
1295 #else /* SPUFS_MMAP_4K */
1296 #define spufs_signal2_mmap NULL
1297 #endif /* !SPUFS_MMAP_4K */
1298 
1299 static const struct file_operations spufs_signal2_fops = {
1300 	.open = spufs_signal2_open,
1301 	.release = spufs_signal2_release,
1302 	.read = spufs_signal2_read,
1303 	.write = spufs_signal2_write,
1304 	.mmap = spufs_signal2_mmap,
1305 	.llseek = no_llseek,
1306 };
1307 
1308 static const struct file_operations spufs_signal2_nosched_fops = {
1309 	.open = spufs_signal2_open,
1310 	.release = spufs_signal2_release,
1311 	.write = spufs_signal2_write,
1312 	.mmap = spufs_signal2_mmap,
1313 	.llseek = no_llseek,
1314 };
1315 
1316 /*
1317  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318  * work of acquiring (or not) the SPU context before calling through
1319  * to the actual get routine. The set routine is called directly.
1320  */
1321 #define SPU_ATTR_NOACQUIRE	0
1322 #define SPU_ATTR_ACQUIRE	1
1323 #define SPU_ATTR_ACQUIRE_SAVED	2
1324 
1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1326 static int __##__get(void *data, u64 *val)				\
1327 {									\
1328 	struct spu_context *ctx = data;					\
1329 	int ret = 0;							\
1330 									\
1331 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1332 		ret = spu_acquire(ctx);					\
1333 		if (ret)						\
1334 			return ret;					\
1335 		*val = __get(ctx);					\
1336 		spu_release(ctx);					\
1337 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1338 		ret = spu_acquire_saved(ctx);				\
1339 		if (ret)						\
1340 			return ret;					\
1341 		*val = __get(ctx);					\
1342 		spu_release_saved(ctx);					\
1343 	} else								\
1344 		*val = __get(ctx);					\
1345 									\
1346 	return 0;							\
1347 }									\
1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349 
1350 static int spufs_signal1_type_set(void *data, u64 val)
1351 {
1352 	struct spu_context *ctx = data;
1353 	int ret;
1354 
1355 	ret = spu_acquire(ctx);
1356 	if (ret)
1357 		return ret;
1358 	ctx->ops->signal1_type_set(ctx, val);
1359 	spu_release(ctx);
1360 
1361 	return 0;
1362 }
1363 
1364 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365 {
1366 	return ctx->ops->signal1_type_get(ctx);
1367 }
1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370 
1371 
1372 static int spufs_signal2_type_set(void *data, u64 val)
1373 {
1374 	struct spu_context *ctx = data;
1375 	int ret;
1376 
1377 	ret = spu_acquire(ctx);
1378 	if (ret)
1379 		return ret;
1380 	ctx->ops->signal2_type_set(ctx, val);
1381 	spu_release(ctx);
1382 
1383 	return 0;
1384 }
1385 
1386 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387 {
1388 	return ctx->ops->signal2_type_get(ctx);
1389 }
1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392 
1393 #if SPUFS_MMAP_4K
1394 static int
1395 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396 {
1397 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 }
1399 
1400 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401 	.fault = spufs_mss_mmap_fault,
1402 };
1403 
1404 /*
1405  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406  */
1407 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408 {
1409 	if (!(vma->vm_flags & VM_SHARED))
1410 		return -EINVAL;
1411 
1412 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1413 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414 
1415 	vma->vm_ops = &spufs_mss_mmap_vmops;
1416 	return 0;
1417 }
1418 #else /* SPUFS_MMAP_4K */
1419 #define spufs_mss_mmap NULL
1420 #endif /* !SPUFS_MMAP_4K */
1421 
1422 static int spufs_mss_open(struct inode *inode, struct file *file)
1423 {
1424 	struct spufs_inode_info *i = SPUFS_I(inode);
1425 	struct spu_context *ctx = i->i_ctx;
1426 
1427 	file->private_data = i->i_ctx;
1428 
1429 	mutex_lock(&ctx->mapping_lock);
1430 	if (!i->i_openers++)
1431 		ctx->mss = inode->i_mapping;
1432 	mutex_unlock(&ctx->mapping_lock);
1433 	return nonseekable_open(inode, file);
1434 }
1435 
1436 static int
1437 spufs_mss_release(struct inode *inode, struct file *file)
1438 {
1439 	struct spufs_inode_info *i = SPUFS_I(inode);
1440 	struct spu_context *ctx = i->i_ctx;
1441 
1442 	mutex_lock(&ctx->mapping_lock);
1443 	if (!--i->i_openers)
1444 		ctx->mss = NULL;
1445 	mutex_unlock(&ctx->mapping_lock);
1446 	return 0;
1447 }
1448 
1449 static const struct file_operations spufs_mss_fops = {
1450 	.open	 = spufs_mss_open,
1451 	.release = spufs_mss_release,
1452 	.mmap	 = spufs_mss_mmap,
1453 	.llseek  = no_llseek,
1454 };
1455 
1456 static int
1457 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458 {
1459 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1460 }
1461 
1462 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1463 	.fault = spufs_psmap_mmap_fault,
1464 };
1465 
1466 /*
1467  * mmap support for full problem state area [0x00000 - 0x1ffff].
1468  */
1469 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 	if (!(vma->vm_flags & VM_SHARED))
1472 		return -EINVAL;
1473 
1474 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1475 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1476 
1477 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1478 	return 0;
1479 }
1480 
1481 static int spufs_psmap_open(struct inode *inode, struct file *file)
1482 {
1483 	struct spufs_inode_info *i = SPUFS_I(inode);
1484 	struct spu_context *ctx = i->i_ctx;
1485 
1486 	mutex_lock(&ctx->mapping_lock);
1487 	file->private_data = i->i_ctx;
1488 	if (!i->i_openers++)
1489 		ctx->psmap = inode->i_mapping;
1490 	mutex_unlock(&ctx->mapping_lock);
1491 	return nonseekable_open(inode, file);
1492 }
1493 
1494 static int
1495 spufs_psmap_release(struct inode *inode, struct file *file)
1496 {
1497 	struct spufs_inode_info *i = SPUFS_I(inode);
1498 	struct spu_context *ctx = i->i_ctx;
1499 
1500 	mutex_lock(&ctx->mapping_lock);
1501 	if (!--i->i_openers)
1502 		ctx->psmap = NULL;
1503 	mutex_unlock(&ctx->mapping_lock);
1504 	return 0;
1505 }
1506 
1507 static const struct file_operations spufs_psmap_fops = {
1508 	.open	 = spufs_psmap_open,
1509 	.release = spufs_psmap_release,
1510 	.mmap	 = spufs_psmap_mmap,
1511 	.llseek  = no_llseek,
1512 };
1513 
1514 
1515 #if SPUFS_MMAP_4K
1516 static int
1517 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1518 {
1519 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1520 }
1521 
1522 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1523 	.fault = spufs_mfc_mmap_fault,
1524 };
1525 
1526 /*
1527  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1528  */
1529 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1530 {
1531 	if (!(vma->vm_flags & VM_SHARED))
1532 		return -EINVAL;
1533 
1534 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1535 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1536 
1537 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1538 	return 0;
1539 }
1540 #else /* SPUFS_MMAP_4K */
1541 #define spufs_mfc_mmap NULL
1542 #endif /* !SPUFS_MMAP_4K */
1543 
1544 static int spufs_mfc_open(struct inode *inode, struct file *file)
1545 {
1546 	struct spufs_inode_info *i = SPUFS_I(inode);
1547 	struct spu_context *ctx = i->i_ctx;
1548 
1549 	/* we don't want to deal with DMA into other processes */
1550 	if (ctx->owner != current->mm)
1551 		return -EINVAL;
1552 
1553 	if (atomic_read(&inode->i_count) != 1)
1554 		return -EBUSY;
1555 
1556 	mutex_lock(&ctx->mapping_lock);
1557 	file->private_data = ctx;
1558 	if (!i->i_openers++)
1559 		ctx->mfc = inode->i_mapping;
1560 	mutex_unlock(&ctx->mapping_lock);
1561 	return nonseekable_open(inode, file);
1562 }
1563 
1564 static int
1565 spufs_mfc_release(struct inode *inode, struct file *file)
1566 {
1567 	struct spufs_inode_info *i = SPUFS_I(inode);
1568 	struct spu_context *ctx = i->i_ctx;
1569 
1570 	mutex_lock(&ctx->mapping_lock);
1571 	if (!--i->i_openers)
1572 		ctx->mfc = NULL;
1573 	mutex_unlock(&ctx->mapping_lock);
1574 	return 0;
1575 }
1576 
1577 /* interrupt-level mfc callback function. */
1578 void spufs_mfc_callback(struct spu *spu)
1579 {
1580 	struct spu_context *ctx = spu->ctx;
1581 
1582 	if (!ctx)
1583 		return;
1584 
1585 	wake_up_all(&ctx->mfc_wq);
1586 
1587 	pr_debug("%s %s\n", __func__, spu->name);
1588 	if (ctx->mfc_fasync) {
1589 		u32 free_elements, tagstatus;
1590 		unsigned int mask;
1591 
1592 		/* no need for spu_acquire in interrupt context */
1593 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1594 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1595 
1596 		mask = 0;
1597 		if (free_elements & 0xffff)
1598 			mask |= POLLOUT;
1599 		if (tagstatus & ctx->tagwait)
1600 			mask |= POLLIN;
1601 
1602 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1603 	}
1604 }
1605 
1606 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1607 {
1608 	/* See if there is one tag group is complete */
1609 	/* FIXME we need locking around tagwait */
1610 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1611 	ctx->tagwait &= ~*status;
1612 	if (*status)
1613 		return 1;
1614 
1615 	/* enable interrupt waiting for any tag group,
1616 	   may silently fail if interrupts are already enabled */
1617 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1618 	return 0;
1619 }
1620 
1621 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1622 			size_t size, loff_t *pos)
1623 {
1624 	struct spu_context *ctx = file->private_data;
1625 	int ret = -EINVAL;
1626 	u32 status;
1627 
1628 	if (size != 4)
1629 		goto out;
1630 
1631 	ret = spu_acquire(ctx);
1632 	if (ret)
1633 		return ret;
1634 
1635 	ret = -EINVAL;
1636 	if (file->f_flags & O_NONBLOCK) {
1637 		status = ctx->ops->read_mfc_tagstatus(ctx);
1638 		if (!(status & ctx->tagwait))
1639 			ret = -EAGAIN;
1640 		else
1641 			/* XXX(hch): shouldn't we clear ret here? */
1642 			ctx->tagwait &= ~status;
1643 	} else {
1644 		ret = spufs_wait(ctx->mfc_wq,
1645 			   spufs_read_mfc_tagstatus(ctx, &status));
1646 		if (ret)
1647 			goto out;
1648 	}
1649 	spu_release(ctx);
1650 
1651 	ret = 4;
1652 	if (copy_to_user(buffer, &status, 4))
1653 		ret = -EFAULT;
1654 
1655 out:
1656 	return ret;
1657 }
1658 
1659 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1660 {
1661 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1662 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1663 
1664 	switch (cmd->cmd) {
1665 	case MFC_PUT_CMD:
1666 	case MFC_PUTF_CMD:
1667 	case MFC_PUTB_CMD:
1668 	case MFC_GET_CMD:
1669 	case MFC_GETF_CMD:
1670 	case MFC_GETB_CMD:
1671 		break;
1672 	default:
1673 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1674 		return -EIO;
1675 	}
1676 
1677 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1678 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1679 				cmd->ea, cmd->lsa);
1680 		return -EIO;
1681 	}
1682 
1683 	switch (cmd->size & 0xf) {
1684 	case 1:
1685 		break;
1686 	case 2:
1687 		if (cmd->lsa & 1)
1688 			goto error;
1689 		break;
1690 	case 4:
1691 		if (cmd->lsa & 3)
1692 			goto error;
1693 		break;
1694 	case 8:
1695 		if (cmd->lsa & 7)
1696 			goto error;
1697 		break;
1698 	case 0:
1699 		if (cmd->lsa & 15)
1700 			goto error;
1701 		break;
1702 	error:
1703 	default:
1704 		pr_debug("invalid DMA alignment %x for size %x\n",
1705 			cmd->lsa & 0xf, cmd->size);
1706 		return -EIO;
1707 	}
1708 
1709 	if (cmd->size > 16 * 1024) {
1710 		pr_debug("invalid DMA size %x\n", cmd->size);
1711 		return -EIO;
1712 	}
1713 
1714 	if (cmd->tag & 0xfff0) {
1715 		/* we reserve the higher tag numbers for kernel use */
1716 		pr_debug("invalid DMA tag\n");
1717 		return -EIO;
1718 	}
1719 
1720 	if (cmd->class) {
1721 		/* not supported in this version */
1722 		pr_debug("invalid DMA class\n");
1723 		return -EIO;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static int spu_send_mfc_command(struct spu_context *ctx,
1730 				struct mfc_dma_command cmd,
1731 				int *error)
1732 {
1733 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1734 	if (*error == -EAGAIN) {
1735 		/* wait for any tag group to complete
1736 		   so we have space for the new command */
1737 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1738 		/* try again, because the queue might be
1739 		   empty again */
1740 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1741 		if (*error == -EAGAIN)
1742 			return 0;
1743 	}
1744 	return 1;
1745 }
1746 
1747 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1748 			size_t size, loff_t *pos)
1749 {
1750 	struct spu_context *ctx = file->private_data;
1751 	struct mfc_dma_command cmd;
1752 	int ret = -EINVAL;
1753 
1754 	if (size != sizeof cmd)
1755 		goto out;
1756 
1757 	ret = -EFAULT;
1758 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1759 		goto out;
1760 
1761 	ret = spufs_check_valid_dma(&cmd);
1762 	if (ret)
1763 		goto out;
1764 
1765 	ret = spu_acquire(ctx);
1766 	if (ret)
1767 		goto out;
1768 
1769 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1770 	if (ret)
1771 		goto out;
1772 
1773 	if (file->f_flags & O_NONBLOCK) {
1774 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1775 	} else {
1776 		int status;
1777 		ret = spufs_wait(ctx->mfc_wq,
1778 				 spu_send_mfc_command(ctx, cmd, &status));
1779 		if (ret)
1780 			goto out;
1781 		if (status)
1782 			ret = status;
1783 	}
1784 
1785 	if (ret)
1786 		goto out_unlock;
1787 
1788 	ctx->tagwait |= 1 << cmd.tag;
1789 	ret = size;
1790 
1791 out_unlock:
1792 	spu_release(ctx);
1793 out:
1794 	return ret;
1795 }
1796 
1797 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1798 {
1799 	struct spu_context *ctx = file->private_data;
1800 	u32 free_elements, tagstatus;
1801 	unsigned int mask;
1802 
1803 	poll_wait(file, &ctx->mfc_wq, wait);
1804 
1805 	/*
1806 	 * For now keep this uninterruptible and also ignore the rule
1807 	 * that poll should not sleep.  Will be fixed later.
1808 	 */
1809 	mutex_lock(&ctx->state_mutex);
1810 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1811 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1812 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1813 	spu_release(ctx);
1814 
1815 	mask = 0;
1816 	if (free_elements & 0xffff)
1817 		mask |= POLLOUT | POLLWRNORM;
1818 	if (tagstatus & ctx->tagwait)
1819 		mask |= POLLIN | POLLRDNORM;
1820 
1821 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1822 		free_elements, tagstatus, ctx->tagwait);
1823 
1824 	return mask;
1825 }
1826 
1827 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1828 {
1829 	struct spu_context *ctx = file->private_data;
1830 	int ret;
1831 
1832 	ret = spu_acquire(ctx);
1833 	if (ret)
1834 		goto out;
1835 #if 0
1836 /* this currently hangs */
1837 	ret = spufs_wait(ctx->mfc_wq,
1838 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1839 	if (ret)
1840 		goto out;
1841 	ret = spufs_wait(ctx->mfc_wq,
1842 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1843 	if (ret)
1844 		goto out;
1845 #else
1846 	ret = 0;
1847 #endif
1848 	spu_release(ctx);
1849 out:
1850 	return ret;
1851 }
1852 
1853 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1854 {
1855 	struct inode *inode = file->f_path.dentry->d_inode;
1856 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1857 	if (!err) {
1858 		mutex_lock(&inode->i_mutex);
1859 		err = spufs_mfc_flush(file, NULL);
1860 		mutex_unlock(&inode->i_mutex);
1861 	}
1862 	return err;
1863 }
1864 
1865 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1866 {
1867 	struct spu_context *ctx = file->private_data;
1868 
1869 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1870 }
1871 
1872 static const struct file_operations spufs_mfc_fops = {
1873 	.open	 = spufs_mfc_open,
1874 	.release = spufs_mfc_release,
1875 	.read	 = spufs_mfc_read,
1876 	.write	 = spufs_mfc_write,
1877 	.poll	 = spufs_mfc_poll,
1878 	.flush	 = spufs_mfc_flush,
1879 	.fsync	 = spufs_mfc_fsync,
1880 	.fasync	 = spufs_mfc_fasync,
1881 	.mmap	 = spufs_mfc_mmap,
1882 	.llseek  = no_llseek,
1883 };
1884 
1885 static int spufs_npc_set(void *data, u64 val)
1886 {
1887 	struct spu_context *ctx = data;
1888 	int ret;
1889 
1890 	ret = spu_acquire(ctx);
1891 	if (ret)
1892 		return ret;
1893 	ctx->ops->npc_write(ctx, val);
1894 	spu_release(ctx);
1895 
1896 	return 0;
1897 }
1898 
1899 static u64 spufs_npc_get(struct spu_context *ctx)
1900 {
1901 	return ctx->ops->npc_read(ctx);
1902 }
1903 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1904 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1905 
1906 static int spufs_decr_set(void *data, u64 val)
1907 {
1908 	struct spu_context *ctx = data;
1909 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1910 	int ret;
1911 
1912 	ret = spu_acquire_saved(ctx);
1913 	if (ret)
1914 		return ret;
1915 	lscsa->decr.slot[0] = (u32) val;
1916 	spu_release_saved(ctx);
1917 
1918 	return 0;
1919 }
1920 
1921 static u64 spufs_decr_get(struct spu_context *ctx)
1922 {
1923 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1924 	return lscsa->decr.slot[0];
1925 }
1926 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1927 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1928 
1929 static int spufs_decr_status_set(void *data, u64 val)
1930 {
1931 	struct spu_context *ctx = data;
1932 	int ret;
1933 
1934 	ret = spu_acquire_saved(ctx);
1935 	if (ret)
1936 		return ret;
1937 	if (val)
1938 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1939 	else
1940 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1941 	spu_release_saved(ctx);
1942 
1943 	return 0;
1944 }
1945 
1946 static u64 spufs_decr_status_get(struct spu_context *ctx)
1947 {
1948 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1949 		return SPU_DECR_STATUS_RUNNING;
1950 	else
1951 		return 0;
1952 }
1953 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1954 		       spufs_decr_status_set, "0x%llx\n",
1955 		       SPU_ATTR_ACQUIRE_SAVED);
1956 
1957 static int spufs_event_mask_set(void *data, u64 val)
1958 {
1959 	struct spu_context *ctx = data;
1960 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1961 	int ret;
1962 
1963 	ret = spu_acquire_saved(ctx);
1964 	if (ret)
1965 		return ret;
1966 	lscsa->event_mask.slot[0] = (u32) val;
1967 	spu_release_saved(ctx);
1968 
1969 	return 0;
1970 }
1971 
1972 static u64 spufs_event_mask_get(struct spu_context *ctx)
1973 {
1974 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1975 	return lscsa->event_mask.slot[0];
1976 }
1977 
1978 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1979 		       spufs_event_mask_set, "0x%llx\n",
1980 		       SPU_ATTR_ACQUIRE_SAVED);
1981 
1982 static u64 spufs_event_status_get(struct spu_context *ctx)
1983 {
1984 	struct spu_state *state = &ctx->csa;
1985 	u64 stat;
1986 	stat = state->spu_chnlcnt_RW[0];
1987 	if (stat)
1988 		return state->spu_chnldata_RW[0];
1989 	return 0;
1990 }
1991 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1992 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1993 
1994 static int spufs_srr0_set(void *data, u64 val)
1995 {
1996 	struct spu_context *ctx = data;
1997 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1998 	int ret;
1999 
2000 	ret = spu_acquire_saved(ctx);
2001 	if (ret)
2002 		return ret;
2003 	lscsa->srr0.slot[0] = (u32) val;
2004 	spu_release_saved(ctx);
2005 
2006 	return 0;
2007 }
2008 
2009 static u64 spufs_srr0_get(struct spu_context *ctx)
2010 {
2011 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2012 	return lscsa->srr0.slot[0];
2013 }
2014 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2015 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2016 
2017 static u64 spufs_id_get(struct spu_context *ctx)
2018 {
2019 	u64 num;
2020 
2021 	if (ctx->state == SPU_STATE_RUNNABLE)
2022 		num = ctx->spu->number;
2023 	else
2024 		num = (unsigned int)-1;
2025 
2026 	return num;
2027 }
2028 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2029 		       SPU_ATTR_ACQUIRE)
2030 
2031 static u64 spufs_object_id_get(struct spu_context *ctx)
2032 {
2033 	/* FIXME: Should there really be no locking here? */
2034 	return ctx->object_id;
2035 }
2036 
2037 static int spufs_object_id_set(void *data, u64 id)
2038 {
2039 	struct spu_context *ctx = data;
2040 	ctx->object_id = id;
2041 
2042 	return 0;
2043 }
2044 
2045 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2046 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2047 
2048 static u64 spufs_lslr_get(struct spu_context *ctx)
2049 {
2050 	return ctx->csa.priv2.spu_lslr_RW;
2051 }
2052 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2053 		       SPU_ATTR_ACQUIRE_SAVED);
2054 
2055 static int spufs_info_open(struct inode *inode, struct file *file)
2056 {
2057 	struct spufs_inode_info *i = SPUFS_I(inode);
2058 	struct spu_context *ctx = i->i_ctx;
2059 	file->private_data = ctx;
2060 	return 0;
2061 }
2062 
2063 static int spufs_caps_show(struct seq_file *s, void *private)
2064 {
2065 	struct spu_context *ctx = s->private;
2066 
2067 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2068 		seq_puts(s, "sched\n");
2069 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2070 		seq_puts(s, "step\n");
2071 	return 0;
2072 }
2073 
2074 static int spufs_caps_open(struct inode *inode, struct file *file)
2075 {
2076 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2077 }
2078 
2079 static const struct file_operations spufs_caps_fops = {
2080 	.open		= spufs_caps_open,
2081 	.read		= seq_read,
2082 	.llseek		= seq_lseek,
2083 	.release	= single_release,
2084 };
2085 
2086 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2087 			char __user *buf, size_t len, loff_t *pos)
2088 {
2089 	u32 data;
2090 
2091 	/* EOF if there's no entry in the mbox */
2092 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2093 		return 0;
2094 
2095 	data = ctx->csa.prob.pu_mb_R;
2096 
2097 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2098 }
2099 
2100 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2101 				   size_t len, loff_t *pos)
2102 {
2103 	int ret;
2104 	struct spu_context *ctx = file->private_data;
2105 
2106 	if (!access_ok(VERIFY_WRITE, buf, len))
2107 		return -EFAULT;
2108 
2109 	ret = spu_acquire_saved(ctx);
2110 	if (ret)
2111 		return ret;
2112 	spin_lock(&ctx->csa.register_lock);
2113 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2114 	spin_unlock(&ctx->csa.register_lock);
2115 	spu_release_saved(ctx);
2116 
2117 	return ret;
2118 }
2119 
2120 static const struct file_operations spufs_mbox_info_fops = {
2121 	.open = spufs_info_open,
2122 	.read = spufs_mbox_info_read,
2123 	.llseek  = generic_file_llseek,
2124 };
2125 
2126 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2127 				char __user *buf, size_t len, loff_t *pos)
2128 {
2129 	u32 data;
2130 
2131 	/* EOF if there's no entry in the ibox */
2132 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2133 		return 0;
2134 
2135 	data = ctx->csa.priv2.puint_mb_R;
2136 
2137 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2138 }
2139 
2140 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2141 				   size_t len, loff_t *pos)
2142 {
2143 	struct spu_context *ctx = file->private_data;
2144 	int ret;
2145 
2146 	if (!access_ok(VERIFY_WRITE, buf, len))
2147 		return -EFAULT;
2148 
2149 	ret = spu_acquire_saved(ctx);
2150 	if (ret)
2151 		return ret;
2152 	spin_lock(&ctx->csa.register_lock);
2153 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2154 	spin_unlock(&ctx->csa.register_lock);
2155 	spu_release_saved(ctx);
2156 
2157 	return ret;
2158 }
2159 
2160 static const struct file_operations spufs_ibox_info_fops = {
2161 	.open = spufs_info_open,
2162 	.read = spufs_ibox_info_read,
2163 	.llseek  = generic_file_llseek,
2164 };
2165 
2166 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2167 			char __user *buf, size_t len, loff_t *pos)
2168 {
2169 	int i, cnt;
2170 	u32 data[4];
2171 	u32 wbox_stat;
2172 
2173 	wbox_stat = ctx->csa.prob.mb_stat_R;
2174 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2175 	for (i = 0; i < cnt; i++) {
2176 		data[i] = ctx->csa.spu_mailbox_data[i];
2177 	}
2178 
2179 	return simple_read_from_buffer(buf, len, pos, &data,
2180 				cnt * sizeof(u32));
2181 }
2182 
2183 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2184 				   size_t len, loff_t *pos)
2185 {
2186 	struct spu_context *ctx = file->private_data;
2187 	int ret;
2188 
2189 	if (!access_ok(VERIFY_WRITE, buf, len))
2190 		return -EFAULT;
2191 
2192 	ret = spu_acquire_saved(ctx);
2193 	if (ret)
2194 		return ret;
2195 	spin_lock(&ctx->csa.register_lock);
2196 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2197 	spin_unlock(&ctx->csa.register_lock);
2198 	spu_release_saved(ctx);
2199 
2200 	return ret;
2201 }
2202 
2203 static const struct file_operations spufs_wbox_info_fops = {
2204 	.open = spufs_info_open,
2205 	.read = spufs_wbox_info_read,
2206 	.llseek  = generic_file_llseek,
2207 };
2208 
2209 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2210 			char __user *buf, size_t len, loff_t *pos)
2211 {
2212 	struct spu_dma_info info;
2213 	struct mfc_cq_sr *qp, *spuqp;
2214 	int i;
2215 
2216 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2217 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2218 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2219 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2220 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2221 	for (i = 0; i < 16; i++) {
2222 		qp = &info.dma_info_command_data[i];
2223 		spuqp = &ctx->csa.priv2.spuq[i];
2224 
2225 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2226 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2227 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2228 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2229 	}
2230 
2231 	return simple_read_from_buffer(buf, len, pos, &info,
2232 				sizeof info);
2233 }
2234 
2235 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2236 			      size_t len, loff_t *pos)
2237 {
2238 	struct spu_context *ctx = file->private_data;
2239 	int ret;
2240 
2241 	if (!access_ok(VERIFY_WRITE, buf, len))
2242 		return -EFAULT;
2243 
2244 	ret = spu_acquire_saved(ctx);
2245 	if (ret)
2246 		return ret;
2247 	spin_lock(&ctx->csa.register_lock);
2248 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2249 	spin_unlock(&ctx->csa.register_lock);
2250 	spu_release_saved(ctx);
2251 
2252 	return ret;
2253 }
2254 
2255 static const struct file_operations spufs_dma_info_fops = {
2256 	.open = spufs_info_open,
2257 	.read = spufs_dma_info_read,
2258 	.llseek = no_llseek,
2259 };
2260 
2261 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2262 			char __user *buf, size_t len, loff_t *pos)
2263 {
2264 	struct spu_proxydma_info info;
2265 	struct mfc_cq_sr *qp, *puqp;
2266 	int ret = sizeof info;
2267 	int i;
2268 
2269 	if (len < ret)
2270 		return -EINVAL;
2271 
2272 	if (!access_ok(VERIFY_WRITE, buf, len))
2273 		return -EFAULT;
2274 
2275 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2276 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2277 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2278 	for (i = 0; i < 8; i++) {
2279 		qp = &info.proxydma_info_command_data[i];
2280 		puqp = &ctx->csa.priv2.puq[i];
2281 
2282 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2283 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2284 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2285 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2286 	}
2287 
2288 	return simple_read_from_buffer(buf, len, pos, &info,
2289 				sizeof info);
2290 }
2291 
2292 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2293 				   size_t len, loff_t *pos)
2294 {
2295 	struct spu_context *ctx = file->private_data;
2296 	int ret;
2297 
2298 	ret = spu_acquire_saved(ctx);
2299 	if (ret)
2300 		return ret;
2301 	spin_lock(&ctx->csa.register_lock);
2302 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2303 	spin_unlock(&ctx->csa.register_lock);
2304 	spu_release_saved(ctx);
2305 
2306 	return ret;
2307 }
2308 
2309 static const struct file_operations spufs_proxydma_info_fops = {
2310 	.open = spufs_info_open,
2311 	.read = spufs_proxydma_info_read,
2312 	.llseek = no_llseek,
2313 };
2314 
2315 static int spufs_show_tid(struct seq_file *s, void *private)
2316 {
2317 	struct spu_context *ctx = s->private;
2318 
2319 	seq_printf(s, "%d\n", ctx->tid);
2320 	return 0;
2321 }
2322 
2323 static int spufs_tid_open(struct inode *inode, struct file *file)
2324 {
2325 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2326 }
2327 
2328 static const struct file_operations spufs_tid_fops = {
2329 	.open		= spufs_tid_open,
2330 	.read		= seq_read,
2331 	.llseek		= seq_lseek,
2332 	.release	= single_release,
2333 };
2334 
2335 static const char *ctx_state_names[] = {
2336 	"user", "system", "iowait", "loaded"
2337 };
2338 
2339 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2340 		enum spu_utilization_state state)
2341 {
2342 	struct timespec ts;
2343 	unsigned long long time = ctx->stats.times[state];
2344 
2345 	/*
2346 	 * In general, utilization statistics are updated by the controlling
2347 	 * thread as the spu context moves through various well defined
2348 	 * state transitions, but if the context is lazily loaded its
2349 	 * utilization statistics are not updated as the controlling thread
2350 	 * is not tightly coupled with the execution of the spu context.  We
2351 	 * calculate and apply the time delta from the last recorded state
2352 	 * of the spu context.
2353 	 */
2354 	if (ctx->spu && ctx->stats.util_state == state) {
2355 		ktime_get_ts(&ts);
2356 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2357 	}
2358 
2359 	return time / NSEC_PER_MSEC;
2360 }
2361 
2362 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2363 {
2364 	unsigned long long slb_flts = ctx->stats.slb_flt;
2365 
2366 	if (ctx->state == SPU_STATE_RUNNABLE) {
2367 		slb_flts += (ctx->spu->stats.slb_flt -
2368 			     ctx->stats.slb_flt_base);
2369 	}
2370 
2371 	return slb_flts;
2372 }
2373 
2374 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2375 {
2376 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2377 
2378 	if (ctx->state == SPU_STATE_RUNNABLE) {
2379 		class2_intrs += (ctx->spu->stats.class2_intr -
2380 				 ctx->stats.class2_intr_base);
2381 	}
2382 
2383 	return class2_intrs;
2384 }
2385 
2386 
2387 static int spufs_show_stat(struct seq_file *s, void *private)
2388 {
2389 	struct spu_context *ctx = s->private;
2390 	int ret;
2391 
2392 	ret = spu_acquire(ctx);
2393 	if (ret)
2394 		return ret;
2395 
2396 	seq_printf(s, "%s %llu %llu %llu %llu "
2397 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2398 		ctx_state_names[ctx->stats.util_state],
2399 		spufs_acct_time(ctx, SPU_UTIL_USER),
2400 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2401 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2402 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2403 		ctx->stats.vol_ctx_switch,
2404 		ctx->stats.invol_ctx_switch,
2405 		spufs_slb_flts(ctx),
2406 		ctx->stats.hash_flt,
2407 		ctx->stats.min_flt,
2408 		ctx->stats.maj_flt,
2409 		spufs_class2_intrs(ctx),
2410 		ctx->stats.libassist);
2411 	spu_release(ctx);
2412 	return 0;
2413 }
2414 
2415 static int spufs_stat_open(struct inode *inode, struct file *file)
2416 {
2417 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2418 }
2419 
2420 static const struct file_operations spufs_stat_fops = {
2421 	.open		= spufs_stat_open,
2422 	.read		= seq_read,
2423 	.llseek		= seq_lseek,
2424 	.release	= single_release,
2425 };
2426 
2427 static inline int spufs_switch_log_used(struct spu_context *ctx)
2428 {
2429 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2430 		SWITCH_LOG_BUFSIZE;
2431 }
2432 
2433 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2434 {
2435 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2436 }
2437 
2438 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2439 {
2440 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2441 	int rc;
2442 
2443 	rc = spu_acquire(ctx);
2444 	if (rc)
2445 		return rc;
2446 
2447 	if (ctx->switch_log) {
2448 		rc = -EBUSY;
2449 		goto out;
2450 	}
2451 
2452 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2453 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2454 		GFP_KERNEL);
2455 
2456 	if (!ctx->switch_log) {
2457 		rc = -ENOMEM;
2458 		goto out;
2459 	}
2460 
2461 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2462 	init_waitqueue_head(&ctx->switch_log->wait);
2463 	rc = 0;
2464 
2465 out:
2466 	spu_release(ctx);
2467 	return rc;
2468 }
2469 
2470 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2471 {
2472 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2473 	int rc;
2474 
2475 	rc = spu_acquire(ctx);
2476 	if (rc)
2477 		return rc;
2478 
2479 	kfree(ctx->switch_log);
2480 	ctx->switch_log = NULL;
2481 	spu_release(ctx);
2482 
2483 	return 0;
2484 }
2485 
2486 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2487 {
2488 	struct switch_log_entry *p;
2489 
2490 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2491 
2492 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2493 			(unsigned int) p->tstamp.tv_sec,
2494 			(unsigned int) p->tstamp.tv_nsec,
2495 			p->spu_id,
2496 			(unsigned int) p->type,
2497 			(unsigned int) p->val,
2498 			(unsigned long long) p->timebase);
2499 }
2500 
2501 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2502 			     size_t len, loff_t *ppos)
2503 {
2504 	struct inode *inode = file->f_path.dentry->d_inode;
2505 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2506 	int error = 0, cnt = 0;
2507 
2508 	if (!buf)
2509 		return -EINVAL;
2510 
2511 	error = spu_acquire(ctx);
2512 	if (error)
2513 		return error;
2514 
2515 	while (cnt < len) {
2516 		char tbuf[128];
2517 		int width;
2518 
2519 		if (spufs_switch_log_used(ctx) == 0) {
2520 			if (cnt > 0) {
2521 				/* If there's data ready to go, we can
2522 				 * just return straight away */
2523 				break;
2524 
2525 			} else if (file->f_flags & O_NONBLOCK) {
2526 				error = -EAGAIN;
2527 				break;
2528 
2529 			} else {
2530 				/* spufs_wait will drop the mutex and
2531 				 * re-acquire, but since we're in read(), the
2532 				 * file cannot be _released (and so
2533 				 * ctx->switch_log is stable).
2534 				 */
2535 				error = spufs_wait(ctx->switch_log->wait,
2536 						spufs_switch_log_used(ctx) > 0);
2537 
2538 				/* On error, spufs_wait returns without the
2539 				 * state mutex held */
2540 				if (error)
2541 					return error;
2542 
2543 				/* We may have had entries read from underneath
2544 				 * us while we dropped the mutex in spufs_wait,
2545 				 * so re-check */
2546 				if (spufs_switch_log_used(ctx) == 0)
2547 					continue;
2548 			}
2549 		}
2550 
2551 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2552 		if (width < len)
2553 			ctx->switch_log->tail =
2554 				(ctx->switch_log->tail + 1) %
2555 				 SWITCH_LOG_BUFSIZE;
2556 		else
2557 			/* If the record is greater than space available return
2558 			 * partial buffer (so far) */
2559 			break;
2560 
2561 		error = copy_to_user(buf + cnt, tbuf, width);
2562 		if (error)
2563 			break;
2564 		cnt += width;
2565 	}
2566 
2567 	spu_release(ctx);
2568 
2569 	return cnt == 0 ? error : cnt;
2570 }
2571 
2572 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2573 {
2574 	struct inode *inode = file->f_path.dentry->d_inode;
2575 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2576 	unsigned int mask = 0;
2577 	int rc;
2578 
2579 	poll_wait(file, &ctx->switch_log->wait, wait);
2580 
2581 	rc = spu_acquire(ctx);
2582 	if (rc)
2583 		return rc;
2584 
2585 	if (spufs_switch_log_used(ctx) > 0)
2586 		mask |= POLLIN;
2587 
2588 	spu_release(ctx);
2589 
2590 	return mask;
2591 }
2592 
2593 static const struct file_operations spufs_switch_log_fops = {
2594 	.owner		= THIS_MODULE,
2595 	.open		= spufs_switch_log_open,
2596 	.read		= spufs_switch_log_read,
2597 	.poll		= spufs_switch_log_poll,
2598 	.release	= spufs_switch_log_release,
2599 	.llseek		= no_llseek,
2600 };
2601 
2602 /**
2603  * Log a context switch event to a switch log reader.
2604  *
2605  * Must be called with ctx->state_mutex held.
2606  */
2607 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2608 		u32 type, u32 val)
2609 {
2610 	if (!ctx->switch_log)
2611 		return;
2612 
2613 	if (spufs_switch_log_avail(ctx) > 1) {
2614 		struct switch_log_entry *p;
2615 
2616 		p = ctx->switch_log->log + ctx->switch_log->head;
2617 		ktime_get_ts(&p->tstamp);
2618 		p->timebase = get_tb();
2619 		p->spu_id = spu ? spu->number : -1;
2620 		p->type = type;
2621 		p->val = val;
2622 
2623 		ctx->switch_log->head =
2624 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2625 	}
2626 
2627 	wake_up(&ctx->switch_log->wait);
2628 }
2629 
2630 static int spufs_show_ctx(struct seq_file *s, void *private)
2631 {
2632 	struct spu_context *ctx = s->private;
2633 	u64 mfc_control_RW;
2634 
2635 	mutex_lock(&ctx->state_mutex);
2636 	if (ctx->spu) {
2637 		struct spu *spu = ctx->spu;
2638 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2639 
2640 		spin_lock_irq(&spu->register_lock);
2641 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2642 		spin_unlock_irq(&spu->register_lock);
2643 	} else {
2644 		struct spu_state *csa = &ctx->csa;
2645 
2646 		mfc_control_RW = csa->priv2.mfc_control_RW;
2647 	}
2648 
2649 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2650 		" %c %llx %llx %llx %llx %x %x\n",
2651 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2652 		ctx->flags,
2653 		ctx->sched_flags,
2654 		ctx->prio,
2655 		ctx->time_slice,
2656 		ctx->spu ? ctx->spu->number : -1,
2657 		!list_empty(&ctx->rq) ? 'q' : ' ',
2658 		ctx->csa.class_0_pending,
2659 		ctx->csa.class_0_dar,
2660 		ctx->csa.class_1_dsisr,
2661 		mfc_control_RW,
2662 		ctx->ops->runcntl_read(ctx),
2663 		ctx->ops->status_read(ctx));
2664 
2665 	mutex_unlock(&ctx->state_mutex);
2666 
2667 	return 0;
2668 }
2669 
2670 static int spufs_ctx_open(struct inode *inode, struct file *file)
2671 {
2672 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2673 }
2674 
2675 static const struct file_operations spufs_ctx_fops = {
2676 	.open           = spufs_ctx_open,
2677 	.read           = seq_read,
2678 	.llseek         = seq_lseek,
2679 	.release        = single_release,
2680 };
2681 
2682 const struct spufs_tree_descr spufs_dir_contents[] = {
2683 	{ "capabilities", &spufs_caps_fops, 0444, },
2684 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2685 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2686 	{ "mbox", &spufs_mbox_fops, 0444, },
2687 	{ "ibox", &spufs_ibox_fops, 0444, },
2688 	{ "wbox", &spufs_wbox_fops, 0222, },
2689 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2690 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2691 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2692 	{ "signal1", &spufs_signal1_fops, 0666, },
2693 	{ "signal2", &spufs_signal2_fops, 0666, },
2694 	{ "signal1_type", &spufs_signal1_type, 0666, },
2695 	{ "signal2_type", &spufs_signal2_type, 0666, },
2696 	{ "cntl", &spufs_cntl_fops,  0666, },
2697 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2698 	{ "lslr", &spufs_lslr_ops, 0444, },
2699 	{ "mfc", &spufs_mfc_fops, 0666, },
2700 	{ "mss", &spufs_mss_fops, 0666, },
2701 	{ "npc", &spufs_npc_ops, 0666, },
2702 	{ "srr0", &spufs_srr0_ops, 0666, },
2703 	{ "decr", &spufs_decr_ops, 0666, },
2704 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2705 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2706 	{ "event_status", &spufs_event_status_ops, 0444, },
2707 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2708 	{ "phys-id", &spufs_id_ops, 0666, },
2709 	{ "object-id", &spufs_object_id_ops, 0666, },
2710 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2711 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2712 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2713 	{ "dma_info", &spufs_dma_info_fops, 0444,
2714 		sizeof(struct spu_dma_info), },
2715 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2716 		sizeof(struct spu_proxydma_info)},
2717 	{ "tid", &spufs_tid_fops, 0444, },
2718 	{ "stat", &spufs_stat_fops, 0444, },
2719 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2720 	{},
2721 };
2722 
2723 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2724 	{ "capabilities", &spufs_caps_fops, 0444, },
2725 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2726 	{ "mbox", &spufs_mbox_fops, 0444, },
2727 	{ "ibox", &spufs_ibox_fops, 0444, },
2728 	{ "wbox", &spufs_wbox_fops, 0222, },
2729 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2730 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2731 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2732 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2733 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2734 	{ "signal1_type", &spufs_signal1_type, 0666, },
2735 	{ "signal2_type", &spufs_signal2_type, 0666, },
2736 	{ "mss", &spufs_mss_fops, 0666, },
2737 	{ "mfc", &spufs_mfc_fops, 0666, },
2738 	{ "cntl", &spufs_cntl_fops,  0666, },
2739 	{ "npc", &spufs_npc_ops, 0666, },
2740 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2741 	{ "phys-id", &spufs_id_ops, 0666, },
2742 	{ "object-id", &spufs_object_id_ops, 0666, },
2743 	{ "tid", &spufs_tid_fops, 0444, },
2744 	{ "stat", &spufs_stat_fops, 0444, },
2745 	{},
2746 };
2747 
2748 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2749 	{ ".ctx", &spufs_ctx_fops, 0444, },
2750 	{},
2751 };
2752 
2753 const struct spufs_coredump_reader spufs_coredump_read[] = {
2754 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2755 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2756 	{ "lslr", NULL, spufs_lslr_get, 19 },
2757 	{ "decr", NULL, spufs_decr_get, 19 },
2758 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2759 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2760 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2761 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2762 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2763 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2764 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2765 	{ "event_status", NULL, spufs_event_status_get, 19 },
2766 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2767 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2768 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2769 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2770 	{ "proxydma_info", __spufs_proxydma_info_read,
2771 			   NULL, sizeof(struct spu_proxydma_info)},
2772 	{ "object-id", NULL, spufs_object_id_get, 19 },
2773 	{ "npc", NULL, spufs_npc_get, 19 },
2774 	{ NULL },
2775 };
2776