xref: /linux/arch/powerpc/perf/core-book3s.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21 
22 struct cpu_hw_events {
23 	int n_events;
24 	int n_percpu;
25 	int disabled;
26 	int n_added;
27 	int n_limited;
28 	u8  pmcs_enabled;
29 	struct perf_event *event[MAX_HWEVENTS];
30 	u64 events[MAX_HWEVENTS];
31 	unsigned int flags[MAX_HWEVENTS];
32 	unsigned long mmcr[3];
33 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38 
39 	unsigned int group_flag;
40 	int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43 
44 struct power_pmu *ppmu;
45 
46 /*
47  * Normally, to ignore kernel events we set the FCS (freeze counters
48  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49  * hypervisor bit set in the MSR, or if we are running on a processor
50  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51  * then we need to use the FCHV bit to ignore kernel events.
52  */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54 
55 /*
56  * 32-bit doesn't have MMCRA but does have an MMCR2,
57  * and a few other names are different.
58  */
59 #ifdef CONFIG_PPC32
60 
61 #define MMCR0_FCHV		0
62 #define MMCR0_PMCjCE		MMCR0_PMCnCE
63 
64 #define SPRN_MMCRA		SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE	0
66 
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 	return 0;
70 }
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 	return 0;
75 }
76 static inline void perf_read_regs(struct pt_regs *regs)
77 {
78 	regs->result = 0;
79 }
80 static inline int perf_intr_is_nmi(struct pt_regs *regs)
81 {
82 	return 0;
83 }
84 
85 static inline int siar_valid(struct pt_regs *regs)
86 {
87 	return 1;
88 }
89 
90 #endif /* CONFIG_PPC32 */
91 
92 /*
93  * Things that are specific to 64-bit implementations.
94  */
95 #ifdef CONFIG_PPC64
96 
97 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
98 {
99 	unsigned long mmcra = regs->dsisr;
100 
101 	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
102 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
103 		if (slot > 1)
104 			return 4 * (slot - 1);
105 	}
106 	return 0;
107 }
108 
109 /*
110  * The user wants a data address recorded.
111  * If we're not doing instruction sampling, give them the SDAR
112  * (sampled data address).  If we are doing instruction sampling, then
113  * only give them the SDAR if it corresponds to the instruction
114  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
115  * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
116  */
117 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
118 {
119 	unsigned long mmcra = regs->dsisr;
120 	unsigned long sdsync;
121 
122 	if (ppmu->flags & PPMU_SIAR_VALID)
123 		sdsync = POWER7P_MMCRA_SDAR_VALID;
124 	else if (ppmu->flags & PPMU_ALT_SIPR)
125 		sdsync = POWER6_MMCRA_SDSYNC;
126 	else
127 		sdsync = MMCRA_SDSYNC;
128 
129 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
130 		*addrp = mfspr(SPRN_SDAR);
131 }
132 
133 static bool mmcra_sihv(unsigned long mmcra)
134 {
135 	unsigned long sihv = MMCRA_SIHV;
136 
137 	if (ppmu->flags & PPMU_ALT_SIPR)
138 		sihv = POWER6_MMCRA_SIHV;
139 
140 	return !!(mmcra & sihv);
141 }
142 
143 static bool mmcra_sipr(unsigned long mmcra)
144 {
145 	unsigned long sipr = MMCRA_SIPR;
146 
147 	if (ppmu->flags & PPMU_ALT_SIPR)
148 		sipr = POWER6_MMCRA_SIPR;
149 
150 	return !!(mmcra & sipr);
151 }
152 
153 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
154 {
155 	if (regs->msr & MSR_PR)
156 		return PERF_RECORD_MISC_USER;
157 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
158 		return PERF_RECORD_MISC_HYPERVISOR;
159 	return PERF_RECORD_MISC_KERNEL;
160 }
161 
162 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
163 {
164 	unsigned long mmcra = regs->dsisr;
165 	unsigned long use_siar = regs->result;
166 
167 	if (!use_siar)
168 		return perf_flags_from_msr(regs);
169 
170 	/*
171 	 * If we don't have flags in MMCRA, rather than using
172 	 * the MSR, we intuit the flags from the address in
173 	 * SIAR which should give slightly more reliable
174 	 * results
175 	 */
176 	if (ppmu->flags & PPMU_NO_SIPR) {
177 		unsigned long siar = mfspr(SPRN_SIAR);
178 		if (siar >= PAGE_OFFSET)
179 			return PERF_RECORD_MISC_KERNEL;
180 		return PERF_RECORD_MISC_USER;
181 	}
182 
183 	/* PR has priority over HV, so order below is important */
184 	if (mmcra_sipr(mmcra))
185 		return PERF_RECORD_MISC_USER;
186 	if (mmcra_sihv(mmcra) && (freeze_events_kernel != MMCR0_FCHV))
187 		return PERF_RECORD_MISC_HYPERVISOR;
188 	return PERF_RECORD_MISC_KERNEL;
189 }
190 
191 /*
192  * Overload regs->dsisr to store MMCRA so we only need to read it once
193  * on each interrupt.
194  * Overload regs->result to specify whether we should use the MSR (result
195  * is zero) or the SIAR (result is non zero).
196  */
197 static inline void perf_read_regs(struct pt_regs *regs)
198 {
199 	unsigned long mmcra = mfspr(SPRN_MMCRA);
200 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
201 	int use_siar;
202 
203 	/*
204 	 * If this isn't a PMU exception (eg a software event) the SIAR is
205 	 * not valid. Use pt_regs.
206 	 *
207 	 * If it is a marked event use the SIAR.
208 	 *
209 	 * If the PMU doesn't update the SIAR for non marked events use
210 	 * pt_regs.
211 	 *
212 	 * If the PMU has HV/PR flags then check to see if they
213 	 * place the exception in userspace. If so, use pt_regs. In
214 	 * continuous sampling mode the SIAR and the PMU exception are
215 	 * not synchronised, so they may be many instructions apart.
216 	 * This can result in confusing backtraces. We still want
217 	 * hypervisor samples as well as samples in the kernel with
218 	 * interrupts off hence the userspace check.
219 	 */
220 	if (TRAP(regs) != 0xf00)
221 		use_siar = 0;
222 	else if (marked)
223 		use_siar = 1;
224 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
225 		use_siar = 0;
226 	else if (!(ppmu->flags & PPMU_NO_SIPR) && mmcra_sipr(mmcra))
227 		use_siar = 0;
228 	else
229 		use_siar = 1;
230 
231 	regs->dsisr = mmcra;
232 	regs->result = use_siar;
233 }
234 
235 /*
236  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
237  * it as an NMI.
238  */
239 static inline int perf_intr_is_nmi(struct pt_regs *regs)
240 {
241 	return !regs->softe;
242 }
243 
244 /*
245  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
246  * must be sampled only if the SIAR-valid bit is set.
247  *
248  * For unmarked instructions and for processors that don't have the SIAR-Valid
249  * bit, assume that SIAR is valid.
250  */
251 static inline int siar_valid(struct pt_regs *regs)
252 {
253 	unsigned long mmcra = regs->dsisr;
254 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
255 
256 	if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
257 		return mmcra & POWER7P_MMCRA_SIAR_VALID;
258 
259 	return 1;
260 }
261 
262 #endif /* CONFIG_PPC64 */
263 
264 static void perf_event_interrupt(struct pt_regs *regs);
265 
266 void perf_event_print_debug(void)
267 {
268 }
269 
270 /*
271  * Read one performance monitor counter (PMC).
272  */
273 static unsigned long read_pmc(int idx)
274 {
275 	unsigned long val;
276 
277 	switch (idx) {
278 	case 1:
279 		val = mfspr(SPRN_PMC1);
280 		break;
281 	case 2:
282 		val = mfspr(SPRN_PMC2);
283 		break;
284 	case 3:
285 		val = mfspr(SPRN_PMC3);
286 		break;
287 	case 4:
288 		val = mfspr(SPRN_PMC4);
289 		break;
290 	case 5:
291 		val = mfspr(SPRN_PMC5);
292 		break;
293 	case 6:
294 		val = mfspr(SPRN_PMC6);
295 		break;
296 #ifdef CONFIG_PPC64
297 	case 7:
298 		val = mfspr(SPRN_PMC7);
299 		break;
300 	case 8:
301 		val = mfspr(SPRN_PMC8);
302 		break;
303 #endif /* CONFIG_PPC64 */
304 	default:
305 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
306 		val = 0;
307 	}
308 	return val;
309 }
310 
311 /*
312  * Write one PMC.
313  */
314 static void write_pmc(int idx, unsigned long val)
315 {
316 	switch (idx) {
317 	case 1:
318 		mtspr(SPRN_PMC1, val);
319 		break;
320 	case 2:
321 		mtspr(SPRN_PMC2, val);
322 		break;
323 	case 3:
324 		mtspr(SPRN_PMC3, val);
325 		break;
326 	case 4:
327 		mtspr(SPRN_PMC4, val);
328 		break;
329 	case 5:
330 		mtspr(SPRN_PMC5, val);
331 		break;
332 	case 6:
333 		mtspr(SPRN_PMC6, val);
334 		break;
335 #ifdef CONFIG_PPC64
336 	case 7:
337 		mtspr(SPRN_PMC7, val);
338 		break;
339 	case 8:
340 		mtspr(SPRN_PMC8, val);
341 		break;
342 #endif /* CONFIG_PPC64 */
343 	default:
344 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
345 	}
346 }
347 
348 /*
349  * Check if a set of events can all go on the PMU at once.
350  * If they can't, this will look at alternative codes for the events
351  * and see if any combination of alternative codes is feasible.
352  * The feasible set is returned in event_id[].
353  */
354 static int power_check_constraints(struct cpu_hw_events *cpuhw,
355 				   u64 event_id[], unsigned int cflags[],
356 				   int n_ev)
357 {
358 	unsigned long mask, value, nv;
359 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
360 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
361 	int i, j;
362 	unsigned long addf = ppmu->add_fields;
363 	unsigned long tadd = ppmu->test_adder;
364 
365 	if (n_ev > ppmu->n_counter)
366 		return -1;
367 
368 	/* First see if the events will go on as-is */
369 	for (i = 0; i < n_ev; ++i) {
370 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
371 		    && !ppmu->limited_pmc_event(event_id[i])) {
372 			ppmu->get_alternatives(event_id[i], cflags[i],
373 					       cpuhw->alternatives[i]);
374 			event_id[i] = cpuhw->alternatives[i][0];
375 		}
376 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
377 					 &cpuhw->avalues[i][0]))
378 			return -1;
379 	}
380 	value = mask = 0;
381 	for (i = 0; i < n_ev; ++i) {
382 		nv = (value | cpuhw->avalues[i][0]) +
383 			(value & cpuhw->avalues[i][0] & addf);
384 		if ((((nv + tadd) ^ value) & mask) != 0 ||
385 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
386 		     cpuhw->amasks[i][0]) != 0)
387 			break;
388 		value = nv;
389 		mask |= cpuhw->amasks[i][0];
390 	}
391 	if (i == n_ev)
392 		return 0;	/* all OK */
393 
394 	/* doesn't work, gather alternatives... */
395 	if (!ppmu->get_alternatives)
396 		return -1;
397 	for (i = 0; i < n_ev; ++i) {
398 		choice[i] = 0;
399 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
400 						  cpuhw->alternatives[i]);
401 		for (j = 1; j < n_alt[i]; ++j)
402 			ppmu->get_constraint(cpuhw->alternatives[i][j],
403 					     &cpuhw->amasks[i][j],
404 					     &cpuhw->avalues[i][j]);
405 	}
406 
407 	/* enumerate all possibilities and see if any will work */
408 	i = 0;
409 	j = -1;
410 	value = mask = nv = 0;
411 	while (i < n_ev) {
412 		if (j >= 0) {
413 			/* we're backtracking, restore context */
414 			value = svalues[i];
415 			mask = smasks[i];
416 			j = choice[i];
417 		}
418 		/*
419 		 * See if any alternative k for event_id i,
420 		 * where k > j, will satisfy the constraints.
421 		 */
422 		while (++j < n_alt[i]) {
423 			nv = (value | cpuhw->avalues[i][j]) +
424 				(value & cpuhw->avalues[i][j] & addf);
425 			if ((((nv + tadd) ^ value) & mask) == 0 &&
426 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
427 			     & cpuhw->amasks[i][j]) == 0)
428 				break;
429 		}
430 		if (j >= n_alt[i]) {
431 			/*
432 			 * No feasible alternative, backtrack
433 			 * to event_id i-1 and continue enumerating its
434 			 * alternatives from where we got up to.
435 			 */
436 			if (--i < 0)
437 				return -1;
438 		} else {
439 			/*
440 			 * Found a feasible alternative for event_id i,
441 			 * remember where we got up to with this event_id,
442 			 * go on to the next event_id, and start with
443 			 * the first alternative for it.
444 			 */
445 			choice[i] = j;
446 			svalues[i] = value;
447 			smasks[i] = mask;
448 			value = nv;
449 			mask |= cpuhw->amasks[i][j];
450 			++i;
451 			j = -1;
452 		}
453 	}
454 
455 	/* OK, we have a feasible combination, tell the caller the solution */
456 	for (i = 0; i < n_ev; ++i)
457 		event_id[i] = cpuhw->alternatives[i][choice[i]];
458 	return 0;
459 }
460 
461 /*
462  * Check if newly-added events have consistent settings for
463  * exclude_{user,kernel,hv} with each other and any previously
464  * added events.
465  */
466 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
467 			  int n_prev, int n_new)
468 {
469 	int eu = 0, ek = 0, eh = 0;
470 	int i, n, first;
471 	struct perf_event *event;
472 
473 	n = n_prev + n_new;
474 	if (n <= 1)
475 		return 0;
476 
477 	first = 1;
478 	for (i = 0; i < n; ++i) {
479 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
480 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
481 			continue;
482 		}
483 		event = ctrs[i];
484 		if (first) {
485 			eu = event->attr.exclude_user;
486 			ek = event->attr.exclude_kernel;
487 			eh = event->attr.exclude_hv;
488 			first = 0;
489 		} else if (event->attr.exclude_user != eu ||
490 			   event->attr.exclude_kernel != ek ||
491 			   event->attr.exclude_hv != eh) {
492 			return -EAGAIN;
493 		}
494 	}
495 
496 	if (eu || ek || eh)
497 		for (i = 0; i < n; ++i)
498 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
499 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
500 
501 	return 0;
502 }
503 
504 static u64 check_and_compute_delta(u64 prev, u64 val)
505 {
506 	u64 delta = (val - prev) & 0xfffffffful;
507 
508 	/*
509 	 * POWER7 can roll back counter values, if the new value is smaller
510 	 * than the previous value it will cause the delta and the counter to
511 	 * have bogus values unless we rolled a counter over.  If a coutner is
512 	 * rolled back, it will be smaller, but within 256, which is the maximum
513 	 * number of events to rollback at once.  If we dectect a rollback
514 	 * return 0.  This can lead to a small lack of precision in the
515 	 * counters.
516 	 */
517 	if (prev > val && (prev - val) < 256)
518 		delta = 0;
519 
520 	return delta;
521 }
522 
523 static void power_pmu_read(struct perf_event *event)
524 {
525 	s64 val, delta, prev;
526 
527 	if (event->hw.state & PERF_HES_STOPPED)
528 		return;
529 
530 	if (!event->hw.idx)
531 		return;
532 	/*
533 	 * Performance monitor interrupts come even when interrupts
534 	 * are soft-disabled, as long as interrupts are hard-enabled.
535 	 * Therefore we treat them like NMIs.
536 	 */
537 	do {
538 		prev = local64_read(&event->hw.prev_count);
539 		barrier();
540 		val = read_pmc(event->hw.idx);
541 		delta = check_and_compute_delta(prev, val);
542 		if (!delta)
543 			return;
544 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
545 
546 	local64_add(delta, &event->count);
547 	local64_sub(delta, &event->hw.period_left);
548 }
549 
550 /*
551  * On some machines, PMC5 and PMC6 can't be written, don't respect
552  * the freeze conditions, and don't generate interrupts.  This tells
553  * us if `event' is using such a PMC.
554  */
555 static int is_limited_pmc(int pmcnum)
556 {
557 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
558 		&& (pmcnum == 5 || pmcnum == 6);
559 }
560 
561 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
562 				    unsigned long pmc5, unsigned long pmc6)
563 {
564 	struct perf_event *event;
565 	u64 val, prev, delta;
566 	int i;
567 
568 	for (i = 0; i < cpuhw->n_limited; ++i) {
569 		event = cpuhw->limited_counter[i];
570 		if (!event->hw.idx)
571 			continue;
572 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
573 		prev = local64_read(&event->hw.prev_count);
574 		event->hw.idx = 0;
575 		delta = check_and_compute_delta(prev, val);
576 		if (delta)
577 			local64_add(delta, &event->count);
578 	}
579 }
580 
581 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
582 				  unsigned long pmc5, unsigned long pmc6)
583 {
584 	struct perf_event *event;
585 	u64 val, prev;
586 	int i;
587 
588 	for (i = 0; i < cpuhw->n_limited; ++i) {
589 		event = cpuhw->limited_counter[i];
590 		event->hw.idx = cpuhw->limited_hwidx[i];
591 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
592 		prev = local64_read(&event->hw.prev_count);
593 		if (check_and_compute_delta(prev, val))
594 			local64_set(&event->hw.prev_count, val);
595 		perf_event_update_userpage(event);
596 	}
597 }
598 
599 /*
600  * Since limited events don't respect the freeze conditions, we
601  * have to read them immediately after freezing or unfreezing the
602  * other events.  We try to keep the values from the limited
603  * events as consistent as possible by keeping the delay (in
604  * cycles and instructions) between freezing/unfreezing and reading
605  * the limited events as small and consistent as possible.
606  * Therefore, if any limited events are in use, we read them
607  * both, and always in the same order, to minimize variability,
608  * and do it inside the same asm that writes MMCR0.
609  */
610 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
611 {
612 	unsigned long pmc5, pmc6;
613 
614 	if (!cpuhw->n_limited) {
615 		mtspr(SPRN_MMCR0, mmcr0);
616 		return;
617 	}
618 
619 	/*
620 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
621 	 * To ensure we don't get a performance monitor interrupt
622 	 * between writing MMCR0 and freezing/thawing the limited
623 	 * events, we first write MMCR0 with the event overflow
624 	 * interrupt enable bits turned off.
625 	 */
626 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
627 		     : "=&r" (pmc5), "=&r" (pmc6)
628 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
629 		       "i" (SPRN_MMCR0),
630 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
631 
632 	if (mmcr0 & MMCR0_FC)
633 		freeze_limited_counters(cpuhw, pmc5, pmc6);
634 	else
635 		thaw_limited_counters(cpuhw, pmc5, pmc6);
636 
637 	/*
638 	 * Write the full MMCR0 including the event overflow interrupt
639 	 * enable bits, if necessary.
640 	 */
641 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
642 		mtspr(SPRN_MMCR0, mmcr0);
643 }
644 
645 /*
646  * Disable all events to prevent PMU interrupts and to allow
647  * events to be added or removed.
648  */
649 static void power_pmu_disable(struct pmu *pmu)
650 {
651 	struct cpu_hw_events *cpuhw;
652 	unsigned long flags;
653 
654 	if (!ppmu)
655 		return;
656 	local_irq_save(flags);
657 	cpuhw = &__get_cpu_var(cpu_hw_events);
658 
659 	if (!cpuhw->disabled) {
660 		cpuhw->disabled = 1;
661 		cpuhw->n_added = 0;
662 
663 		/*
664 		 * Check if we ever enabled the PMU on this cpu.
665 		 */
666 		if (!cpuhw->pmcs_enabled) {
667 			ppc_enable_pmcs();
668 			cpuhw->pmcs_enabled = 1;
669 		}
670 
671 		/*
672 		 * Disable instruction sampling if it was enabled
673 		 */
674 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
675 			mtspr(SPRN_MMCRA,
676 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
677 			mb();
678 		}
679 
680 		/*
681 		 * Set the 'freeze counters' bit.
682 		 * The barrier is to make sure the mtspr has been
683 		 * executed and the PMU has frozen the events
684 		 * before we return.
685 		 */
686 		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
687 		mb();
688 	}
689 	local_irq_restore(flags);
690 }
691 
692 /*
693  * Re-enable all events if disable == 0.
694  * If we were previously disabled and events were added, then
695  * put the new config on the PMU.
696  */
697 static void power_pmu_enable(struct pmu *pmu)
698 {
699 	struct perf_event *event;
700 	struct cpu_hw_events *cpuhw;
701 	unsigned long flags;
702 	long i;
703 	unsigned long val;
704 	s64 left;
705 	unsigned int hwc_index[MAX_HWEVENTS];
706 	int n_lim;
707 	int idx;
708 
709 	if (!ppmu)
710 		return;
711 	local_irq_save(flags);
712 	cpuhw = &__get_cpu_var(cpu_hw_events);
713 	if (!cpuhw->disabled) {
714 		local_irq_restore(flags);
715 		return;
716 	}
717 	cpuhw->disabled = 0;
718 
719 	/*
720 	 * If we didn't change anything, or only removed events,
721 	 * no need to recalculate MMCR* settings and reset the PMCs.
722 	 * Just reenable the PMU with the current MMCR* settings
723 	 * (possibly updated for removal of events).
724 	 */
725 	if (!cpuhw->n_added) {
726 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
727 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
728 		if (cpuhw->n_events == 0)
729 			ppc_set_pmu_inuse(0);
730 		goto out_enable;
731 	}
732 
733 	/*
734 	 * Compute MMCR* values for the new set of events
735 	 */
736 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
737 			       cpuhw->mmcr)) {
738 		/* shouldn't ever get here */
739 		printk(KERN_ERR "oops compute_mmcr failed\n");
740 		goto out;
741 	}
742 
743 	/*
744 	 * Add in MMCR0 freeze bits corresponding to the
745 	 * attr.exclude_* bits for the first event.
746 	 * We have already checked that all events have the
747 	 * same values for these bits as the first event.
748 	 */
749 	event = cpuhw->event[0];
750 	if (event->attr.exclude_user)
751 		cpuhw->mmcr[0] |= MMCR0_FCP;
752 	if (event->attr.exclude_kernel)
753 		cpuhw->mmcr[0] |= freeze_events_kernel;
754 	if (event->attr.exclude_hv)
755 		cpuhw->mmcr[0] |= MMCR0_FCHV;
756 
757 	/*
758 	 * Write the new configuration to MMCR* with the freeze
759 	 * bit set and set the hardware events to their initial values.
760 	 * Then unfreeze the events.
761 	 */
762 	ppc_set_pmu_inuse(1);
763 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
764 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
765 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
766 				| MMCR0_FC);
767 
768 	/*
769 	 * Read off any pre-existing events that need to move
770 	 * to another PMC.
771 	 */
772 	for (i = 0; i < cpuhw->n_events; ++i) {
773 		event = cpuhw->event[i];
774 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
775 			power_pmu_read(event);
776 			write_pmc(event->hw.idx, 0);
777 			event->hw.idx = 0;
778 		}
779 	}
780 
781 	/*
782 	 * Initialize the PMCs for all the new and moved events.
783 	 */
784 	cpuhw->n_limited = n_lim = 0;
785 	for (i = 0; i < cpuhw->n_events; ++i) {
786 		event = cpuhw->event[i];
787 		if (event->hw.idx)
788 			continue;
789 		idx = hwc_index[i] + 1;
790 		if (is_limited_pmc(idx)) {
791 			cpuhw->limited_counter[n_lim] = event;
792 			cpuhw->limited_hwidx[n_lim] = idx;
793 			++n_lim;
794 			continue;
795 		}
796 		val = 0;
797 		if (event->hw.sample_period) {
798 			left = local64_read(&event->hw.period_left);
799 			if (left < 0x80000000L)
800 				val = 0x80000000L - left;
801 		}
802 		local64_set(&event->hw.prev_count, val);
803 		event->hw.idx = idx;
804 		if (event->hw.state & PERF_HES_STOPPED)
805 			val = 0;
806 		write_pmc(idx, val);
807 		perf_event_update_userpage(event);
808 	}
809 	cpuhw->n_limited = n_lim;
810 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
811 
812  out_enable:
813 	mb();
814 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
815 
816 	/*
817 	 * Enable instruction sampling if necessary
818 	 */
819 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
820 		mb();
821 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
822 	}
823 
824  out:
825 	local_irq_restore(flags);
826 }
827 
828 static int collect_events(struct perf_event *group, int max_count,
829 			  struct perf_event *ctrs[], u64 *events,
830 			  unsigned int *flags)
831 {
832 	int n = 0;
833 	struct perf_event *event;
834 
835 	if (!is_software_event(group)) {
836 		if (n >= max_count)
837 			return -1;
838 		ctrs[n] = group;
839 		flags[n] = group->hw.event_base;
840 		events[n++] = group->hw.config;
841 	}
842 	list_for_each_entry(event, &group->sibling_list, group_entry) {
843 		if (!is_software_event(event) &&
844 		    event->state != PERF_EVENT_STATE_OFF) {
845 			if (n >= max_count)
846 				return -1;
847 			ctrs[n] = event;
848 			flags[n] = event->hw.event_base;
849 			events[n++] = event->hw.config;
850 		}
851 	}
852 	return n;
853 }
854 
855 /*
856  * Add a event to the PMU.
857  * If all events are not already frozen, then we disable and
858  * re-enable the PMU in order to get hw_perf_enable to do the
859  * actual work of reconfiguring the PMU.
860  */
861 static int power_pmu_add(struct perf_event *event, int ef_flags)
862 {
863 	struct cpu_hw_events *cpuhw;
864 	unsigned long flags;
865 	int n0;
866 	int ret = -EAGAIN;
867 
868 	local_irq_save(flags);
869 	perf_pmu_disable(event->pmu);
870 
871 	/*
872 	 * Add the event to the list (if there is room)
873 	 * and check whether the total set is still feasible.
874 	 */
875 	cpuhw = &__get_cpu_var(cpu_hw_events);
876 	n0 = cpuhw->n_events;
877 	if (n0 >= ppmu->n_counter)
878 		goto out;
879 	cpuhw->event[n0] = event;
880 	cpuhw->events[n0] = event->hw.config;
881 	cpuhw->flags[n0] = event->hw.event_base;
882 
883 	if (!(ef_flags & PERF_EF_START))
884 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
885 
886 	/*
887 	 * If group events scheduling transaction was started,
888 	 * skip the schedulability test here, it will be performed
889 	 * at commit time(->commit_txn) as a whole
890 	 */
891 	if (cpuhw->group_flag & PERF_EVENT_TXN)
892 		goto nocheck;
893 
894 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
895 		goto out;
896 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
897 		goto out;
898 	event->hw.config = cpuhw->events[n0];
899 
900 nocheck:
901 	++cpuhw->n_events;
902 	++cpuhw->n_added;
903 
904 	ret = 0;
905  out:
906 	perf_pmu_enable(event->pmu);
907 	local_irq_restore(flags);
908 	return ret;
909 }
910 
911 /*
912  * Remove a event from the PMU.
913  */
914 static void power_pmu_del(struct perf_event *event, int ef_flags)
915 {
916 	struct cpu_hw_events *cpuhw;
917 	long i;
918 	unsigned long flags;
919 
920 	local_irq_save(flags);
921 	perf_pmu_disable(event->pmu);
922 
923 	power_pmu_read(event);
924 
925 	cpuhw = &__get_cpu_var(cpu_hw_events);
926 	for (i = 0; i < cpuhw->n_events; ++i) {
927 		if (event == cpuhw->event[i]) {
928 			while (++i < cpuhw->n_events) {
929 				cpuhw->event[i-1] = cpuhw->event[i];
930 				cpuhw->events[i-1] = cpuhw->events[i];
931 				cpuhw->flags[i-1] = cpuhw->flags[i];
932 			}
933 			--cpuhw->n_events;
934 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
935 			if (event->hw.idx) {
936 				write_pmc(event->hw.idx, 0);
937 				event->hw.idx = 0;
938 			}
939 			perf_event_update_userpage(event);
940 			break;
941 		}
942 	}
943 	for (i = 0; i < cpuhw->n_limited; ++i)
944 		if (event == cpuhw->limited_counter[i])
945 			break;
946 	if (i < cpuhw->n_limited) {
947 		while (++i < cpuhw->n_limited) {
948 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
949 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
950 		}
951 		--cpuhw->n_limited;
952 	}
953 	if (cpuhw->n_events == 0) {
954 		/* disable exceptions if no events are running */
955 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
956 	}
957 
958 	perf_pmu_enable(event->pmu);
959 	local_irq_restore(flags);
960 }
961 
962 /*
963  * POWER-PMU does not support disabling individual counters, hence
964  * program their cycle counter to their max value and ignore the interrupts.
965  */
966 
967 static void power_pmu_start(struct perf_event *event, int ef_flags)
968 {
969 	unsigned long flags;
970 	s64 left;
971 	unsigned long val;
972 
973 	if (!event->hw.idx || !event->hw.sample_period)
974 		return;
975 
976 	if (!(event->hw.state & PERF_HES_STOPPED))
977 		return;
978 
979 	if (ef_flags & PERF_EF_RELOAD)
980 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
981 
982 	local_irq_save(flags);
983 	perf_pmu_disable(event->pmu);
984 
985 	event->hw.state = 0;
986 	left = local64_read(&event->hw.period_left);
987 
988 	val = 0;
989 	if (left < 0x80000000L)
990 		val = 0x80000000L - left;
991 
992 	write_pmc(event->hw.idx, val);
993 
994 	perf_event_update_userpage(event);
995 	perf_pmu_enable(event->pmu);
996 	local_irq_restore(flags);
997 }
998 
999 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1000 {
1001 	unsigned long flags;
1002 
1003 	if (!event->hw.idx || !event->hw.sample_period)
1004 		return;
1005 
1006 	if (event->hw.state & PERF_HES_STOPPED)
1007 		return;
1008 
1009 	local_irq_save(flags);
1010 	perf_pmu_disable(event->pmu);
1011 
1012 	power_pmu_read(event);
1013 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1014 	write_pmc(event->hw.idx, 0);
1015 
1016 	perf_event_update_userpage(event);
1017 	perf_pmu_enable(event->pmu);
1018 	local_irq_restore(flags);
1019 }
1020 
1021 /*
1022  * Start group events scheduling transaction
1023  * Set the flag to make pmu::enable() not perform the
1024  * schedulability test, it will be performed at commit time
1025  */
1026 void power_pmu_start_txn(struct pmu *pmu)
1027 {
1028 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1029 
1030 	perf_pmu_disable(pmu);
1031 	cpuhw->group_flag |= PERF_EVENT_TXN;
1032 	cpuhw->n_txn_start = cpuhw->n_events;
1033 }
1034 
1035 /*
1036  * Stop group events scheduling transaction
1037  * Clear the flag and pmu::enable() will perform the
1038  * schedulability test.
1039  */
1040 void power_pmu_cancel_txn(struct pmu *pmu)
1041 {
1042 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1043 
1044 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1045 	perf_pmu_enable(pmu);
1046 }
1047 
1048 /*
1049  * Commit group events scheduling transaction
1050  * Perform the group schedulability test as a whole
1051  * Return 0 if success
1052  */
1053 int power_pmu_commit_txn(struct pmu *pmu)
1054 {
1055 	struct cpu_hw_events *cpuhw;
1056 	long i, n;
1057 
1058 	if (!ppmu)
1059 		return -EAGAIN;
1060 	cpuhw = &__get_cpu_var(cpu_hw_events);
1061 	n = cpuhw->n_events;
1062 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1063 		return -EAGAIN;
1064 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1065 	if (i < 0)
1066 		return -EAGAIN;
1067 
1068 	for (i = cpuhw->n_txn_start; i < n; ++i)
1069 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1070 
1071 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1072 	perf_pmu_enable(pmu);
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Return 1 if we might be able to put event on a limited PMC,
1078  * or 0 if not.
1079  * A event can only go on a limited PMC if it counts something
1080  * that a limited PMC can count, doesn't require interrupts, and
1081  * doesn't exclude any processor mode.
1082  */
1083 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1084 				 unsigned int flags)
1085 {
1086 	int n;
1087 	u64 alt[MAX_EVENT_ALTERNATIVES];
1088 
1089 	if (event->attr.exclude_user
1090 	    || event->attr.exclude_kernel
1091 	    || event->attr.exclude_hv
1092 	    || event->attr.sample_period)
1093 		return 0;
1094 
1095 	if (ppmu->limited_pmc_event(ev))
1096 		return 1;
1097 
1098 	/*
1099 	 * The requested event_id isn't on a limited PMC already;
1100 	 * see if any alternative code goes on a limited PMC.
1101 	 */
1102 	if (!ppmu->get_alternatives)
1103 		return 0;
1104 
1105 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1106 	n = ppmu->get_alternatives(ev, flags, alt);
1107 
1108 	return n > 0;
1109 }
1110 
1111 /*
1112  * Find an alternative event_id that goes on a normal PMC, if possible,
1113  * and return the event_id code, or 0 if there is no such alternative.
1114  * (Note: event_id code 0 is "don't count" on all machines.)
1115  */
1116 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1117 {
1118 	u64 alt[MAX_EVENT_ALTERNATIVES];
1119 	int n;
1120 
1121 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1122 	n = ppmu->get_alternatives(ev, flags, alt);
1123 	if (!n)
1124 		return 0;
1125 	return alt[0];
1126 }
1127 
1128 /* Number of perf_events counting hardware events */
1129 static atomic_t num_events;
1130 /* Used to avoid races in calling reserve/release_pmc_hardware */
1131 static DEFINE_MUTEX(pmc_reserve_mutex);
1132 
1133 /*
1134  * Release the PMU if this is the last perf_event.
1135  */
1136 static void hw_perf_event_destroy(struct perf_event *event)
1137 {
1138 	if (!atomic_add_unless(&num_events, -1, 1)) {
1139 		mutex_lock(&pmc_reserve_mutex);
1140 		if (atomic_dec_return(&num_events) == 0)
1141 			release_pmc_hardware();
1142 		mutex_unlock(&pmc_reserve_mutex);
1143 	}
1144 }
1145 
1146 /*
1147  * Translate a generic cache event_id config to a raw event_id code.
1148  */
1149 static int hw_perf_cache_event(u64 config, u64 *eventp)
1150 {
1151 	unsigned long type, op, result;
1152 	int ev;
1153 
1154 	if (!ppmu->cache_events)
1155 		return -EINVAL;
1156 
1157 	/* unpack config */
1158 	type = config & 0xff;
1159 	op = (config >> 8) & 0xff;
1160 	result = (config >> 16) & 0xff;
1161 
1162 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1163 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1164 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1165 		return -EINVAL;
1166 
1167 	ev = (*ppmu->cache_events)[type][op][result];
1168 	if (ev == 0)
1169 		return -EOPNOTSUPP;
1170 	if (ev == -1)
1171 		return -EINVAL;
1172 	*eventp = ev;
1173 	return 0;
1174 }
1175 
1176 static int power_pmu_event_init(struct perf_event *event)
1177 {
1178 	u64 ev;
1179 	unsigned long flags;
1180 	struct perf_event *ctrs[MAX_HWEVENTS];
1181 	u64 events[MAX_HWEVENTS];
1182 	unsigned int cflags[MAX_HWEVENTS];
1183 	int n;
1184 	int err;
1185 	struct cpu_hw_events *cpuhw;
1186 
1187 	if (!ppmu)
1188 		return -ENOENT;
1189 
1190 	/* does not support taken branch sampling */
1191 	if (has_branch_stack(event))
1192 		return -EOPNOTSUPP;
1193 
1194 	switch (event->attr.type) {
1195 	case PERF_TYPE_HARDWARE:
1196 		ev = event->attr.config;
1197 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1198 			return -EOPNOTSUPP;
1199 		ev = ppmu->generic_events[ev];
1200 		break;
1201 	case PERF_TYPE_HW_CACHE:
1202 		err = hw_perf_cache_event(event->attr.config, &ev);
1203 		if (err)
1204 			return err;
1205 		break;
1206 	case PERF_TYPE_RAW:
1207 		ev = event->attr.config;
1208 		break;
1209 	default:
1210 		return -ENOENT;
1211 	}
1212 
1213 	event->hw.config_base = ev;
1214 	event->hw.idx = 0;
1215 
1216 	/*
1217 	 * If we are not running on a hypervisor, force the
1218 	 * exclude_hv bit to 0 so that we don't care what
1219 	 * the user set it to.
1220 	 */
1221 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1222 		event->attr.exclude_hv = 0;
1223 
1224 	/*
1225 	 * If this is a per-task event, then we can use
1226 	 * PM_RUN_* events interchangeably with their non RUN_*
1227 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1228 	 * XXX we should check if the task is an idle task.
1229 	 */
1230 	flags = 0;
1231 	if (event->attach_state & PERF_ATTACH_TASK)
1232 		flags |= PPMU_ONLY_COUNT_RUN;
1233 
1234 	/*
1235 	 * If this machine has limited events, check whether this
1236 	 * event_id could go on a limited event.
1237 	 */
1238 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1239 		if (can_go_on_limited_pmc(event, ev, flags)) {
1240 			flags |= PPMU_LIMITED_PMC_OK;
1241 		} else if (ppmu->limited_pmc_event(ev)) {
1242 			/*
1243 			 * The requested event_id is on a limited PMC,
1244 			 * but we can't use a limited PMC; see if any
1245 			 * alternative goes on a normal PMC.
1246 			 */
1247 			ev = normal_pmc_alternative(ev, flags);
1248 			if (!ev)
1249 				return -EINVAL;
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * If this is in a group, check if it can go on with all the
1255 	 * other hardware events in the group.  We assume the event
1256 	 * hasn't been linked into its leader's sibling list at this point.
1257 	 */
1258 	n = 0;
1259 	if (event->group_leader != event) {
1260 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1261 				   ctrs, events, cflags);
1262 		if (n < 0)
1263 			return -EINVAL;
1264 	}
1265 	events[n] = ev;
1266 	ctrs[n] = event;
1267 	cflags[n] = flags;
1268 	if (check_excludes(ctrs, cflags, n, 1))
1269 		return -EINVAL;
1270 
1271 	cpuhw = &get_cpu_var(cpu_hw_events);
1272 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1273 	put_cpu_var(cpu_hw_events);
1274 	if (err)
1275 		return -EINVAL;
1276 
1277 	event->hw.config = events[n];
1278 	event->hw.event_base = cflags[n];
1279 	event->hw.last_period = event->hw.sample_period;
1280 	local64_set(&event->hw.period_left, event->hw.last_period);
1281 
1282 	/*
1283 	 * See if we need to reserve the PMU.
1284 	 * If no events are currently in use, then we have to take a
1285 	 * mutex to ensure that we don't race with another task doing
1286 	 * reserve_pmc_hardware or release_pmc_hardware.
1287 	 */
1288 	err = 0;
1289 	if (!atomic_inc_not_zero(&num_events)) {
1290 		mutex_lock(&pmc_reserve_mutex);
1291 		if (atomic_read(&num_events) == 0 &&
1292 		    reserve_pmc_hardware(perf_event_interrupt))
1293 			err = -EBUSY;
1294 		else
1295 			atomic_inc(&num_events);
1296 		mutex_unlock(&pmc_reserve_mutex);
1297 	}
1298 	event->destroy = hw_perf_event_destroy;
1299 
1300 	return err;
1301 }
1302 
1303 static int power_pmu_event_idx(struct perf_event *event)
1304 {
1305 	return event->hw.idx;
1306 }
1307 
1308 struct pmu power_pmu = {
1309 	.pmu_enable	= power_pmu_enable,
1310 	.pmu_disable	= power_pmu_disable,
1311 	.event_init	= power_pmu_event_init,
1312 	.add		= power_pmu_add,
1313 	.del		= power_pmu_del,
1314 	.start		= power_pmu_start,
1315 	.stop		= power_pmu_stop,
1316 	.read		= power_pmu_read,
1317 	.start_txn	= power_pmu_start_txn,
1318 	.cancel_txn	= power_pmu_cancel_txn,
1319 	.commit_txn	= power_pmu_commit_txn,
1320 	.event_idx	= power_pmu_event_idx,
1321 };
1322 
1323 
1324 /*
1325  * A counter has overflowed; update its count and record
1326  * things if requested.  Note that interrupts are hard-disabled
1327  * here so there is no possibility of being interrupted.
1328  */
1329 static void record_and_restart(struct perf_event *event, unsigned long val,
1330 			       struct pt_regs *regs)
1331 {
1332 	u64 period = event->hw.sample_period;
1333 	s64 prev, delta, left;
1334 	int record = 0;
1335 
1336 	if (event->hw.state & PERF_HES_STOPPED) {
1337 		write_pmc(event->hw.idx, 0);
1338 		return;
1339 	}
1340 
1341 	/* we don't have to worry about interrupts here */
1342 	prev = local64_read(&event->hw.prev_count);
1343 	delta = check_and_compute_delta(prev, val);
1344 	local64_add(delta, &event->count);
1345 
1346 	/*
1347 	 * See if the total period for this event has expired,
1348 	 * and update for the next period.
1349 	 */
1350 	val = 0;
1351 	left = local64_read(&event->hw.period_left) - delta;
1352 	if (period) {
1353 		if (left <= 0) {
1354 			left += period;
1355 			if (left <= 0)
1356 				left = period;
1357 			record = siar_valid(regs);
1358 			event->hw.last_period = event->hw.sample_period;
1359 		}
1360 		if (left < 0x80000000LL)
1361 			val = 0x80000000LL - left;
1362 	}
1363 
1364 	write_pmc(event->hw.idx, val);
1365 	local64_set(&event->hw.prev_count, val);
1366 	local64_set(&event->hw.period_left, left);
1367 	perf_event_update_userpage(event);
1368 
1369 	/*
1370 	 * Finally record data if requested.
1371 	 */
1372 	if (record) {
1373 		struct perf_sample_data data;
1374 
1375 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1376 
1377 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1378 			perf_get_data_addr(regs, &data.addr);
1379 
1380 		if (perf_event_overflow(event, &data, regs))
1381 			power_pmu_stop(event, 0);
1382 	}
1383 }
1384 
1385 /*
1386  * Called from generic code to get the misc flags (i.e. processor mode)
1387  * for an event_id.
1388  */
1389 unsigned long perf_misc_flags(struct pt_regs *regs)
1390 {
1391 	u32 flags = perf_get_misc_flags(regs);
1392 
1393 	if (flags)
1394 		return flags;
1395 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1396 		PERF_RECORD_MISC_KERNEL;
1397 }
1398 
1399 /*
1400  * Called from generic code to get the instruction pointer
1401  * for an event_id.
1402  */
1403 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1404 {
1405 	unsigned long use_siar = regs->result;
1406 
1407 	if (use_siar && siar_valid(regs))
1408 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1409 	else if (use_siar)
1410 		return 0;		// no valid instruction pointer
1411 	else
1412 		return regs->nip;
1413 }
1414 
1415 static bool pmc_overflow(unsigned long val)
1416 {
1417 	if ((int)val < 0)
1418 		return true;
1419 
1420 	/*
1421 	 * Events on POWER7 can roll back if a speculative event doesn't
1422 	 * eventually complete. Unfortunately in some rare cases they will
1423 	 * raise a performance monitor exception. We need to catch this to
1424 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1425 	 * cycles from overflow.
1426 	 *
1427 	 * We only do this if the first pass fails to find any overflowing
1428 	 * PMCs because a user might set a period of less than 256 and we
1429 	 * don't want to mistakenly reset them.
1430 	 */
1431 	if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
1432 		return true;
1433 
1434 	return false;
1435 }
1436 
1437 /*
1438  * Performance monitor interrupt stuff
1439  */
1440 static void perf_event_interrupt(struct pt_regs *regs)
1441 {
1442 	int i;
1443 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1444 	struct perf_event *event;
1445 	unsigned long val;
1446 	int found = 0;
1447 	int nmi;
1448 
1449 	if (cpuhw->n_limited)
1450 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1451 					mfspr(SPRN_PMC6));
1452 
1453 	perf_read_regs(regs);
1454 
1455 	nmi = perf_intr_is_nmi(regs);
1456 	if (nmi)
1457 		nmi_enter();
1458 	else
1459 		irq_enter();
1460 
1461 	for (i = 0; i < cpuhw->n_events; ++i) {
1462 		event = cpuhw->event[i];
1463 		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1464 			continue;
1465 		val = read_pmc(event->hw.idx);
1466 		if (pmc_overflow(val)) {
1467 			/* event has overflowed */
1468 			found = 1;
1469 			record_and_restart(event, val, regs);
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * In case we didn't find and reset the event that caused
1475 	 * the interrupt, scan all events and reset any that are
1476 	 * negative, to avoid getting continual interrupts.
1477 	 * Any that we processed in the previous loop will not be negative.
1478 	 */
1479 	if (!found) {
1480 		for (i = 0; i < ppmu->n_counter; ++i) {
1481 			if (is_limited_pmc(i + 1))
1482 				continue;
1483 			val = read_pmc(i + 1);
1484 			if (pmc_overflow(val))
1485 				write_pmc(i + 1, 0);
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * Reset MMCR0 to its normal value.  This will set PMXE and
1491 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1492 	 * and thus allow interrupts to occur again.
1493 	 * XXX might want to use MSR.PM to keep the events frozen until
1494 	 * we get back out of this interrupt.
1495 	 */
1496 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1497 
1498 	if (nmi)
1499 		nmi_exit();
1500 	else
1501 		irq_exit();
1502 }
1503 
1504 static void power_pmu_setup(int cpu)
1505 {
1506 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1507 
1508 	if (!ppmu)
1509 		return;
1510 	memset(cpuhw, 0, sizeof(*cpuhw));
1511 	cpuhw->mmcr[0] = MMCR0_FC;
1512 }
1513 
1514 static int __cpuinit
1515 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1516 {
1517 	unsigned int cpu = (long)hcpu;
1518 
1519 	switch (action & ~CPU_TASKS_FROZEN) {
1520 	case CPU_UP_PREPARE:
1521 		power_pmu_setup(cpu);
1522 		break;
1523 
1524 	default:
1525 		break;
1526 	}
1527 
1528 	return NOTIFY_OK;
1529 }
1530 
1531 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1532 {
1533 	if (ppmu)
1534 		return -EBUSY;		/* something's already registered */
1535 
1536 	ppmu = pmu;
1537 	pr_info("%s performance monitor hardware support registered\n",
1538 		pmu->name);
1539 
1540 #ifdef MSR_HV
1541 	/*
1542 	 * Use FCHV to ignore kernel events if MSR.HV is set.
1543 	 */
1544 	if (mfmsr() & MSR_HV)
1545 		freeze_events_kernel = MMCR0_FCHV;
1546 #endif /* CONFIG_PPC64 */
1547 
1548 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1549 	perf_cpu_notifier(power_pmu_notifier);
1550 
1551 	return 0;
1552 }
1553