xref: /linux/arch/powerpc/perf/core-book3s.c (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	/*
40 	 * The order of the MMCR array is:
41 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43 	 */
44 	unsigned long mmcr[4];
45 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 
51 	unsigned int txn_flags;
52 	int n_txn_start;
53 
54 	/* BHRB bits */
55 	u64				bhrb_filter;	/* BHRB HW branch filter */
56 	unsigned int			bhrb_users;
57 	void				*bhrb_context;
58 	struct	perf_branch_stack	bhrb_stack;
59 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60 	u64				ic_init;
61 };
62 
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64 
65 static struct power_pmu *ppmu;
66 
67 /*
68  * Normally, to ignore kernel events we set the FCS (freeze counters
69  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70  * hypervisor bit set in the MSR, or if we are running on a processor
71  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72  * then we need to use the FCHV bit to ignore kernel events.
73  */
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
75 
76 /*
77  * 32-bit doesn't have MMCRA but does have an MMCR2,
78  * and a few other names are different.
79  */
80 #ifdef CONFIG_PPC32
81 
82 #define MMCR0_FCHV		0
83 #define MMCR0_PMCjCE		MMCR0_PMCnCE
84 #define MMCR0_FC56		0
85 #define MMCR0_PMAO		0
86 #define MMCR0_EBE		0
87 #define MMCR0_BHRBA		0
88 #define MMCR0_PMCC		0
89 #define MMCR0_PMCC_U6		0
90 
91 #define SPRN_MMCRA		SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE	0
93 
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95 {
96 	return 0;
97 }
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100 {
101 	return 0;
102 }
103 static inline void perf_read_regs(struct pt_regs *regs)
104 {
105 	regs->result = 0;
106 }
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
108 {
109 	return 0;
110 }
111 
112 static inline int siar_valid(struct pt_regs *regs)
113 {
114 	return 1;
115 }
116 
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122 {
123 	return cpuhw->mmcr[0];
124 }
125 
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 static bool use_ic(u64 event)
132 {
133 	return false;
134 }
135 #endif /* CONFIG_PPC32 */
136 
137 static bool regs_use_siar(struct pt_regs *regs)
138 {
139 	/*
140 	 * When we take a performance monitor exception the regs are setup
141 	 * using perf_read_regs() which overloads some fields, in particular
142 	 * regs->result to tell us whether to use SIAR.
143 	 *
144 	 * However if the regs are from another exception, eg. a syscall, then
145 	 * they have not been setup using perf_read_regs() and so regs->result
146 	 * is something random.
147 	 */
148 	return ((TRAP(regs) == 0xf00) && regs->result);
149 }
150 
151 /*
152  * Things that are specific to 64-bit implementations.
153  */
154 #ifdef CONFIG_PPC64
155 
156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
157 {
158 	unsigned long mmcra = regs->dsisr;
159 
160 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 		if (slot > 1)
163 			return 4 * (slot - 1);
164 	}
165 
166 	return 0;
167 }
168 
169 /*
170  * The user wants a data address recorded.
171  * If we're not doing instruction sampling, give them the SDAR
172  * (sampled data address).  If we are doing instruction sampling, then
173  * only give them the SDAR if it corresponds to the instruction
174  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
176  */
177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
178 {
179 	unsigned long mmcra = regs->dsisr;
180 	bool sdar_valid;
181 
182 	if (ppmu->flags & PPMU_HAS_SIER)
183 		sdar_valid = regs->dar & SIER_SDAR_VALID;
184 	else {
185 		unsigned long sdsync;
186 
187 		if (ppmu->flags & PPMU_SIAR_VALID)
188 			sdsync = POWER7P_MMCRA_SDAR_VALID;
189 		else if (ppmu->flags & PPMU_ALT_SIPR)
190 			sdsync = POWER6_MMCRA_SDSYNC;
191 		else if (ppmu->flags & PPMU_NO_SIAR)
192 			sdsync = MMCRA_SAMPLE_ENABLE;
193 		else
194 			sdsync = MMCRA_SDSYNC;
195 
196 		sdar_valid = mmcra & sdsync;
197 	}
198 
199 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 		*addrp = mfspr(SPRN_SDAR);
201 
202 	if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
203 		is_kernel_addr(mfspr(SPRN_SDAR)))
204 		*addrp = 0;
205 }
206 
207 static bool regs_sihv(struct pt_regs *regs)
208 {
209 	unsigned long sihv = MMCRA_SIHV;
210 
211 	if (ppmu->flags & PPMU_HAS_SIER)
212 		return !!(regs->dar & SIER_SIHV);
213 
214 	if (ppmu->flags & PPMU_ALT_SIPR)
215 		sihv = POWER6_MMCRA_SIHV;
216 
217 	return !!(regs->dsisr & sihv);
218 }
219 
220 static bool regs_sipr(struct pt_regs *regs)
221 {
222 	unsigned long sipr = MMCRA_SIPR;
223 
224 	if (ppmu->flags & PPMU_HAS_SIER)
225 		return !!(regs->dar & SIER_SIPR);
226 
227 	if (ppmu->flags & PPMU_ALT_SIPR)
228 		sipr = POWER6_MMCRA_SIPR;
229 
230 	return !!(regs->dsisr & sipr);
231 }
232 
233 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
234 {
235 	if (regs->msr & MSR_PR)
236 		return PERF_RECORD_MISC_USER;
237 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
238 		return PERF_RECORD_MISC_HYPERVISOR;
239 	return PERF_RECORD_MISC_KERNEL;
240 }
241 
242 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
243 {
244 	bool use_siar = regs_use_siar(regs);
245 
246 	if (!use_siar)
247 		return perf_flags_from_msr(regs);
248 
249 	/*
250 	 * If we don't have flags in MMCRA, rather than using
251 	 * the MSR, we intuit the flags from the address in
252 	 * SIAR which should give slightly more reliable
253 	 * results
254 	 */
255 	if (ppmu->flags & PPMU_NO_SIPR) {
256 		unsigned long siar = mfspr(SPRN_SIAR);
257 		if (is_kernel_addr(siar))
258 			return PERF_RECORD_MISC_KERNEL;
259 		return PERF_RECORD_MISC_USER;
260 	}
261 
262 	/* PR has priority over HV, so order below is important */
263 	if (regs_sipr(regs))
264 		return PERF_RECORD_MISC_USER;
265 
266 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
267 		return PERF_RECORD_MISC_HYPERVISOR;
268 
269 	return PERF_RECORD_MISC_KERNEL;
270 }
271 
272 /*
273  * Overload regs->dsisr to store MMCRA so we only need to read it once
274  * on each interrupt.
275  * Overload regs->dar to store SIER if we have it.
276  * Overload regs->result to specify whether we should use the MSR (result
277  * is zero) or the SIAR (result is non zero).
278  */
279 static inline void perf_read_regs(struct pt_regs *regs)
280 {
281 	unsigned long mmcra = mfspr(SPRN_MMCRA);
282 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
283 	int use_siar;
284 
285 	regs->dsisr = mmcra;
286 
287 	if (ppmu->flags & PPMU_HAS_SIER)
288 		regs->dar = mfspr(SPRN_SIER);
289 
290 	/*
291 	 * If this isn't a PMU exception (eg a software event) the SIAR is
292 	 * not valid. Use pt_regs.
293 	 *
294 	 * If it is a marked event use the SIAR.
295 	 *
296 	 * If the PMU doesn't update the SIAR for non marked events use
297 	 * pt_regs.
298 	 *
299 	 * If the PMU has HV/PR flags then check to see if they
300 	 * place the exception in userspace. If so, use pt_regs. In
301 	 * continuous sampling mode the SIAR and the PMU exception are
302 	 * not synchronised, so they may be many instructions apart.
303 	 * This can result in confusing backtraces. We still want
304 	 * hypervisor samples as well as samples in the kernel with
305 	 * interrupts off hence the userspace check.
306 	 */
307 	if (TRAP(regs) != 0xf00)
308 		use_siar = 0;
309 	else if ((ppmu->flags & PPMU_NO_SIAR))
310 		use_siar = 0;
311 	else if (marked)
312 		use_siar = 1;
313 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
314 		use_siar = 0;
315 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
316 		use_siar = 0;
317 	else
318 		use_siar = 1;
319 
320 	regs->result = use_siar;
321 }
322 
323 /*
324  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
325  * it as an NMI.
326  */
327 static inline int perf_intr_is_nmi(struct pt_regs *regs)
328 {
329 	return (regs->softe & IRQS_DISABLED);
330 }
331 
332 /*
333  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
334  * must be sampled only if the SIAR-valid bit is set.
335  *
336  * For unmarked instructions and for processors that don't have the SIAR-Valid
337  * bit, assume that SIAR is valid.
338  */
339 static inline int siar_valid(struct pt_regs *regs)
340 {
341 	unsigned long mmcra = regs->dsisr;
342 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
343 
344 	if (marked) {
345 		if (ppmu->flags & PPMU_HAS_SIER)
346 			return regs->dar & SIER_SIAR_VALID;
347 
348 		if (ppmu->flags & PPMU_SIAR_VALID)
349 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
350 	}
351 
352 	return 1;
353 }
354 
355 
356 /* Reset all possible BHRB entries */
357 static void power_pmu_bhrb_reset(void)
358 {
359 	asm volatile(PPC_CLRBHRB);
360 }
361 
362 static void power_pmu_bhrb_enable(struct perf_event *event)
363 {
364 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
365 
366 	if (!ppmu->bhrb_nr)
367 		return;
368 
369 	/* Clear BHRB if we changed task context to avoid data leaks */
370 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
371 		power_pmu_bhrb_reset();
372 		cpuhw->bhrb_context = event->ctx;
373 	}
374 	cpuhw->bhrb_users++;
375 	perf_sched_cb_inc(event->ctx->pmu);
376 }
377 
378 static void power_pmu_bhrb_disable(struct perf_event *event)
379 {
380 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
381 
382 	if (!ppmu->bhrb_nr)
383 		return;
384 
385 	WARN_ON_ONCE(!cpuhw->bhrb_users);
386 	cpuhw->bhrb_users--;
387 	perf_sched_cb_dec(event->ctx->pmu);
388 
389 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
390 		/* BHRB cannot be turned off when other
391 		 * events are active on the PMU.
392 		 */
393 
394 		/* avoid stale pointer */
395 		cpuhw->bhrb_context = NULL;
396 	}
397 }
398 
399 /* Called from ctxsw to prevent one process's branch entries to
400  * mingle with the other process's entries during context switch.
401  */
402 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
403 {
404 	if (!ppmu->bhrb_nr)
405 		return;
406 
407 	if (sched_in)
408 		power_pmu_bhrb_reset();
409 }
410 /* Calculate the to address for a branch */
411 static __u64 power_pmu_bhrb_to(u64 addr)
412 {
413 	unsigned int instr;
414 	int ret;
415 	__u64 target;
416 
417 	if (is_kernel_addr(addr)) {
418 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
419 			return 0;
420 
421 		return branch_target(&instr);
422 	}
423 
424 	/* Userspace: need copy instruction here then translate it */
425 	pagefault_disable();
426 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
427 	if (ret) {
428 		pagefault_enable();
429 		return 0;
430 	}
431 	pagefault_enable();
432 
433 	target = branch_target(&instr);
434 	if ((!target) || (instr & BRANCH_ABSOLUTE))
435 		return target;
436 
437 	/* Translate relative branch target from kernel to user address */
438 	return target - (unsigned long)&instr + addr;
439 }
440 
441 /* Processing BHRB entries */
442 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
443 {
444 	u64 val;
445 	u64 addr;
446 	int r_index, u_index, pred;
447 
448 	r_index = 0;
449 	u_index = 0;
450 	while (r_index < ppmu->bhrb_nr) {
451 		/* Assembly read function */
452 		val = read_bhrb(r_index++);
453 		if (!val)
454 			/* Terminal marker: End of valid BHRB entries */
455 			break;
456 		else {
457 			addr = val & BHRB_EA;
458 			pred = val & BHRB_PREDICTION;
459 
460 			if (!addr)
461 				/* invalid entry */
462 				continue;
463 
464 			/*
465 			 * BHRB rolling buffer could very much contain the kernel
466 			 * addresses at this point. Check the privileges before
467 			 * exporting it to userspace (avoid exposure of regions
468 			 * where we could have speculative execution)
469 			 */
470 			if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
471 				is_kernel_addr(addr))
472 				continue;
473 
474 			/* Branches are read most recent first (ie. mfbhrb 0 is
475 			 * the most recent branch).
476 			 * There are two types of valid entries:
477 			 * 1) a target entry which is the to address of a
478 			 *    computed goto like a blr,bctr,btar.  The next
479 			 *    entry read from the bhrb will be branch
480 			 *    corresponding to this target (ie. the actual
481 			 *    blr/bctr/btar instruction).
482 			 * 2) a from address which is an actual branch.  If a
483 			 *    target entry proceeds this, then this is the
484 			 *    matching branch for that target.  If this is not
485 			 *    following a target entry, then this is a branch
486 			 *    where the target is given as an immediate field
487 			 *    in the instruction (ie. an i or b form branch).
488 			 *    In this case we need to read the instruction from
489 			 *    memory to determine the target/to address.
490 			 */
491 
492 			if (val & BHRB_TARGET) {
493 				/* Target branches use two entries
494 				 * (ie. computed gotos/XL form)
495 				 */
496 				cpuhw->bhrb_entries[u_index].to = addr;
497 				cpuhw->bhrb_entries[u_index].mispred = pred;
498 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
499 
500 				/* Get from address in next entry */
501 				val = read_bhrb(r_index++);
502 				addr = val & BHRB_EA;
503 				if (val & BHRB_TARGET) {
504 					/* Shouldn't have two targets in a
505 					   row.. Reset index and try again */
506 					r_index--;
507 					addr = 0;
508 				}
509 				cpuhw->bhrb_entries[u_index].from = addr;
510 			} else {
511 				/* Branches to immediate field
512 				   (ie I or B form) */
513 				cpuhw->bhrb_entries[u_index].from = addr;
514 				cpuhw->bhrb_entries[u_index].to =
515 					power_pmu_bhrb_to(addr);
516 				cpuhw->bhrb_entries[u_index].mispred = pred;
517 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
518 			}
519 			u_index++;
520 
521 		}
522 	}
523 	cpuhw->bhrb_stack.nr = u_index;
524 	return;
525 }
526 
527 static bool is_ebb_event(struct perf_event *event)
528 {
529 	/*
530 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
531 	 * check that the PMU supports EBB, meaning those that don't can still
532 	 * use bit 63 of the event code for something else if they wish.
533 	 */
534 	return (ppmu->flags & PPMU_ARCH_207S) &&
535 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
536 }
537 
538 static int ebb_event_check(struct perf_event *event)
539 {
540 	struct perf_event *leader = event->group_leader;
541 
542 	/* Event and group leader must agree on EBB */
543 	if (is_ebb_event(leader) != is_ebb_event(event))
544 		return -EINVAL;
545 
546 	if (is_ebb_event(event)) {
547 		if (!(event->attach_state & PERF_ATTACH_TASK))
548 			return -EINVAL;
549 
550 		if (!leader->attr.pinned || !leader->attr.exclusive)
551 			return -EINVAL;
552 
553 		if (event->attr.freq ||
554 		    event->attr.inherit ||
555 		    event->attr.sample_type ||
556 		    event->attr.sample_period ||
557 		    event->attr.enable_on_exec)
558 			return -EINVAL;
559 	}
560 
561 	return 0;
562 }
563 
564 static void ebb_event_add(struct perf_event *event)
565 {
566 	if (!is_ebb_event(event) || current->thread.used_ebb)
567 		return;
568 
569 	/*
570 	 * IFF this is the first time we've added an EBB event, set
571 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
572 	 * userspace. We need this so that we can context switch while
573 	 * userspace is in the EBB handler (where PMXE is 0).
574 	 */
575 	current->thread.used_ebb = 1;
576 	current->thread.mmcr0 |= MMCR0_PMXE;
577 }
578 
579 static void ebb_switch_out(unsigned long mmcr0)
580 {
581 	if (!(mmcr0 & MMCR0_EBE))
582 		return;
583 
584 	current->thread.siar  = mfspr(SPRN_SIAR);
585 	current->thread.sier  = mfspr(SPRN_SIER);
586 	current->thread.sdar  = mfspr(SPRN_SDAR);
587 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
588 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
589 }
590 
591 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
592 {
593 	unsigned long mmcr0 = cpuhw->mmcr[0];
594 
595 	if (!ebb)
596 		goto out;
597 
598 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
599 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
600 
601 	/*
602 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
603 	 * with pmao_restore_workaround() because we may add PMAO but we never
604 	 * clear it here.
605 	 */
606 	mmcr0 |= current->thread.mmcr0;
607 
608 	/*
609 	 * Be careful not to set PMXE if userspace had it cleared. This is also
610 	 * compatible with pmao_restore_workaround() because it has already
611 	 * cleared PMXE and we leave PMAO alone.
612 	 */
613 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
614 		mmcr0 &= ~MMCR0_PMXE;
615 
616 	mtspr(SPRN_SIAR, current->thread.siar);
617 	mtspr(SPRN_SIER, current->thread.sier);
618 	mtspr(SPRN_SDAR, current->thread.sdar);
619 
620 	/*
621 	 * Merge the kernel & user values of MMCR2. The semantics we implement
622 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
623 	 * but not clear bits. If a task wants to be able to clear bits, ie.
624 	 * unfreeze counters, it should not set exclude_xxx in its events and
625 	 * instead manage the MMCR2 entirely by itself.
626 	 */
627 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
628 out:
629 	return mmcr0;
630 }
631 
632 static void pmao_restore_workaround(bool ebb)
633 {
634 	unsigned pmcs[6];
635 
636 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
637 		return;
638 
639 	/*
640 	 * On POWER8E there is a hardware defect which affects the PMU context
641 	 * switch logic, ie. power_pmu_disable/enable().
642 	 *
643 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
644 	 * by the hardware. Sometime later the actual PMU exception is
645 	 * delivered.
646 	 *
647 	 * If we context switch, or simply disable/enable, the PMU prior to the
648 	 * exception arriving, the exception will be lost when we clear PMAO.
649 	 *
650 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
651 	 * set, and this _should_ generate an exception. However because of the
652 	 * defect no exception is generated when we write PMAO, and we get
653 	 * stuck with no counters counting but no exception delivered.
654 	 *
655 	 * The workaround is to detect this case and tweak the hardware to
656 	 * create another pending PMU exception.
657 	 *
658 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
659 	 * enabling the PMU. That causes a new exception to be generated in the
660 	 * chip, but we don't take it yet because we have interrupts hard
661 	 * disabled. We then write back the PMU state as we want it to be seen
662 	 * by the exception handler. When we reenable interrupts the exception
663 	 * handler will be called and see the correct state.
664 	 *
665 	 * The logic is the same for EBB, except that the exception is gated by
666 	 * us having interrupts hard disabled as well as the fact that we are
667 	 * not in userspace. The exception is finally delivered when we return
668 	 * to userspace.
669 	 */
670 
671 	/* Only if PMAO is set and PMAO_SYNC is clear */
672 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
673 		return;
674 
675 	/* If we're doing EBB, only if BESCR[GE] is set */
676 	if (ebb && !(current->thread.bescr & BESCR_GE))
677 		return;
678 
679 	/*
680 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
681 	 * disable to actually prevent the PMU exception from firing.
682 	 */
683 	hard_irq_disable();
684 
685 	/*
686 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
687 	 * Using read/write_pmc() in a for loop adds 12 function calls and
688 	 * almost doubles our code size.
689 	 */
690 	pmcs[0] = mfspr(SPRN_PMC1);
691 	pmcs[1] = mfspr(SPRN_PMC2);
692 	pmcs[2] = mfspr(SPRN_PMC3);
693 	pmcs[3] = mfspr(SPRN_PMC4);
694 	pmcs[4] = mfspr(SPRN_PMC5);
695 	pmcs[5] = mfspr(SPRN_PMC6);
696 
697 	/* Ensure all freeze bits are unset */
698 	mtspr(SPRN_MMCR2, 0);
699 
700 	/* Set up PMC6 to overflow in one cycle */
701 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
702 
703 	/* Enable exceptions and unfreeze PMC6 */
704 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
705 
706 	/* Now we need to refreeze and restore the PMCs */
707 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
708 
709 	mtspr(SPRN_PMC1, pmcs[0]);
710 	mtspr(SPRN_PMC2, pmcs[1]);
711 	mtspr(SPRN_PMC3, pmcs[2]);
712 	mtspr(SPRN_PMC4, pmcs[3]);
713 	mtspr(SPRN_PMC5, pmcs[4]);
714 	mtspr(SPRN_PMC6, pmcs[5]);
715 }
716 
717 static bool use_ic(u64 event)
718 {
719 	if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
720 			(event == 0x200f2 || event == 0x300f2))
721 		return true;
722 
723 	return false;
724 }
725 #endif /* CONFIG_PPC64 */
726 
727 static void perf_event_interrupt(struct pt_regs *regs);
728 
729 /*
730  * Read one performance monitor counter (PMC).
731  */
732 static unsigned long read_pmc(int idx)
733 {
734 	unsigned long val;
735 
736 	switch (idx) {
737 	case 1:
738 		val = mfspr(SPRN_PMC1);
739 		break;
740 	case 2:
741 		val = mfspr(SPRN_PMC2);
742 		break;
743 	case 3:
744 		val = mfspr(SPRN_PMC3);
745 		break;
746 	case 4:
747 		val = mfspr(SPRN_PMC4);
748 		break;
749 	case 5:
750 		val = mfspr(SPRN_PMC5);
751 		break;
752 	case 6:
753 		val = mfspr(SPRN_PMC6);
754 		break;
755 #ifdef CONFIG_PPC64
756 	case 7:
757 		val = mfspr(SPRN_PMC7);
758 		break;
759 	case 8:
760 		val = mfspr(SPRN_PMC8);
761 		break;
762 #endif /* CONFIG_PPC64 */
763 	default:
764 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
765 		val = 0;
766 	}
767 	return val;
768 }
769 
770 /*
771  * Write one PMC.
772  */
773 static void write_pmc(int idx, unsigned long val)
774 {
775 	switch (idx) {
776 	case 1:
777 		mtspr(SPRN_PMC1, val);
778 		break;
779 	case 2:
780 		mtspr(SPRN_PMC2, val);
781 		break;
782 	case 3:
783 		mtspr(SPRN_PMC3, val);
784 		break;
785 	case 4:
786 		mtspr(SPRN_PMC4, val);
787 		break;
788 	case 5:
789 		mtspr(SPRN_PMC5, val);
790 		break;
791 	case 6:
792 		mtspr(SPRN_PMC6, val);
793 		break;
794 #ifdef CONFIG_PPC64
795 	case 7:
796 		mtspr(SPRN_PMC7, val);
797 		break;
798 	case 8:
799 		mtspr(SPRN_PMC8, val);
800 		break;
801 #endif /* CONFIG_PPC64 */
802 	default:
803 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
804 	}
805 }
806 
807 /* Called from sysrq_handle_showregs() */
808 void perf_event_print_debug(void)
809 {
810 	unsigned long sdar, sier, flags;
811 	u32 pmcs[MAX_HWEVENTS];
812 	int i;
813 
814 	if (!ppmu) {
815 		pr_info("Performance monitor hardware not registered.\n");
816 		return;
817 	}
818 
819 	if (!ppmu->n_counter)
820 		return;
821 
822 	local_irq_save(flags);
823 
824 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
825 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
826 
827 	for (i = 0; i < ppmu->n_counter; i++)
828 		pmcs[i] = read_pmc(i + 1);
829 
830 	for (; i < MAX_HWEVENTS; i++)
831 		pmcs[i] = 0xdeadbeef;
832 
833 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
834 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
835 
836 	if (ppmu->n_counter > 4)
837 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
838 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
839 
840 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
841 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
842 
843 	sdar = sier = 0;
844 #ifdef CONFIG_PPC64
845 	sdar = mfspr(SPRN_SDAR);
846 
847 	if (ppmu->flags & PPMU_HAS_SIER)
848 		sier = mfspr(SPRN_SIER);
849 
850 	if (ppmu->flags & PPMU_ARCH_207S) {
851 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
852 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
853 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
854 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
855 	}
856 #endif
857 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
858 		mfspr(SPRN_SIAR), sdar, sier);
859 
860 	local_irq_restore(flags);
861 }
862 
863 /*
864  * Check if a set of events can all go on the PMU at once.
865  * If they can't, this will look at alternative codes for the events
866  * and see if any combination of alternative codes is feasible.
867  * The feasible set is returned in event_id[].
868  */
869 static int power_check_constraints(struct cpu_hw_events *cpuhw,
870 				   u64 event_id[], unsigned int cflags[],
871 				   int n_ev)
872 {
873 	unsigned long mask, value, nv;
874 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
875 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
876 	int i, j;
877 	unsigned long addf = ppmu->add_fields;
878 	unsigned long tadd = ppmu->test_adder;
879 
880 	if (n_ev > ppmu->n_counter)
881 		return -1;
882 
883 	/* First see if the events will go on as-is */
884 	for (i = 0; i < n_ev; ++i) {
885 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
886 		    && !ppmu->limited_pmc_event(event_id[i])) {
887 			ppmu->get_alternatives(event_id[i], cflags[i],
888 					       cpuhw->alternatives[i]);
889 			event_id[i] = cpuhw->alternatives[i][0];
890 		}
891 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
892 					 &cpuhw->avalues[i][0]))
893 			return -1;
894 	}
895 	value = mask = 0;
896 	for (i = 0; i < n_ev; ++i) {
897 		nv = (value | cpuhw->avalues[i][0]) +
898 			(value & cpuhw->avalues[i][0] & addf);
899 		if ((((nv + tadd) ^ value) & mask) != 0 ||
900 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
901 		     cpuhw->amasks[i][0]) != 0)
902 			break;
903 		value = nv;
904 		mask |= cpuhw->amasks[i][0];
905 	}
906 	if (i == n_ev)
907 		return 0;	/* all OK */
908 
909 	/* doesn't work, gather alternatives... */
910 	if (!ppmu->get_alternatives)
911 		return -1;
912 	for (i = 0; i < n_ev; ++i) {
913 		choice[i] = 0;
914 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
915 						  cpuhw->alternatives[i]);
916 		for (j = 1; j < n_alt[i]; ++j)
917 			ppmu->get_constraint(cpuhw->alternatives[i][j],
918 					     &cpuhw->amasks[i][j],
919 					     &cpuhw->avalues[i][j]);
920 	}
921 
922 	/* enumerate all possibilities and see if any will work */
923 	i = 0;
924 	j = -1;
925 	value = mask = nv = 0;
926 	while (i < n_ev) {
927 		if (j >= 0) {
928 			/* we're backtracking, restore context */
929 			value = svalues[i];
930 			mask = smasks[i];
931 			j = choice[i];
932 		}
933 		/*
934 		 * See if any alternative k for event_id i,
935 		 * where k > j, will satisfy the constraints.
936 		 */
937 		while (++j < n_alt[i]) {
938 			nv = (value | cpuhw->avalues[i][j]) +
939 				(value & cpuhw->avalues[i][j] & addf);
940 			if ((((nv + tadd) ^ value) & mask) == 0 &&
941 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
942 			     & cpuhw->amasks[i][j]) == 0)
943 				break;
944 		}
945 		if (j >= n_alt[i]) {
946 			/*
947 			 * No feasible alternative, backtrack
948 			 * to event_id i-1 and continue enumerating its
949 			 * alternatives from where we got up to.
950 			 */
951 			if (--i < 0)
952 				return -1;
953 		} else {
954 			/*
955 			 * Found a feasible alternative for event_id i,
956 			 * remember where we got up to with this event_id,
957 			 * go on to the next event_id, and start with
958 			 * the first alternative for it.
959 			 */
960 			choice[i] = j;
961 			svalues[i] = value;
962 			smasks[i] = mask;
963 			value = nv;
964 			mask |= cpuhw->amasks[i][j];
965 			++i;
966 			j = -1;
967 		}
968 	}
969 
970 	/* OK, we have a feasible combination, tell the caller the solution */
971 	for (i = 0; i < n_ev; ++i)
972 		event_id[i] = cpuhw->alternatives[i][choice[i]];
973 	return 0;
974 }
975 
976 /*
977  * Check if newly-added events have consistent settings for
978  * exclude_{user,kernel,hv} with each other and any previously
979  * added events.
980  */
981 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
982 			  int n_prev, int n_new)
983 {
984 	int eu = 0, ek = 0, eh = 0;
985 	int i, n, first;
986 	struct perf_event *event;
987 
988 	/*
989 	 * If the PMU we're on supports per event exclude settings then we
990 	 * don't need to do any of this logic. NB. This assumes no PMU has both
991 	 * per event exclude and limited PMCs.
992 	 */
993 	if (ppmu->flags & PPMU_ARCH_207S)
994 		return 0;
995 
996 	n = n_prev + n_new;
997 	if (n <= 1)
998 		return 0;
999 
1000 	first = 1;
1001 	for (i = 0; i < n; ++i) {
1002 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004 			continue;
1005 		}
1006 		event = ctrs[i];
1007 		if (first) {
1008 			eu = event->attr.exclude_user;
1009 			ek = event->attr.exclude_kernel;
1010 			eh = event->attr.exclude_hv;
1011 			first = 0;
1012 		} else if (event->attr.exclude_user != eu ||
1013 			   event->attr.exclude_kernel != ek ||
1014 			   event->attr.exclude_hv != eh) {
1015 			return -EAGAIN;
1016 		}
1017 	}
1018 
1019 	if (eu || ek || eh)
1020 		for (i = 0; i < n; ++i)
1021 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023 
1024 	return 0;
1025 }
1026 
1027 static u64 check_and_compute_delta(u64 prev, u64 val)
1028 {
1029 	u64 delta = (val - prev) & 0xfffffffful;
1030 
1031 	/*
1032 	 * POWER7 can roll back counter values, if the new value is smaller
1033 	 * than the previous value it will cause the delta and the counter to
1034 	 * have bogus values unless we rolled a counter over.  If a coutner is
1035 	 * rolled back, it will be smaller, but within 256, which is the maximum
1036 	 * number of events to rollback at once.  If we detect a rollback
1037 	 * return 0.  This can lead to a small lack of precision in the
1038 	 * counters.
1039 	 */
1040 	if (prev > val && (prev - val) < 256)
1041 		delta = 0;
1042 
1043 	return delta;
1044 }
1045 
1046 static void power_pmu_read(struct perf_event *event)
1047 {
1048 	s64 val, delta, prev;
1049 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1050 
1051 	if (event->hw.state & PERF_HES_STOPPED)
1052 		return;
1053 
1054 	if (!event->hw.idx)
1055 		return;
1056 
1057 	if (is_ebb_event(event)) {
1058 		val = read_pmc(event->hw.idx);
1059 		if (use_ic(event->attr.config)) {
1060 			val = mfspr(SPRN_IC);
1061 			if (val > cpuhw->ic_init)
1062 				val = val - cpuhw->ic_init;
1063 			else
1064 				val = val + (0 - cpuhw->ic_init);
1065 		}
1066 		local64_set(&event->hw.prev_count, val);
1067 		return;
1068 	}
1069 
1070 	/*
1071 	 * Performance monitor interrupts come even when interrupts
1072 	 * are soft-disabled, as long as interrupts are hard-enabled.
1073 	 * Therefore we treat them like NMIs.
1074 	 */
1075 	do {
1076 		prev = local64_read(&event->hw.prev_count);
1077 		barrier();
1078 		val = read_pmc(event->hw.idx);
1079 		if (use_ic(event->attr.config)) {
1080 			val = mfspr(SPRN_IC);
1081 			if (val > cpuhw->ic_init)
1082 				val = val - cpuhw->ic_init;
1083 			else
1084 				val = val + (0 - cpuhw->ic_init);
1085 		}
1086 		delta = check_and_compute_delta(prev, val);
1087 		if (!delta)
1088 			return;
1089 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1090 
1091 	local64_add(delta, &event->count);
1092 
1093 	/*
1094 	 * A number of places program the PMC with (0x80000000 - period_left).
1095 	 * We never want period_left to be less than 1 because we will program
1096 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1097 	 * roll around to 0 before taking an exception. We have seen this
1098 	 * on POWER8.
1099 	 *
1100 	 * To fix this, clamp the minimum value of period_left to 1.
1101 	 */
1102 	do {
1103 		prev = local64_read(&event->hw.period_left);
1104 		val = prev - delta;
1105 		if (val < 1)
1106 			val = 1;
1107 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1108 }
1109 
1110 /*
1111  * On some machines, PMC5 and PMC6 can't be written, don't respect
1112  * the freeze conditions, and don't generate interrupts.  This tells
1113  * us if `event' is using such a PMC.
1114  */
1115 static int is_limited_pmc(int pmcnum)
1116 {
1117 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1118 		&& (pmcnum == 5 || pmcnum == 6);
1119 }
1120 
1121 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1122 				    unsigned long pmc5, unsigned long pmc6)
1123 {
1124 	struct perf_event *event;
1125 	u64 val, prev, delta;
1126 	int i;
1127 
1128 	for (i = 0; i < cpuhw->n_limited; ++i) {
1129 		event = cpuhw->limited_counter[i];
1130 		if (!event->hw.idx)
1131 			continue;
1132 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1133 		prev = local64_read(&event->hw.prev_count);
1134 		event->hw.idx = 0;
1135 		delta = check_and_compute_delta(prev, val);
1136 		if (delta)
1137 			local64_add(delta, &event->count);
1138 	}
1139 }
1140 
1141 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1142 				  unsigned long pmc5, unsigned long pmc6)
1143 {
1144 	struct perf_event *event;
1145 	u64 val, prev;
1146 	int i;
1147 
1148 	for (i = 0; i < cpuhw->n_limited; ++i) {
1149 		event = cpuhw->limited_counter[i];
1150 		event->hw.idx = cpuhw->limited_hwidx[i];
1151 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1152 		prev = local64_read(&event->hw.prev_count);
1153 		if (check_and_compute_delta(prev, val))
1154 			local64_set(&event->hw.prev_count, val);
1155 		perf_event_update_userpage(event);
1156 	}
1157 }
1158 
1159 /*
1160  * Since limited events don't respect the freeze conditions, we
1161  * have to read them immediately after freezing or unfreezing the
1162  * other events.  We try to keep the values from the limited
1163  * events as consistent as possible by keeping the delay (in
1164  * cycles and instructions) between freezing/unfreezing and reading
1165  * the limited events as small and consistent as possible.
1166  * Therefore, if any limited events are in use, we read them
1167  * both, and always in the same order, to minimize variability,
1168  * and do it inside the same asm that writes MMCR0.
1169  */
1170 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1171 {
1172 	unsigned long pmc5, pmc6;
1173 
1174 	if (!cpuhw->n_limited) {
1175 		mtspr(SPRN_MMCR0, mmcr0);
1176 		return;
1177 	}
1178 
1179 	/*
1180 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1181 	 * To ensure we don't get a performance monitor interrupt
1182 	 * between writing MMCR0 and freezing/thawing the limited
1183 	 * events, we first write MMCR0 with the event overflow
1184 	 * interrupt enable bits turned off.
1185 	 */
1186 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1187 		     : "=&r" (pmc5), "=&r" (pmc6)
1188 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1189 		       "i" (SPRN_MMCR0),
1190 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1191 
1192 	if (mmcr0 & MMCR0_FC)
1193 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1194 	else
1195 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1196 
1197 	/*
1198 	 * Write the full MMCR0 including the event overflow interrupt
1199 	 * enable bits, if necessary.
1200 	 */
1201 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1202 		mtspr(SPRN_MMCR0, mmcr0);
1203 }
1204 
1205 /*
1206  * Disable all events to prevent PMU interrupts and to allow
1207  * events to be added or removed.
1208  */
1209 static void power_pmu_disable(struct pmu *pmu)
1210 {
1211 	struct cpu_hw_events *cpuhw;
1212 	unsigned long flags, mmcr0, val;
1213 
1214 	if (!ppmu)
1215 		return;
1216 	local_irq_save(flags);
1217 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1218 
1219 	if (!cpuhw->disabled) {
1220 		/*
1221 		 * Check if we ever enabled the PMU on this cpu.
1222 		 */
1223 		if (!cpuhw->pmcs_enabled) {
1224 			ppc_enable_pmcs();
1225 			cpuhw->pmcs_enabled = 1;
1226 		}
1227 
1228 		/*
1229 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1230 		 */
1231 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1232 		val |= MMCR0_FC;
1233 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1234 			 MMCR0_FC56);
1235 
1236 		/*
1237 		 * The barrier is to make sure the mtspr has been
1238 		 * executed and the PMU has frozen the events etc.
1239 		 * before we return.
1240 		 */
1241 		write_mmcr0(cpuhw, val);
1242 		mb();
1243 		isync();
1244 
1245 		/*
1246 		 * Disable instruction sampling if it was enabled
1247 		 */
1248 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1249 			mtspr(SPRN_MMCRA,
1250 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1251 			mb();
1252 			isync();
1253 		}
1254 
1255 		cpuhw->disabled = 1;
1256 		cpuhw->n_added = 0;
1257 
1258 		ebb_switch_out(mmcr0);
1259 
1260 #ifdef CONFIG_PPC64
1261 		/*
1262 		 * These are readable by userspace, may contain kernel
1263 		 * addresses and are not switched by context switch, so clear
1264 		 * them now to avoid leaking anything to userspace in general
1265 		 * including to another process.
1266 		 */
1267 		if (ppmu->flags & PPMU_ARCH_207S) {
1268 			mtspr(SPRN_SDAR, 0);
1269 			mtspr(SPRN_SIAR, 0);
1270 		}
1271 #endif
1272 	}
1273 
1274 	local_irq_restore(flags);
1275 }
1276 
1277 /*
1278  * Re-enable all events if disable == 0.
1279  * If we were previously disabled and events were added, then
1280  * put the new config on the PMU.
1281  */
1282 static void power_pmu_enable(struct pmu *pmu)
1283 {
1284 	struct perf_event *event;
1285 	struct cpu_hw_events *cpuhw;
1286 	unsigned long flags;
1287 	long i;
1288 	unsigned long val, mmcr0;
1289 	s64 left;
1290 	unsigned int hwc_index[MAX_HWEVENTS];
1291 	int n_lim;
1292 	int idx;
1293 	bool ebb;
1294 
1295 	if (!ppmu)
1296 		return;
1297 	local_irq_save(flags);
1298 
1299 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1300 	if (!cpuhw->disabled)
1301 		goto out;
1302 
1303 	if (cpuhw->n_events == 0) {
1304 		ppc_set_pmu_inuse(0);
1305 		goto out;
1306 	}
1307 
1308 	cpuhw->disabled = 0;
1309 
1310 	/*
1311 	 * EBB requires an exclusive group and all events must have the EBB
1312 	 * flag set, or not set, so we can just check a single event. Also we
1313 	 * know we have at least one event.
1314 	 */
1315 	ebb = is_ebb_event(cpuhw->event[0]);
1316 
1317 	/*
1318 	 * If we didn't change anything, or only removed events,
1319 	 * no need to recalculate MMCR* settings and reset the PMCs.
1320 	 * Just reenable the PMU with the current MMCR* settings
1321 	 * (possibly updated for removal of events).
1322 	 */
1323 	if (!cpuhw->n_added) {
1324 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326 		goto out_enable;
1327 	}
1328 
1329 	/*
1330 	 * Clear all MMCR settings and recompute them for the new set of events.
1331 	 */
1332 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1333 
1334 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1335 			       cpuhw->mmcr, cpuhw->event)) {
1336 		/* shouldn't ever get here */
1337 		printk(KERN_ERR "oops compute_mmcr failed\n");
1338 		goto out;
1339 	}
1340 
1341 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1342 		/*
1343 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1344 		 * bits for the first event. We have already checked that all
1345 		 * events have the same value for these bits as the first event.
1346 		 */
1347 		event = cpuhw->event[0];
1348 		if (event->attr.exclude_user)
1349 			cpuhw->mmcr[0] |= MMCR0_FCP;
1350 		if (event->attr.exclude_kernel)
1351 			cpuhw->mmcr[0] |= freeze_events_kernel;
1352 		if (event->attr.exclude_hv)
1353 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1354 	}
1355 
1356 	/*
1357 	 * Write the new configuration to MMCR* with the freeze
1358 	 * bit set and set the hardware events to their initial values.
1359 	 * Then unfreeze the events.
1360 	 */
1361 	ppc_set_pmu_inuse(1);
1362 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1363 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1364 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1365 				| MMCR0_FC);
1366 	if (ppmu->flags & PPMU_ARCH_207S)
1367 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1368 
1369 	/*
1370 	 * Read off any pre-existing events that need to move
1371 	 * to another PMC.
1372 	 */
1373 	for (i = 0; i < cpuhw->n_events; ++i) {
1374 		event = cpuhw->event[i];
1375 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1376 			power_pmu_read(event);
1377 			write_pmc(event->hw.idx, 0);
1378 			event->hw.idx = 0;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Initialize the PMCs for all the new and moved events.
1384 	 */
1385 	cpuhw->n_limited = n_lim = 0;
1386 	for (i = 0; i < cpuhw->n_events; ++i) {
1387 		event = cpuhw->event[i];
1388 		if (event->hw.idx)
1389 			continue;
1390 		idx = hwc_index[i] + 1;
1391 		if (is_limited_pmc(idx)) {
1392 			cpuhw->limited_counter[n_lim] = event;
1393 			cpuhw->limited_hwidx[n_lim] = idx;
1394 			++n_lim;
1395 			continue;
1396 		}
1397 
1398 		if (ebb)
1399 			val = local64_read(&event->hw.prev_count);
1400 		else {
1401 			val = 0;
1402 			if (event->hw.sample_period) {
1403 				left = local64_read(&event->hw.period_left);
1404 				if (left < 0x80000000L)
1405 					val = 0x80000000L - left;
1406 			}
1407 			local64_set(&event->hw.prev_count, val);
1408 		}
1409 
1410 		event->hw.idx = idx;
1411 		if (event->hw.state & PERF_HES_STOPPED)
1412 			val = 0;
1413 		write_pmc(idx, val);
1414 
1415 		perf_event_update_userpage(event);
1416 	}
1417 	cpuhw->n_limited = n_lim;
1418 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1419 
1420  out_enable:
1421 	pmao_restore_workaround(ebb);
1422 
1423 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1424 
1425 	mb();
1426 	if (cpuhw->bhrb_users)
1427 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1428 
1429 	write_mmcr0(cpuhw, mmcr0);
1430 
1431 	/*
1432 	 * Enable instruction sampling if necessary
1433 	 */
1434 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1435 		mb();
1436 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437 	}
1438 
1439  out:
1440 
1441 	local_irq_restore(flags);
1442 }
1443 
1444 static int collect_events(struct perf_event *group, int max_count,
1445 			  struct perf_event *ctrs[], u64 *events,
1446 			  unsigned int *flags)
1447 {
1448 	int n = 0;
1449 	struct perf_event *event;
1450 
1451 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1452 		if (n >= max_count)
1453 			return -1;
1454 		ctrs[n] = group;
1455 		flags[n] = group->hw.event_base;
1456 		events[n++] = group->hw.config;
1457 	}
1458 	for_each_sibling_event(event, group) {
1459 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1460 		    event->state != PERF_EVENT_STATE_OFF) {
1461 			if (n >= max_count)
1462 				return -1;
1463 			ctrs[n] = event;
1464 			flags[n] = event->hw.event_base;
1465 			events[n++] = event->hw.config;
1466 		}
1467 	}
1468 	return n;
1469 }
1470 
1471 /*
1472  * Add a event to the PMU.
1473  * If all events are not already frozen, then we disable and
1474  * re-enable the PMU in order to get hw_perf_enable to do the
1475  * actual work of reconfiguring the PMU.
1476  */
1477 static int power_pmu_add(struct perf_event *event, int ef_flags)
1478 {
1479 	struct cpu_hw_events *cpuhw;
1480 	unsigned long flags;
1481 	int n0;
1482 	int ret = -EAGAIN;
1483 
1484 	local_irq_save(flags);
1485 	perf_pmu_disable(event->pmu);
1486 
1487 	/*
1488 	 * Add the event to the list (if there is room)
1489 	 * and check whether the total set is still feasible.
1490 	 */
1491 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1492 	n0 = cpuhw->n_events;
1493 	if (n0 >= ppmu->n_counter)
1494 		goto out;
1495 	cpuhw->event[n0] = event;
1496 	cpuhw->events[n0] = event->hw.config;
1497 	cpuhw->flags[n0] = event->hw.event_base;
1498 
1499 	/*
1500 	 * This event may have been disabled/stopped in record_and_restart()
1501 	 * because we exceeded the ->event_limit. If re-starting the event,
1502 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1503 	 * notification is re-enabled.
1504 	 */
1505 	if (!(ef_flags & PERF_EF_START))
1506 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1507 	else
1508 		event->hw.state = 0;
1509 
1510 	/*
1511 	 * If group events scheduling transaction was started,
1512 	 * skip the schedulability test here, it will be performed
1513 	 * at commit time(->commit_txn) as a whole
1514 	 */
1515 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1516 		goto nocheck;
1517 
1518 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1519 		goto out;
1520 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1521 		goto out;
1522 	event->hw.config = cpuhw->events[n0];
1523 
1524 nocheck:
1525 	ebb_event_add(event);
1526 
1527 	++cpuhw->n_events;
1528 	++cpuhw->n_added;
1529 
1530 	ret = 0;
1531  out:
1532 	if (has_branch_stack(event)) {
1533 		power_pmu_bhrb_enable(event);
1534 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1535 					event->attr.branch_sample_type);
1536 	}
1537 
1538 	/*
1539 	 * Workaround for POWER9 DD1 to use the Instruction Counter
1540 	 * register value for instruction counting
1541 	 */
1542 	if (use_ic(event->attr.config))
1543 		cpuhw->ic_init = mfspr(SPRN_IC);
1544 
1545 	perf_pmu_enable(event->pmu);
1546 	local_irq_restore(flags);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Remove a event from the PMU.
1552  */
1553 static void power_pmu_del(struct perf_event *event, int ef_flags)
1554 {
1555 	struct cpu_hw_events *cpuhw;
1556 	long i;
1557 	unsigned long flags;
1558 
1559 	local_irq_save(flags);
1560 	perf_pmu_disable(event->pmu);
1561 
1562 	power_pmu_read(event);
1563 
1564 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1565 	for (i = 0; i < cpuhw->n_events; ++i) {
1566 		if (event == cpuhw->event[i]) {
1567 			while (++i < cpuhw->n_events) {
1568 				cpuhw->event[i-1] = cpuhw->event[i];
1569 				cpuhw->events[i-1] = cpuhw->events[i];
1570 				cpuhw->flags[i-1] = cpuhw->flags[i];
1571 			}
1572 			--cpuhw->n_events;
1573 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1574 			if (event->hw.idx) {
1575 				write_pmc(event->hw.idx, 0);
1576 				event->hw.idx = 0;
1577 			}
1578 			perf_event_update_userpage(event);
1579 			break;
1580 		}
1581 	}
1582 	for (i = 0; i < cpuhw->n_limited; ++i)
1583 		if (event == cpuhw->limited_counter[i])
1584 			break;
1585 	if (i < cpuhw->n_limited) {
1586 		while (++i < cpuhw->n_limited) {
1587 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1588 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1589 		}
1590 		--cpuhw->n_limited;
1591 	}
1592 	if (cpuhw->n_events == 0) {
1593 		/* disable exceptions if no events are running */
1594 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1595 	}
1596 
1597 	if (has_branch_stack(event))
1598 		power_pmu_bhrb_disable(event);
1599 
1600 	perf_pmu_enable(event->pmu);
1601 	local_irq_restore(flags);
1602 }
1603 
1604 /*
1605  * POWER-PMU does not support disabling individual counters, hence
1606  * program their cycle counter to their max value and ignore the interrupts.
1607  */
1608 
1609 static void power_pmu_start(struct perf_event *event, int ef_flags)
1610 {
1611 	unsigned long flags;
1612 	s64 left;
1613 	unsigned long val;
1614 
1615 	if (!event->hw.idx || !event->hw.sample_period)
1616 		return;
1617 
1618 	if (!(event->hw.state & PERF_HES_STOPPED))
1619 		return;
1620 
1621 	if (ef_flags & PERF_EF_RELOAD)
1622 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1623 
1624 	local_irq_save(flags);
1625 	perf_pmu_disable(event->pmu);
1626 
1627 	event->hw.state = 0;
1628 	left = local64_read(&event->hw.period_left);
1629 
1630 	val = 0;
1631 	if (left < 0x80000000L)
1632 		val = 0x80000000L - left;
1633 
1634 	write_pmc(event->hw.idx, val);
1635 
1636 	perf_event_update_userpage(event);
1637 	perf_pmu_enable(event->pmu);
1638 	local_irq_restore(flags);
1639 }
1640 
1641 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1642 {
1643 	unsigned long flags;
1644 
1645 	if (!event->hw.idx || !event->hw.sample_period)
1646 		return;
1647 
1648 	if (event->hw.state & PERF_HES_STOPPED)
1649 		return;
1650 
1651 	local_irq_save(flags);
1652 	perf_pmu_disable(event->pmu);
1653 
1654 	power_pmu_read(event);
1655 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656 	write_pmc(event->hw.idx, 0);
1657 
1658 	perf_event_update_userpage(event);
1659 	perf_pmu_enable(event->pmu);
1660 	local_irq_restore(flags);
1661 }
1662 
1663 /*
1664  * Start group events scheduling transaction
1665  * Set the flag to make pmu::enable() not perform the
1666  * schedulability test, it will be performed at commit time
1667  *
1668  * We only support PERF_PMU_TXN_ADD transactions. Save the
1669  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1670  * transactions.
1671  */
1672 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1673 {
1674 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1675 
1676 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1677 
1678 	cpuhw->txn_flags = txn_flags;
1679 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1680 		return;
1681 
1682 	perf_pmu_disable(pmu);
1683 	cpuhw->n_txn_start = cpuhw->n_events;
1684 }
1685 
1686 /*
1687  * Stop group events scheduling transaction
1688  * Clear the flag and pmu::enable() will perform the
1689  * schedulability test.
1690  */
1691 static void power_pmu_cancel_txn(struct pmu *pmu)
1692 {
1693 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1694 	unsigned int txn_flags;
1695 
1696 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1697 
1698 	txn_flags = cpuhw->txn_flags;
1699 	cpuhw->txn_flags = 0;
1700 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1701 		return;
1702 
1703 	perf_pmu_enable(pmu);
1704 }
1705 
1706 /*
1707  * Commit group events scheduling transaction
1708  * Perform the group schedulability test as a whole
1709  * Return 0 if success
1710  */
1711 static int power_pmu_commit_txn(struct pmu *pmu)
1712 {
1713 	struct cpu_hw_events *cpuhw;
1714 	long i, n;
1715 
1716 	if (!ppmu)
1717 		return -EAGAIN;
1718 
1719 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1720 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1721 
1722 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1723 		cpuhw->txn_flags = 0;
1724 		return 0;
1725 	}
1726 
1727 	n = cpuhw->n_events;
1728 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1729 		return -EAGAIN;
1730 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1731 	if (i < 0)
1732 		return -EAGAIN;
1733 
1734 	for (i = cpuhw->n_txn_start; i < n; ++i)
1735 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1736 
1737 	cpuhw->txn_flags = 0;
1738 	perf_pmu_enable(pmu);
1739 	return 0;
1740 }
1741 
1742 /*
1743  * Return 1 if we might be able to put event on a limited PMC,
1744  * or 0 if not.
1745  * A event can only go on a limited PMC if it counts something
1746  * that a limited PMC can count, doesn't require interrupts, and
1747  * doesn't exclude any processor mode.
1748  */
1749 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1750 				 unsigned int flags)
1751 {
1752 	int n;
1753 	u64 alt[MAX_EVENT_ALTERNATIVES];
1754 
1755 	if (event->attr.exclude_user
1756 	    || event->attr.exclude_kernel
1757 	    || event->attr.exclude_hv
1758 	    || event->attr.sample_period)
1759 		return 0;
1760 
1761 	if (ppmu->limited_pmc_event(ev))
1762 		return 1;
1763 
1764 	/*
1765 	 * The requested event_id isn't on a limited PMC already;
1766 	 * see if any alternative code goes on a limited PMC.
1767 	 */
1768 	if (!ppmu->get_alternatives)
1769 		return 0;
1770 
1771 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1772 	n = ppmu->get_alternatives(ev, flags, alt);
1773 
1774 	return n > 0;
1775 }
1776 
1777 /*
1778  * Find an alternative event_id that goes on a normal PMC, if possible,
1779  * and return the event_id code, or 0 if there is no such alternative.
1780  * (Note: event_id code 0 is "don't count" on all machines.)
1781  */
1782 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1783 {
1784 	u64 alt[MAX_EVENT_ALTERNATIVES];
1785 	int n;
1786 
1787 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1788 	n = ppmu->get_alternatives(ev, flags, alt);
1789 	if (!n)
1790 		return 0;
1791 	return alt[0];
1792 }
1793 
1794 /* Number of perf_events counting hardware events */
1795 static atomic_t num_events;
1796 /* Used to avoid races in calling reserve/release_pmc_hardware */
1797 static DEFINE_MUTEX(pmc_reserve_mutex);
1798 
1799 /*
1800  * Release the PMU if this is the last perf_event.
1801  */
1802 static void hw_perf_event_destroy(struct perf_event *event)
1803 {
1804 	if (!atomic_add_unless(&num_events, -1, 1)) {
1805 		mutex_lock(&pmc_reserve_mutex);
1806 		if (atomic_dec_return(&num_events) == 0)
1807 			release_pmc_hardware();
1808 		mutex_unlock(&pmc_reserve_mutex);
1809 	}
1810 }
1811 
1812 /*
1813  * Translate a generic cache event_id config to a raw event_id code.
1814  */
1815 static int hw_perf_cache_event(u64 config, u64 *eventp)
1816 {
1817 	unsigned long type, op, result;
1818 	int ev;
1819 
1820 	if (!ppmu->cache_events)
1821 		return -EINVAL;
1822 
1823 	/* unpack config */
1824 	type = config & 0xff;
1825 	op = (config >> 8) & 0xff;
1826 	result = (config >> 16) & 0xff;
1827 
1828 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1829 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1830 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1831 		return -EINVAL;
1832 
1833 	ev = (*ppmu->cache_events)[type][op][result];
1834 	if (ev == 0)
1835 		return -EOPNOTSUPP;
1836 	if (ev == -1)
1837 		return -EINVAL;
1838 	*eventp = ev;
1839 	return 0;
1840 }
1841 
1842 static bool is_event_blacklisted(u64 ev)
1843 {
1844 	int i;
1845 
1846 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1847 		if (ppmu->blacklist_ev[i] == ev)
1848 			return true;
1849 	}
1850 
1851 	return false;
1852 }
1853 
1854 static int power_pmu_event_init(struct perf_event *event)
1855 {
1856 	u64 ev;
1857 	unsigned long flags;
1858 	struct perf_event *ctrs[MAX_HWEVENTS];
1859 	u64 events[MAX_HWEVENTS];
1860 	unsigned int cflags[MAX_HWEVENTS];
1861 	int n;
1862 	int err;
1863 	struct cpu_hw_events *cpuhw;
1864 
1865 	if (!ppmu)
1866 		return -ENOENT;
1867 
1868 	if (has_branch_stack(event)) {
1869 	        /* PMU has BHRB enabled */
1870 		if (!(ppmu->flags & PPMU_ARCH_207S))
1871 			return -EOPNOTSUPP;
1872 	}
1873 
1874 	switch (event->attr.type) {
1875 	case PERF_TYPE_HARDWARE:
1876 		ev = event->attr.config;
1877 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1878 			return -EOPNOTSUPP;
1879 
1880 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1881 			return -EINVAL;
1882 		ev = ppmu->generic_events[ev];
1883 		break;
1884 	case PERF_TYPE_HW_CACHE:
1885 		err = hw_perf_cache_event(event->attr.config, &ev);
1886 		if (err)
1887 			return err;
1888 
1889 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1890 			return -EINVAL;
1891 		break;
1892 	case PERF_TYPE_RAW:
1893 		ev = event->attr.config;
1894 
1895 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1896 			return -EINVAL;
1897 		break;
1898 	default:
1899 		return -ENOENT;
1900 	}
1901 
1902 	event->hw.config_base = ev;
1903 	event->hw.idx = 0;
1904 
1905 	/*
1906 	 * If we are not running on a hypervisor, force the
1907 	 * exclude_hv bit to 0 so that we don't care what
1908 	 * the user set it to.
1909 	 */
1910 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1911 		event->attr.exclude_hv = 0;
1912 
1913 	/*
1914 	 * If this is a per-task event, then we can use
1915 	 * PM_RUN_* events interchangeably with their non RUN_*
1916 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1917 	 * XXX we should check if the task is an idle task.
1918 	 */
1919 	flags = 0;
1920 	if (event->attach_state & PERF_ATTACH_TASK)
1921 		flags |= PPMU_ONLY_COUNT_RUN;
1922 
1923 	/*
1924 	 * If this machine has limited events, check whether this
1925 	 * event_id could go on a limited event.
1926 	 */
1927 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1928 		if (can_go_on_limited_pmc(event, ev, flags)) {
1929 			flags |= PPMU_LIMITED_PMC_OK;
1930 		} else if (ppmu->limited_pmc_event(ev)) {
1931 			/*
1932 			 * The requested event_id is on a limited PMC,
1933 			 * but we can't use a limited PMC; see if any
1934 			 * alternative goes on a normal PMC.
1935 			 */
1936 			ev = normal_pmc_alternative(ev, flags);
1937 			if (!ev)
1938 				return -EINVAL;
1939 		}
1940 	}
1941 
1942 	/* Extra checks for EBB */
1943 	err = ebb_event_check(event);
1944 	if (err)
1945 		return err;
1946 
1947 	/*
1948 	 * If this is in a group, check if it can go on with all the
1949 	 * other hardware events in the group.  We assume the event
1950 	 * hasn't been linked into its leader's sibling list at this point.
1951 	 */
1952 	n = 0;
1953 	if (event->group_leader != event) {
1954 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1955 				   ctrs, events, cflags);
1956 		if (n < 0)
1957 			return -EINVAL;
1958 	}
1959 	events[n] = ev;
1960 	ctrs[n] = event;
1961 	cflags[n] = flags;
1962 	if (check_excludes(ctrs, cflags, n, 1))
1963 		return -EINVAL;
1964 
1965 	cpuhw = &get_cpu_var(cpu_hw_events);
1966 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1967 
1968 	if (has_branch_stack(event)) {
1969 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1970 					event->attr.branch_sample_type);
1971 
1972 		if (cpuhw->bhrb_filter == -1) {
1973 			put_cpu_var(cpu_hw_events);
1974 			return -EOPNOTSUPP;
1975 		}
1976 	}
1977 
1978 	put_cpu_var(cpu_hw_events);
1979 	if (err)
1980 		return -EINVAL;
1981 
1982 	event->hw.config = events[n];
1983 	event->hw.event_base = cflags[n];
1984 	event->hw.last_period = event->hw.sample_period;
1985 	local64_set(&event->hw.period_left, event->hw.last_period);
1986 
1987 	/*
1988 	 * For EBB events we just context switch the PMC value, we don't do any
1989 	 * of the sample_period logic. We use hw.prev_count for this.
1990 	 */
1991 	if (is_ebb_event(event))
1992 		local64_set(&event->hw.prev_count, 0);
1993 
1994 	/*
1995 	 * See if we need to reserve the PMU.
1996 	 * If no events are currently in use, then we have to take a
1997 	 * mutex to ensure that we don't race with another task doing
1998 	 * reserve_pmc_hardware or release_pmc_hardware.
1999 	 */
2000 	err = 0;
2001 	if (!atomic_inc_not_zero(&num_events)) {
2002 		mutex_lock(&pmc_reserve_mutex);
2003 		if (atomic_read(&num_events) == 0 &&
2004 		    reserve_pmc_hardware(perf_event_interrupt))
2005 			err = -EBUSY;
2006 		else
2007 			atomic_inc(&num_events);
2008 		mutex_unlock(&pmc_reserve_mutex);
2009 	}
2010 	event->destroy = hw_perf_event_destroy;
2011 
2012 	return err;
2013 }
2014 
2015 static int power_pmu_event_idx(struct perf_event *event)
2016 {
2017 	return event->hw.idx;
2018 }
2019 
2020 ssize_t power_events_sysfs_show(struct device *dev,
2021 				struct device_attribute *attr, char *page)
2022 {
2023 	struct perf_pmu_events_attr *pmu_attr;
2024 
2025 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2026 
2027 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2028 }
2029 
2030 static struct pmu power_pmu = {
2031 	.pmu_enable	= power_pmu_enable,
2032 	.pmu_disable	= power_pmu_disable,
2033 	.event_init	= power_pmu_event_init,
2034 	.add		= power_pmu_add,
2035 	.del		= power_pmu_del,
2036 	.start		= power_pmu_start,
2037 	.stop		= power_pmu_stop,
2038 	.read		= power_pmu_read,
2039 	.start_txn	= power_pmu_start_txn,
2040 	.cancel_txn	= power_pmu_cancel_txn,
2041 	.commit_txn	= power_pmu_commit_txn,
2042 	.event_idx	= power_pmu_event_idx,
2043 	.sched_task	= power_pmu_sched_task,
2044 };
2045 
2046 /*
2047  * A counter has overflowed; update its count and record
2048  * things if requested.  Note that interrupts are hard-disabled
2049  * here so there is no possibility of being interrupted.
2050  */
2051 static void record_and_restart(struct perf_event *event, unsigned long val,
2052 			       struct pt_regs *regs)
2053 {
2054 	u64 period = event->hw.sample_period;
2055 	s64 prev, delta, left;
2056 	int record = 0;
2057 
2058 	if (event->hw.state & PERF_HES_STOPPED) {
2059 		write_pmc(event->hw.idx, 0);
2060 		return;
2061 	}
2062 
2063 	/* we don't have to worry about interrupts here */
2064 	prev = local64_read(&event->hw.prev_count);
2065 	delta = check_and_compute_delta(prev, val);
2066 	local64_add(delta, &event->count);
2067 
2068 	/*
2069 	 * See if the total period for this event has expired,
2070 	 * and update for the next period.
2071 	 */
2072 	val = 0;
2073 	left = local64_read(&event->hw.period_left) - delta;
2074 	if (delta == 0)
2075 		left++;
2076 	if (period) {
2077 		if (left <= 0) {
2078 			left += period;
2079 			if (left <= 0)
2080 				left = period;
2081 			record = siar_valid(regs);
2082 			event->hw.last_period = event->hw.sample_period;
2083 		}
2084 		if (left < 0x80000000LL)
2085 			val = 0x80000000LL - left;
2086 	}
2087 
2088 	write_pmc(event->hw.idx, val);
2089 	local64_set(&event->hw.prev_count, val);
2090 	local64_set(&event->hw.period_left, left);
2091 	perf_event_update_userpage(event);
2092 
2093 	/*
2094 	 * Finally record data if requested.
2095 	 */
2096 	if (record) {
2097 		struct perf_sample_data data;
2098 
2099 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2100 
2101 		if (event->attr.sample_type &
2102 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2103 			perf_get_data_addr(regs, &data.addr);
2104 
2105 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2106 			struct cpu_hw_events *cpuhw;
2107 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2108 			power_pmu_bhrb_read(cpuhw);
2109 			data.br_stack = &cpuhw->bhrb_stack;
2110 		}
2111 
2112 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2113 						ppmu->get_mem_data_src)
2114 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2115 
2116 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2117 						ppmu->get_mem_weight)
2118 			ppmu->get_mem_weight(&data.weight);
2119 
2120 		if (perf_event_overflow(event, &data, regs))
2121 			power_pmu_stop(event, 0);
2122 	}
2123 }
2124 
2125 /*
2126  * Called from generic code to get the misc flags (i.e. processor mode)
2127  * for an event_id.
2128  */
2129 unsigned long perf_misc_flags(struct pt_regs *regs)
2130 {
2131 	u32 flags = perf_get_misc_flags(regs);
2132 
2133 	if (flags)
2134 		return flags;
2135 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2136 		PERF_RECORD_MISC_KERNEL;
2137 }
2138 
2139 /*
2140  * Called from generic code to get the instruction pointer
2141  * for an event_id.
2142  */
2143 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2144 {
2145 	bool use_siar = regs_use_siar(regs);
2146 
2147 	if (use_siar && siar_valid(regs))
2148 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2149 	else if (use_siar)
2150 		return 0;		// no valid instruction pointer
2151 	else
2152 		return regs->nip;
2153 }
2154 
2155 static bool pmc_overflow_power7(unsigned long val)
2156 {
2157 	/*
2158 	 * Events on POWER7 can roll back if a speculative event doesn't
2159 	 * eventually complete. Unfortunately in some rare cases they will
2160 	 * raise a performance monitor exception. We need to catch this to
2161 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2162 	 * cycles from overflow.
2163 	 *
2164 	 * We only do this if the first pass fails to find any overflowing
2165 	 * PMCs because a user might set a period of less than 256 and we
2166 	 * don't want to mistakenly reset them.
2167 	 */
2168 	if ((0x80000000 - val) <= 256)
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
2174 static bool pmc_overflow(unsigned long val)
2175 {
2176 	if ((int)val < 0)
2177 		return true;
2178 
2179 	return false;
2180 }
2181 
2182 /*
2183  * Performance monitor interrupt stuff
2184  */
2185 static void perf_event_interrupt(struct pt_regs *regs)
2186 {
2187 	int i, j;
2188 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2189 	struct perf_event *event;
2190 	unsigned long val[8];
2191 	int found, active;
2192 	int nmi;
2193 
2194 	if (cpuhw->n_limited)
2195 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2196 					mfspr(SPRN_PMC6));
2197 
2198 	perf_read_regs(regs);
2199 
2200 	nmi = perf_intr_is_nmi(regs);
2201 	if (nmi)
2202 		nmi_enter();
2203 	else
2204 		irq_enter();
2205 
2206 	/* Read all the PMCs since we'll need them a bunch of times */
2207 	for (i = 0; i < ppmu->n_counter; ++i)
2208 		val[i] = read_pmc(i + 1);
2209 
2210 	/* Try to find what caused the IRQ */
2211 	found = 0;
2212 	for (i = 0; i < ppmu->n_counter; ++i) {
2213 		if (!pmc_overflow(val[i]))
2214 			continue;
2215 		if (is_limited_pmc(i + 1))
2216 			continue; /* these won't generate IRQs */
2217 		/*
2218 		 * We've found one that's overflowed.  For active
2219 		 * counters we need to log this.  For inactive
2220 		 * counters, we need to reset it anyway
2221 		 */
2222 		found = 1;
2223 		active = 0;
2224 		for (j = 0; j < cpuhw->n_events; ++j) {
2225 			event = cpuhw->event[j];
2226 			if (event->hw.idx == (i + 1)) {
2227 				active = 1;
2228 				record_and_restart(event, val[i], regs);
2229 				break;
2230 			}
2231 		}
2232 		if (!active)
2233 			/* reset non active counters that have overflowed */
2234 			write_pmc(i + 1, 0);
2235 	}
2236 	if (!found && pvr_version_is(PVR_POWER7)) {
2237 		/* check active counters for special buggy p7 overflow */
2238 		for (i = 0; i < cpuhw->n_events; ++i) {
2239 			event = cpuhw->event[i];
2240 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2241 				continue;
2242 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2243 				/* event has overflowed in a buggy way*/
2244 				found = 1;
2245 				record_and_restart(event,
2246 						   val[event->hw.idx - 1],
2247 						   regs);
2248 			}
2249 		}
2250 	}
2251 	if (!found && !nmi && printk_ratelimit())
2252 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2253 
2254 	/*
2255 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2256 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2257 	 * and thus allow interrupts to occur again.
2258 	 * XXX might want to use MSR.PM to keep the events frozen until
2259 	 * we get back out of this interrupt.
2260 	 */
2261 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2262 
2263 	if (nmi)
2264 		nmi_exit();
2265 	else
2266 		irq_exit();
2267 }
2268 
2269 static int power_pmu_prepare_cpu(unsigned int cpu)
2270 {
2271 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2272 
2273 	if (ppmu) {
2274 		memset(cpuhw, 0, sizeof(*cpuhw));
2275 		cpuhw->mmcr[0] = MMCR0_FC;
2276 	}
2277 	return 0;
2278 }
2279 
2280 int register_power_pmu(struct power_pmu *pmu)
2281 {
2282 	if (ppmu)
2283 		return -EBUSY;		/* something's already registered */
2284 
2285 	ppmu = pmu;
2286 	pr_info("%s performance monitor hardware support registered\n",
2287 		pmu->name);
2288 
2289 	power_pmu.attr_groups = ppmu->attr_groups;
2290 
2291 #ifdef MSR_HV
2292 	/*
2293 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2294 	 */
2295 	if (mfmsr() & MSR_HV)
2296 		freeze_events_kernel = MMCR0_FCHV;
2297 #endif /* CONFIG_PPC64 */
2298 
2299 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2300 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2301 			  power_pmu_prepare_cpu, NULL);
2302 	return 0;
2303 }
2304