xref: /linux/arch/powerpc/lib/sstep.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20 
21 extern char system_call_common[];
22 
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK	0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK	0x87c0ffff
28 #endif
29 
30 /* Bits in XER */
31 #define XER_SO		0x80000000U
32 #define XER_OV		0x40000000U
33 #define XER_CA		0x20000000U
34 
35 #ifdef CONFIG_PPC_FPU
36 /*
37  * Functions in ldstfp.S
38  */
39 extern int do_lfs(int rn, unsigned long ea);
40 extern int do_lfd(int rn, unsigned long ea);
41 extern int do_stfs(int rn, unsigned long ea);
42 extern int do_stfd(int rn, unsigned long ea);
43 extern int do_lvx(int rn, unsigned long ea);
44 extern int do_stvx(int rn, unsigned long ea);
45 extern int do_lxvd2x(int rn, unsigned long ea);
46 extern int do_stxvd2x(int rn, unsigned long ea);
47 #endif
48 
49 /*
50  * Emulate the truncation of 64 bit values in 32-bit mode.
51  */
52 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
53 							unsigned long val)
54 {
55 #ifdef __powerpc64__
56 	if ((msr & MSR_64BIT) == 0)
57 		val &= 0xffffffffUL;
58 #endif
59 	return val;
60 }
61 
62 /*
63  * Determine whether a conditional branch instruction would branch.
64  */
65 static nokprobe_inline int branch_taken(unsigned int instr, struct pt_regs *regs)
66 {
67 	unsigned int bo = (instr >> 21) & 0x1f;
68 	unsigned int bi;
69 
70 	if ((bo & 4) == 0) {
71 		/* decrement counter */
72 		--regs->ctr;
73 		if (((bo >> 1) & 1) ^ (regs->ctr == 0))
74 			return 0;
75 	}
76 	if ((bo & 0x10) == 0) {
77 		/* check bit from CR */
78 		bi = (instr >> 16) & 0x1f;
79 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
80 			return 0;
81 	}
82 	return 1;
83 }
84 
85 static nokprobe_inline long address_ok(struct pt_regs *regs, unsigned long ea, int nb)
86 {
87 	if (!user_mode(regs))
88 		return 1;
89 	return __access_ok(ea, nb, USER_DS);
90 }
91 
92 /*
93  * Calculate effective address for a D-form instruction
94  */
95 static nokprobe_inline unsigned long dform_ea(unsigned int instr, struct pt_regs *regs)
96 {
97 	int ra;
98 	unsigned long ea;
99 
100 	ra = (instr >> 16) & 0x1f;
101 	ea = (signed short) instr;		/* sign-extend */
102 	if (ra)
103 		ea += regs->gpr[ra];
104 
105 	return truncate_if_32bit(regs->msr, ea);
106 }
107 
108 #ifdef __powerpc64__
109 /*
110  * Calculate effective address for a DS-form instruction
111  */
112 static nokprobe_inline unsigned long dsform_ea(unsigned int instr, struct pt_regs *regs)
113 {
114 	int ra;
115 	unsigned long ea;
116 
117 	ra = (instr >> 16) & 0x1f;
118 	ea = (signed short) (instr & ~3);	/* sign-extend */
119 	if (ra)
120 		ea += regs->gpr[ra];
121 
122 	return truncate_if_32bit(regs->msr, ea);
123 }
124 #endif /* __powerpc64 */
125 
126 /*
127  * Calculate effective address for an X-form instruction
128  */
129 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
130 						struct pt_regs *regs)
131 {
132 	int ra, rb;
133 	unsigned long ea;
134 
135 	ra = (instr >> 16) & 0x1f;
136 	rb = (instr >> 11) & 0x1f;
137 	ea = regs->gpr[rb];
138 	if (ra)
139 		ea += regs->gpr[ra];
140 
141 	return truncate_if_32bit(regs->msr, ea);
142 }
143 
144 /*
145  * Return the largest power of 2, not greater than sizeof(unsigned long),
146  * such that x is a multiple of it.
147  */
148 static nokprobe_inline unsigned long max_align(unsigned long x)
149 {
150 	x |= sizeof(unsigned long);
151 	return x & -x;		/* isolates rightmost bit */
152 }
153 
154 
155 static nokprobe_inline unsigned long byterev_2(unsigned long x)
156 {
157 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
158 }
159 
160 static nokprobe_inline unsigned long byterev_4(unsigned long x)
161 {
162 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
163 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
164 }
165 
166 #ifdef __powerpc64__
167 static nokprobe_inline unsigned long byterev_8(unsigned long x)
168 {
169 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
170 }
171 #endif
172 
173 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
174 					unsigned long ea, int nb)
175 {
176 	int err = 0;
177 	unsigned long x = 0;
178 
179 	switch (nb) {
180 	case 1:
181 		err = __get_user(x, (unsigned char __user *) ea);
182 		break;
183 	case 2:
184 		err = __get_user(x, (unsigned short __user *) ea);
185 		break;
186 	case 4:
187 		err = __get_user(x, (unsigned int __user *) ea);
188 		break;
189 #ifdef __powerpc64__
190 	case 8:
191 		err = __get_user(x, (unsigned long __user *) ea);
192 		break;
193 #endif
194 	}
195 	if (!err)
196 		*dest = x;
197 	return err;
198 }
199 
200 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
201 				unsigned long ea, int nb, struct pt_regs *regs)
202 {
203 	int err;
204 	unsigned long x, b, c;
205 #ifdef __LITTLE_ENDIAN__
206 	int len = nb; /* save a copy of the length for byte reversal */
207 #endif
208 
209 	/* unaligned, do this in pieces */
210 	x = 0;
211 	for (; nb > 0; nb -= c) {
212 #ifdef __LITTLE_ENDIAN__
213 		c = 1;
214 #endif
215 #ifdef __BIG_ENDIAN__
216 		c = max_align(ea);
217 #endif
218 		if (c > nb)
219 			c = max_align(nb);
220 		err = read_mem_aligned(&b, ea, c);
221 		if (err)
222 			return err;
223 		x = (x << (8 * c)) + b;
224 		ea += c;
225 	}
226 #ifdef __LITTLE_ENDIAN__
227 	switch (len) {
228 	case 2:
229 		*dest = byterev_2(x);
230 		break;
231 	case 4:
232 		*dest = byterev_4(x);
233 		break;
234 #ifdef __powerpc64__
235 	case 8:
236 		*dest = byterev_8(x);
237 		break;
238 #endif
239 	}
240 #endif
241 #ifdef __BIG_ENDIAN__
242 	*dest = x;
243 #endif
244 	return 0;
245 }
246 
247 /*
248  * Read memory at address ea for nb bytes, return 0 for success
249  * or -EFAULT if an error occurred.
250  */
251 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
252 			      struct pt_regs *regs)
253 {
254 	if (!address_ok(regs, ea, nb))
255 		return -EFAULT;
256 	if ((ea & (nb - 1)) == 0)
257 		return read_mem_aligned(dest, ea, nb);
258 	return read_mem_unaligned(dest, ea, nb, regs);
259 }
260 NOKPROBE_SYMBOL(read_mem);
261 
262 static nokprobe_inline int write_mem_aligned(unsigned long val,
263 					unsigned long ea, int nb)
264 {
265 	int err = 0;
266 
267 	switch (nb) {
268 	case 1:
269 		err = __put_user(val, (unsigned char __user *) ea);
270 		break;
271 	case 2:
272 		err = __put_user(val, (unsigned short __user *) ea);
273 		break;
274 	case 4:
275 		err = __put_user(val, (unsigned int __user *) ea);
276 		break;
277 #ifdef __powerpc64__
278 	case 8:
279 		err = __put_user(val, (unsigned long __user *) ea);
280 		break;
281 #endif
282 	}
283 	return err;
284 }
285 
286 static nokprobe_inline int write_mem_unaligned(unsigned long val,
287 				unsigned long ea, int nb, struct pt_regs *regs)
288 {
289 	int err;
290 	unsigned long c;
291 
292 #ifdef __LITTLE_ENDIAN__
293 	switch (nb) {
294 	case 2:
295 		val = byterev_2(val);
296 		break;
297 	case 4:
298 		val = byterev_4(val);
299 		break;
300 #ifdef __powerpc64__
301 	case 8:
302 		val = byterev_8(val);
303 		break;
304 #endif
305 	}
306 #endif
307 	/* unaligned or little-endian, do this in pieces */
308 	for (; nb > 0; nb -= c) {
309 #ifdef __LITTLE_ENDIAN__
310 		c = 1;
311 #endif
312 #ifdef __BIG_ENDIAN__
313 		c = max_align(ea);
314 #endif
315 		if (c > nb)
316 			c = max_align(nb);
317 		err = write_mem_aligned(val >> (nb - c) * 8, ea, c);
318 		if (err)
319 			return err;
320 		ea += c;
321 	}
322 	return 0;
323 }
324 
325 /*
326  * Write memory at address ea for nb bytes, return 0 for success
327  * or -EFAULT if an error occurred.
328  */
329 static int write_mem(unsigned long val, unsigned long ea, int nb,
330 			       struct pt_regs *regs)
331 {
332 	if (!address_ok(regs, ea, nb))
333 		return -EFAULT;
334 	if ((ea & (nb - 1)) == 0)
335 		return write_mem_aligned(val, ea, nb);
336 	return write_mem_unaligned(val, ea, nb, regs);
337 }
338 NOKPROBE_SYMBOL(write_mem);
339 
340 #ifdef CONFIG_PPC_FPU
341 /*
342  * Check the address and alignment, and call func to do the actual
343  * load or store.
344  */
345 static int do_fp_load(int rn, int (*func)(int, unsigned long),
346 				unsigned long ea, int nb,
347 				struct pt_regs *regs)
348 {
349 	int err;
350 	union {
351 		double dbl;
352 		unsigned long ul[2];
353 		struct {
354 #ifdef __BIG_ENDIAN__
355 			unsigned _pad_;
356 			unsigned word;
357 #endif
358 #ifdef __LITTLE_ENDIAN__
359 			unsigned word;
360 			unsigned _pad_;
361 #endif
362 		} single;
363 	} data;
364 	unsigned long ptr;
365 
366 	if (!address_ok(regs, ea, nb))
367 		return -EFAULT;
368 	if ((ea & 3) == 0)
369 		return (*func)(rn, ea);
370 	ptr = (unsigned long) &data.ul;
371 	if (sizeof(unsigned long) == 8 || nb == 4) {
372 		err = read_mem_unaligned(&data.ul[0], ea, nb, regs);
373 		if (nb == 4)
374 			ptr = (unsigned long)&(data.single.word);
375 	} else {
376 		/* reading a double on 32-bit */
377 		err = read_mem_unaligned(&data.ul[0], ea, 4, regs);
378 		if (!err)
379 			err = read_mem_unaligned(&data.ul[1], ea + 4, 4, regs);
380 	}
381 	if (err)
382 		return err;
383 	return (*func)(rn, ptr);
384 }
385 NOKPROBE_SYMBOL(do_fp_load);
386 
387 static int do_fp_store(int rn, int (*func)(int, unsigned long),
388 				 unsigned long ea, int nb,
389 				 struct pt_regs *regs)
390 {
391 	int err;
392 	union {
393 		double dbl;
394 		unsigned long ul[2];
395 		struct {
396 #ifdef __BIG_ENDIAN__
397 			unsigned _pad_;
398 			unsigned word;
399 #endif
400 #ifdef __LITTLE_ENDIAN__
401 			unsigned word;
402 			unsigned _pad_;
403 #endif
404 		} single;
405 	} data;
406 	unsigned long ptr;
407 
408 	if (!address_ok(regs, ea, nb))
409 		return -EFAULT;
410 	if ((ea & 3) == 0)
411 		return (*func)(rn, ea);
412 	ptr = (unsigned long) &data.ul[0];
413 	if (sizeof(unsigned long) == 8 || nb == 4) {
414 		if (nb == 4)
415 			ptr = (unsigned long)&(data.single.word);
416 		err = (*func)(rn, ptr);
417 		if (err)
418 			return err;
419 		err = write_mem_unaligned(data.ul[0], ea, nb, regs);
420 	} else {
421 		/* writing a double on 32-bit */
422 		err = (*func)(rn, ptr);
423 		if (err)
424 			return err;
425 		err = write_mem_unaligned(data.ul[0], ea, 4, regs);
426 		if (!err)
427 			err = write_mem_unaligned(data.ul[1], ea + 4, 4, regs);
428 	}
429 	return err;
430 }
431 NOKPROBE_SYMBOL(do_fp_store);
432 #endif
433 
434 #ifdef CONFIG_ALTIVEC
435 /* For Altivec/VMX, no need to worry about alignment */
436 static nokprobe_inline int do_vec_load(int rn, int (*func)(int, unsigned long),
437 				 unsigned long ea, struct pt_regs *regs)
438 {
439 	if (!address_ok(regs, ea & ~0xfUL, 16))
440 		return -EFAULT;
441 	return (*func)(rn, ea);
442 }
443 
444 static nokprobe_inline int do_vec_store(int rn, int (*func)(int, unsigned long),
445 				  unsigned long ea, struct pt_regs *regs)
446 {
447 	if (!address_ok(regs, ea & ~0xfUL, 16))
448 		return -EFAULT;
449 	return (*func)(rn, ea);
450 }
451 #endif /* CONFIG_ALTIVEC */
452 
453 #ifdef CONFIG_VSX
454 static nokprobe_inline int do_vsx_load(int rn, int (*func)(int, unsigned long),
455 				 unsigned long ea, struct pt_regs *regs)
456 {
457 	int err;
458 	unsigned long val[2];
459 
460 	if (!address_ok(regs, ea, 16))
461 		return -EFAULT;
462 	if ((ea & 3) == 0)
463 		return (*func)(rn, ea);
464 	err = read_mem_unaligned(&val[0], ea, 8, regs);
465 	if (!err)
466 		err = read_mem_unaligned(&val[1], ea + 8, 8, regs);
467 	if (!err)
468 		err = (*func)(rn, (unsigned long) &val[0]);
469 	return err;
470 }
471 
472 static nokprobe_inline int do_vsx_store(int rn, int (*func)(int, unsigned long),
473 				 unsigned long ea, struct pt_regs *regs)
474 {
475 	int err;
476 	unsigned long val[2];
477 
478 	if (!address_ok(regs, ea, 16))
479 		return -EFAULT;
480 	if ((ea & 3) == 0)
481 		return (*func)(rn, ea);
482 	err = (*func)(rn, (unsigned long) &val[0]);
483 	if (err)
484 		return err;
485 	err = write_mem_unaligned(val[0], ea, 8, regs);
486 	if (!err)
487 		err = write_mem_unaligned(val[1], ea + 8, 8, regs);
488 	return err;
489 }
490 #endif /* CONFIG_VSX */
491 
492 #define __put_user_asmx(x, addr, err, op, cr)		\
493 	__asm__ __volatile__(				\
494 		"1:	" op " %2,0,%3\n"		\
495 		"	mfcr	%1\n"			\
496 		"2:\n"					\
497 		".section .fixup,\"ax\"\n"		\
498 		"3:	li	%0,%4\n"		\
499 		"	b	2b\n"			\
500 		".previous\n"				\
501 		EX_TABLE(1b, 3b)			\
502 		: "=r" (err), "=r" (cr)			\
503 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
504 
505 #define __get_user_asmx(x, addr, err, op)		\
506 	__asm__ __volatile__(				\
507 		"1:	"op" %1,0,%2\n"			\
508 		"2:\n"					\
509 		".section .fixup,\"ax\"\n"		\
510 		"3:	li	%0,%3\n"		\
511 		"	b	2b\n"			\
512 		".previous\n"				\
513 		EX_TABLE(1b, 3b)			\
514 		: "=r" (err), "=r" (x)			\
515 		: "r" (addr), "i" (-EFAULT), "0" (err))
516 
517 #define __cacheop_user_asmx(addr, err, op)		\
518 	__asm__ __volatile__(				\
519 		"1:	"op" 0,%1\n"			\
520 		"2:\n"					\
521 		".section .fixup,\"ax\"\n"		\
522 		"3:	li	%0,%3\n"		\
523 		"	b	2b\n"			\
524 		".previous\n"				\
525 		EX_TABLE(1b, 3b)			\
526 		: "=r" (err)				\
527 		: "r" (addr), "i" (-EFAULT), "0" (err))
528 
529 static nokprobe_inline void set_cr0(struct pt_regs *regs, int rd)
530 {
531 	long val = regs->gpr[rd];
532 
533 	regs->ccr = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
534 #ifdef __powerpc64__
535 	if (!(regs->msr & MSR_64BIT))
536 		val = (int) val;
537 #endif
538 	if (val < 0)
539 		regs->ccr |= 0x80000000;
540 	else if (val > 0)
541 		regs->ccr |= 0x40000000;
542 	else
543 		regs->ccr |= 0x20000000;
544 }
545 
546 static nokprobe_inline void add_with_carry(struct pt_regs *regs, int rd,
547 				     unsigned long val1, unsigned long val2,
548 				     unsigned long carry_in)
549 {
550 	unsigned long val = val1 + val2;
551 
552 	if (carry_in)
553 		++val;
554 	regs->gpr[rd] = val;
555 #ifdef __powerpc64__
556 	if (!(regs->msr & MSR_64BIT)) {
557 		val = (unsigned int) val;
558 		val1 = (unsigned int) val1;
559 	}
560 #endif
561 	if (val < val1 || (carry_in && val == val1))
562 		regs->xer |= XER_CA;
563 	else
564 		regs->xer &= ~XER_CA;
565 }
566 
567 static nokprobe_inline void do_cmp_signed(struct pt_regs *regs, long v1, long v2,
568 				    int crfld)
569 {
570 	unsigned int crval, shift;
571 
572 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
573 	if (v1 < v2)
574 		crval |= 8;
575 	else if (v1 > v2)
576 		crval |= 4;
577 	else
578 		crval |= 2;
579 	shift = (7 - crfld) * 4;
580 	regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
581 }
582 
583 static nokprobe_inline void do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
584 				      unsigned long v2, int crfld)
585 {
586 	unsigned int crval, shift;
587 
588 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
589 	if (v1 < v2)
590 		crval |= 8;
591 	else if (v1 > v2)
592 		crval |= 4;
593 	else
594 		crval |= 2;
595 	shift = (7 - crfld) * 4;
596 	regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
597 }
598 
599 static nokprobe_inline int trap_compare(long v1, long v2)
600 {
601 	int ret = 0;
602 
603 	if (v1 < v2)
604 		ret |= 0x10;
605 	else if (v1 > v2)
606 		ret |= 0x08;
607 	else
608 		ret |= 0x04;
609 	if ((unsigned long)v1 < (unsigned long)v2)
610 		ret |= 0x02;
611 	else if ((unsigned long)v1 > (unsigned long)v2)
612 		ret |= 0x01;
613 	return ret;
614 }
615 
616 /*
617  * Elements of 32-bit rotate and mask instructions.
618  */
619 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
620 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
621 #ifdef __powerpc64__
622 #define MASK64_L(mb)	(~0UL >> (mb))
623 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
624 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
625 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
626 #else
627 #define DATA32(x)	(x)
628 #endif
629 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
630 
631 /*
632  * Decode an instruction, and execute it if that can be done just by
633  * modifying *regs (i.e. integer arithmetic and logical instructions,
634  * branches, and barrier instructions).
635  * Returns 1 if the instruction has been executed, or 0 if not.
636  * Sets *op to indicate what the instruction does.
637  */
638 int analyse_instr(struct instruction_op *op, struct pt_regs *regs,
639 			    unsigned int instr)
640 {
641 	unsigned int opcode, ra, rb, rd, spr, u;
642 	unsigned long int imm;
643 	unsigned long int val, val2;
644 	unsigned int mb, me, sh;
645 	long ival;
646 
647 	op->type = COMPUTE;
648 
649 	opcode = instr >> 26;
650 	switch (opcode) {
651 	case 16:	/* bc */
652 		op->type = BRANCH;
653 		imm = (signed short)(instr & 0xfffc);
654 		if ((instr & 2) == 0)
655 			imm += regs->nip;
656 		regs->nip += 4;
657 		regs->nip = truncate_if_32bit(regs->msr, regs->nip);
658 		if (instr & 1)
659 			regs->link = regs->nip;
660 		if (branch_taken(instr, regs))
661 			regs->nip = truncate_if_32bit(regs->msr, imm);
662 		return 1;
663 #ifdef CONFIG_PPC64
664 	case 17:	/* sc */
665 		if ((instr & 0xfe2) == 2)
666 			op->type = SYSCALL;
667 		else
668 			op->type = UNKNOWN;
669 		return 0;
670 #endif
671 	case 18:	/* b */
672 		op->type = BRANCH;
673 		imm = instr & 0x03fffffc;
674 		if (imm & 0x02000000)
675 			imm -= 0x04000000;
676 		if ((instr & 2) == 0)
677 			imm += regs->nip;
678 		if (instr & 1)
679 			regs->link = truncate_if_32bit(regs->msr, regs->nip + 4);
680 		imm = truncate_if_32bit(regs->msr, imm);
681 		regs->nip = imm;
682 		return 1;
683 	case 19:
684 		switch ((instr >> 1) & 0x3ff) {
685 		case 0:		/* mcrf */
686 			rd = (instr >> 21) & 0x1c;
687 			ra = (instr >> 16) & 0x1c;
688 			val = (regs->ccr >> ra) & 0xf;
689 			regs->ccr = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
690 			goto instr_done;
691 
692 		case 16:	/* bclr */
693 		case 528:	/* bcctr */
694 			op->type = BRANCH;
695 			imm = (instr & 0x400)? regs->ctr: regs->link;
696 			regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
697 			imm = truncate_if_32bit(regs->msr, imm);
698 			if (instr & 1)
699 				regs->link = regs->nip;
700 			if (branch_taken(instr, regs))
701 				regs->nip = imm;
702 			return 1;
703 
704 		case 18:	/* rfid, scary */
705 			if (regs->msr & MSR_PR)
706 				goto priv;
707 			op->type = RFI;
708 			return 0;
709 
710 		case 150:	/* isync */
711 			op->type = BARRIER;
712 			isync();
713 			goto instr_done;
714 
715 		case 33:	/* crnor */
716 		case 129:	/* crandc */
717 		case 193:	/* crxor */
718 		case 225:	/* crnand */
719 		case 257:	/* crand */
720 		case 289:	/* creqv */
721 		case 417:	/* crorc */
722 		case 449:	/* cror */
723 			ra = (instr >> 16) & 0x1f;
724 			rb = (instr >> 11) & 0x1f;
725 			rd = (instr >> 21) & 0x1f;
726 			ra = (regs->ccr >> (31 - ra)) & 1;
727 			rb = (regs->ccr >> (31 - rb)) & 1;
728 			val = (instr >> (6 + ra * 2 + rb)) & 1;
729 			regs->ccr = (regs->ccr & ~(1UL << (31 - rd))) |
730 				(val << (31 - rd));
731 			goto instr_done;
732 		}
733 		break;
734 	case 31:
735 		switch ((instr >> 1) & 0x3ff) {
736 		case 598:	/* sync */
737 			op->type = BARRIER;
738 #ifdef __powerpc64__
739 			switch ((instr >> 21) & 3) {
740 			case 1:		/* lwsync */
741 				asm volatile("lwsync" : : : "memory");
742 				goto instr_done;
743 			case 2:		/* ptesync */
744 				asm volatile("ptesync" : : : "memory");
745 				goto instr_done;
746 			}
747 #endif
748 			mb();
749 			goto instr_done;
750 
751 		case 854:	/* eieio */
752 			op->type = BARRIER;
753 			eieio();
754 			goto instr_done;
755 		}
756 		break;
757 	}
758 
759 	/* Following cases refer to regs->gpr[], so we need all regs */
760 	if (!FULL_REGS(regs))
761 		return 0;
762 
763 	rd = (instr >> 21) & 0x1f;
764 	ra = (instr >> 16) & 0x1f;
765 	rb = (instr >> 11) & 0x1f;
766 
767 	switch (opcode) {
768 #ifdef __powerpc64__
769 	case 2:		/* tdi */
770 		if (rd & trap_compare(regs->gpr[ra], (short) instr))
771 			goto trap;
772 		goto instr_done;
773 #endif
774 	case 3:		/* twi */
775 		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
776 			goto trap;
777 		goto instr_done;
778 
779 	case 7:		/* mulli */
780 		regs->gpr[rd] = regs->gpr[ra] * (short) instr;
781 		goto instr_done;
782 
783 	case 8:		/* subfic */
784 		imm = (short) instr;
785 		add_with_carry(regs, rd, ~regs->gpr[ra], imm, 1);
786 		goto instr_done;
787 
788 	case 10:	/* cmpli */
789 		imm = (unsigned short) instr;
790 		val = regs->gpr[ra];
791 #ifdef __powerpc64__
792 		if ((rd & 1) == 0)
793 			val = (unsigned int) val;
794 #endif
795 		do_cmp_unsigned(regs, val, imm, rd >> 2);
796 		goto instr_done;
797 
798 	case 11:	/* cmpi */
799 		imm = (short) instr;
800 		val = regs->gpr[ra];
801 #ifdef __powerpc64__
802 		if ((rd & 1) == 0)
803 			val = (int) val;
804 #endif
805 		do_cmp_signed(regs, val, imm, rd >> 2);
806 		goto instr_done;
807 
808 	case 12:	/* addic */
809 		imm = (short) instr;
810 		add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
811 		goto instr_done;
812 
813 	case 13:	/* addic. */
814 		imm = (short) instr;
815 		add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
816 		set_cr0(regs, rd);
817 		goto instr_done;
818 
819 	case 14:	/* addi */
820 		imm = (short) instr;
821 		if (ra)
822 			imm += regs->gpr[ra];
823 		regs->gpr[rd] = imm;
824 		goto instr_done;
825 
826 	case 15:	/* addis */
827 		imm = ((short) instr) << 16;
828 		if (ra)
829 			imm += regs->gpr[ra];
830 		regs->gpr[rd] = imm;
831 		goto instr_done;
832 
833 	case 20:	/* rlwimi */
834 		mb = (instr >> 6) & 0x1f;
835 		me = (instr >> 1) & 0x1f;
836 		val = DATA32(regs->gpr[rd]);
837 		imm = MASK32(mb, me);
838 		regs->gpr[ra] = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
839 		goto logical_done;
840 
841 	case 21:	/* rlwinm */
842 		mb = (instr >> 6) & 0x1f;
843 		me = (instr >> 1) & 0x1f;
844 		val = DATA32(regs->gpr[rd]);
845 		regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
846 		goto logical_done;
847 
848 	case 23:	/* rlwnm */
849 		mb = (instr >> 6) & 0x1f;
850 		me = (instr >> 1) & 0x1f;
851 		rb = regs->gpr[rb] & 0x1f;
852 		val = DATA32(regs->gpr[rd]);
853 		regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
854 		goto logical_done;
855 
856 	case 24:	/* ori */
857 		imm = (unsigned short) instr;
858 		regs->gpr[ra] = regs->gpr[rd] | imm;
859 		goto instr_done;
860 
861 	case 25:	/* oris */
862 		imm = (unsigned short) instr;
863 		regs->gpr[ra] = regs->gpr[rd] | (imm << 16);
864 		goto instr_done;
865 
866 	case 26:	/* xori */
867 		imm = (unsigned short) instr;
868 		regs->gpr[ra] = regs->gpr[rd] ^ imm;
869 		goto instr_done;
870 
871 	case 27:	/* xoris */
872 		imm = (unsigned short) instr;
873 		regs->gpr[ra] = regs->gpr[rd] ^ (imm << 16);
874 		goto instr_done;
875 
876 	case 28:	/* andi. */
877 		imm = (unsigned short) instr;
878 		regs->gpr[ra] = regs->gpr[rd] & imm;
879 		set_cr0(regs, ra);
880 		goto instr_done;
881 
882 	case 29:	/* andis. */
883 		imm = (unsigned short) instr;
884 		regs->gpr[ra] = regs->gpr[rd] & (imm << 16);
885 		set_cr0(regs, ra);
886 		goto instr_done;
887 
888 #ifdef __powerpc64__
889 	case 30:	/* rld* */
890 		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
891 		val = regs->gpr[rd];
892 		if ((instr & 0x10) == 0) {
893 			sh = rb | ((instr & 2) << 4);
894 			val = ROTATE(val, sh);
895 			switch ((instr >> 2) & 3) {
896 			case 0:		/* rldicl */
897 				regs->gpr[ra] = val & MASK64_L(mb);
898 				goto logical_done;
899 			case 1:		/* rldicr */
900 				regs->gpr[ra] = val & MASK64_R(mb);
901 				goto logical_done;
902 			case 2:		/* rldic */
903 				regs->gpr[ra] = val & MASK64(mb, 63 - sh);
904 				goto logical_done;
905 			case 3:		/* rldimi */
906 				imm = MASK64(mb, 63 - sh);
907 				regs->gpr[ra] = (regs->gpr[ra] & ~imm) |
908 					(val & imm);
909 				goto logical_done;
910 			}
911 		} else {
912 			sh = regs->gpr[rb] & 0x3f;
913 			val = ROTATE(val, sh);
914 			switch ((instr >> 1) & 7) {
915 			case 0:		/* rldcl */
916 				regs->gpr[ra] = val & MASK64_L(mb);
917 				goto logical_done;
918 			case 1:		/* rldcr */
919 				regs->gpr[ra] = val & MASK64_R(mb);
920 				goto logical_done;
921 			}
922 		}
923 #endif
924 	break; /* illegal instruction */
925 
926 	case 31:
927 		switch ((instr >> 1) & 0x3ff) {
928 		case 4:		/* tw */
929 			if (rd == 0x1f ||
930 			    (rd & trap_compare((int)regs->gpr[ra],
931 					       (int)regs->gpr[rb])))
932 				goto trap;
933 			goto instr_done;
934 #ifdef __powerpc64__
935 		case 68:	/* td */
936 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
937 				goto trap;
938 			goto instr_done;
939 #endif
940 		case 83:	/* mfmsr */
941 			if (regs->msr & MSR_PR)
942 				goto priv;
943 			op->type = MFMSR;
944 			op->reg = rd;
945 			return 0;
946 		case 146:	/* mtmsr */
947 			if (regs->msr & MSR_PR)
948 				goto priv;
949 			op->type = MTMSR;
950 			op->reg = rd;
951 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
952 			return 0;
953 #ifdef CONFIG_PPC64
954 		case 178:	/* mtmsrd */
955 			if (regs->msr & MSR_PR)
956 				goto priv;
957 			op->type = MTMSR;
958 			op->reg = rd;
959 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
960 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
961 			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
962 			op->val = imm;
963 			return 0;
964 #endif
965 
966 		case 19:	/* mfcr */
967 			regs->gpr[rd] = regs->ccr;
968 			regs->gpr[rd] &= 0xffffffffUL;
969 			goto instr_done;
970 
971 		case 144:	/* mtcrf */
972 			imm = 0xf0000000UL;
973 			val = regs->gpr[rd];
974 			for (sh = 0; sh < 8; ++sh) {
975 				if (instr & (0x80000 >> sh))
976 					regs->ccr = (regs->ccr & ~imm) |
977 						(val & imm);
978 				imm >>= 4;
979 			}
980 			goto instr_done;
981 
982 		case 339:	/* mfspr */
983 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
984 			switch (spr) {
985 			case SPRN_XER:	/* mfxer */
986 				regs->gpr[rd] = regs->xer;
987 				regs->gpr[rd] &= 0xffffffffUL;
988 				goto instr_done;
989 			case SPRN_LR:	/* mflr */
990 				regs->gpr[rd] = regs->link;
991 				goto instr_done;
992 			case SPRN_CTR:	/* mfctr */
993 				regs->gpr[rd] = regs->ctr;
994 				goto instr_done;
995 			default:
996 				op->type = MFSPR;
997 				op->reg = rd;
998 				op->spr = spr;
999 				return 0;
1000 			}
1001 			break;
1002 
1003 		case 467:	/* mtspr */
1004 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1005 			switch (spr) {
1006 			case SPRN_XER:	/* mtxer */
1007 				regs->xer = (regs->gpr[rd] & 0xffffffffUL);
1008 				goto instr_done;
1009 			case SPRN_LR:	/* mtlr */
1010 				regs->link = regs->gpr[rd];
1011 				goto instr_done;
1012 			case SPRN_CTR:	/* mtctr */
1013 				regs->ctr = regs->gpr[rd];
1014 				goto instr_done;
1015 			default:
1016 				op->type = MTSPR;
1017 				op->val = regs->gpr[rd];
1018 				op->spr = spr;
1019 				return 0;
1020 			}
1021 			break;
1022 
1023 /*
1024  * Compare instructions
1025  */
1026 		case 0:	/* cmp */
1027 			val = regs->gpr[ra];
1028 			val2 = regs->gpr[rb];
1029 #ifdef __powerpc64__
1030 			if ((rd & 1) == 0) {
1031 				/* word (32-bit) compare */
1032 				val = (int) val;
1033 				val2 = (int) val2;
1034 			}
1035 #endif
1036 			do_cmp_signed(regs, val, val2, rd >> 2);
1037 			goto instr_done;
1038 
1039 		case 32:	/* cmpl */
1040 			val = regs->gpr[ra];
1041 			val2 = regs->gpr[rb];
1042 #ifdef __powerpc64__
1043 			if ((rd & 1) == 0) {
1044 				/* word (32-bit) compare */
1045 				val = (unsigned int) val;
1046 				val2 = (unsigned int) val2;
1047 			}
1048 #endif
1049 			do_cmp_unsigned(regs, val, val2, rd >> 2);
1050 			goto instr_done;
1051 
1052 /*
1053  * Arithmetic instructions
1054  */
1055 		case 8:	/* subfc */
1056 			add_with_carry(regs, rd, ~regs->gpr[ra],
1057 				       regs->gpr[rb], 1);
1058 			goto arith_done;
1059 #ifdef __powerpc64__
1060 		case 9:	/* mulhdu */
1061 			asm("mulhdu %0,%1,%2" : "=r" (regs->gpr[rd]) :
1062 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1063 			goto arith_done;
1064 #endif
1065 		case 10:	/* addc */
1066 			add_with_carry(regs, rd, regs->gpr[ra],
1067 				       regs->gpr[rb], 0);
1068 			goto arith_done;
1069 
1070 		case 11:	/* mulhwu */
1071 			asm("mulhwu %0,%1,%2" : "=r" (regs->gpr[rd]) :
1072 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1073 			goto arith_done;
1074 
1075 		case 40:	/* subf */
1076 			regs->gpr[rd] = regs->gpr[rb] - regs->gpr[ra];
1077 			goto arith_done;
1078 #ifdef __powerpc64__
1079 		case 73:	/* mulhd */
1080 			asm("mulhd %0,%1,%2" : "=r" (regs->gpr[rd]) :
1081 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1082 			goto arith_done;
1083 #endif
1084 		case 75:	/* mulhw */
1085 			asm("mulhw %0,%1,%2" : "=r" (regs->gpr[rd]) :
1086 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1087 			goto arith_done;
1088 
1089 		case 104:	/* neg */
1090 			regs->gpr[rd] = -regs->gpr[ra];
1091 			goto arith_done;
1092 
1093 		case 136:	/* subfe */
1094 			add_with_carry(regs, rd, ~regs->gpr[ra], regs->gpr[rb],
1095 				       regs->xer & XER_CA);
1096 			goto arith_done;
1097 
1098 		case 138:	/* adde */
1099 			add_with_carry(regs, rd, regs->gpr[ra], regs->gpr[rb],
1100 				       regs->xer & XER_CA);
1101 			goto arith_done;
1102 
1103 		case 200:	/* subfze */
1104 			add_with_carry(regs, rd, ~regs->gpr[ra], 0L,
1105 				       regs->xer & XER_CA);
1106 			goto arith_done;
1107 
1108 		case 202:	/* addze */
1109 			add_with_carry(regs, rd, regs->gpr[ra], 0L,
1110 				       regs->xer & XER_CA);
1111 			goto arith_done;
1112 
1113 		case 232:	/* subfme */
1114 			add_with_carry(regs, rd, ~regs->gpr[ra], -1L,
1115 				       regs->xer & XER_CA);
1116 			goto arith_done;
1117 #ifdef __powerpc64__
1118 		case 233:	/* mulld */
1119 			regs->gpr[rd] = regs->gpr[ra] * regs->gpr[rb];
1120 			goto arith_done;
1121 #endif
1122 		case 234:	/* addme */
1123 			add_with_carry(regs, rd, regs->gpr[ra], -1L,
1124 				       regs->xer & XER_CA);
1125 			goto arith_done;
1126 
1127 		case 235:	/* mullw */
1128 			regs->gpr[rd] = (unsigned int) regs->gpr[ra] *
1129 				(unsigned int) regs->gpr[rb];
1130 			goto arith_done;
1131 
1132 		case 266:	/* add */
1133 			regs->gpr[rd] = regs->gpr[ra] + regs->gpr[rb];
1134 			goto arith_done;
1135 #ifdef __powerpc64__
1136 		case 457:	/* divdu */
1137 			regs->gpr[rd] = regs->gpr[ra] / regs->gpr[rb];
1138 			goto arith_done;
1139 #endif
1140 		case 459:	/* divwu */
1141 			regs->gpr[rd] = (unsigned int) regs->gpr[ra] /
1142 				(unsigned int) regs->gpr[rb];
1143 			goto arith_done;
1144 #ifdef __powerpc64__
1145 		case 489:	/* divd */
1146 			regs->gpr[rd] = (long int) regs->gpr[ra] /
1147 				(long int) regs->gpr[rb];
1148 			goto arith_done;
1149 #endif
1150 		case 491:	/* divw */
1151 			regs->gpr[rd] = (int) regs->gpr[ra] /
1152 				(int) regs->gpr[rb];
1153 			goto arith_done;
1154 
1155 
1156 /*
1157  * Logical instructions
1158  */
1159 		case 26:	/* cntlzw */
1160 			asm("cntlzw %0,%1" : "=r" (regs->gpr[ra]) :
1161 			    "r" (regs->gpr[rd]));
1162 			goto logical_done;
1163 #ifdef __powerpc64__
1164 		case 58:	/* cntlzd */
1165 			asm("cntlzd %0,%1" : "=r" (regs->gpr[ra]) :
1166 			    "r" (regs->gpr[rd]));
1167 			goto logical_done;
1168 #endif
1169 		case 28:	/* and */
1170 			regs->gpr[ra] = regs->gpr[rd] & regs->gpr[rb];
1171 			goto logical_done;
1172 
1173 		case 60:	/* andc */
1174 			regs->gpr[ra] = regs->gpr[rd] & ~regs->gpr[rb];
1175 			goto logical_done;
1176 
1177 		case 124:	/* nor */
1178 			regs->gpr[ra] = ~(regs->gpr[rd] | regs->gpr[rb]);
1179 			goto logical_done;
1180 
1181 		case 284:	/* xor */
1182 			regs->gpr[ra] = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1183 			goto logical_done;
1184 
1185 		case 316:	/* xor */
1186 			regs->gpr[ra] = regs->gpr[rd] ^ regs->gpr[rb];
1187 			goto logical_done;
1188 
1189 		case 412:	/* orc */
1190 			regs->gpr[ra] = regs->gpr[rd] | ~regs->gpr[rb];
1191 			goto logical_done;
1192 
1193 		case 444:	/* or */
1194 			regs->gpr[ra] = regs->gpr[rd] | regs->gpr[rb];
1195 			goto logical_done;
1196 
1197 		case 476:	/* nand */
1198 			regs->gpr[ra] = ~(regs->gpr[rd] & regs->gpr[rb]);
1199 			goto logical_done;
1200 
1201 		case 922:	/* extsh */
1202 			regs->gpr[ra] = (signed short) regs->gpr[rd];
1203 			goto logical_done;
1204 
1205 		case 954:	/* extsb */
1206 			regs->gpr[ra] = (signed char) regs->gpr[rd];
1207 			goto logical_done;
1208 #ifdef __powerpc64__
1209 		case 986:	/* extsw */
1210 			regs->gpr[ra] = (signed int) regs->gpr[rd];
1211 			goto logical_done;
1212 #endif
1213 
1214 /*
1215  * Shift instructions
1216  */
1217 		case 24:	/* slw */
1218 			sh = regs->gpr[rb] & 0x3f;
1219 			if (sh < 32)
1220 				regs->gpr[ra] = (regs->gpr[rd] << sh) & 0xffffffffUL;
1221 			else
1222 				regs->gpr[ra] = 0;
1223 			goto logical_done;
1224 
1225 		case 536:	/* srw */
1226 			sh = regs->gpr[rb] & 0x3f;
1227 			if (sh < 32)
1228 				regs->gpr[ra] = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1229 			else
1230 				regs->gpr[ra] = 0;
1231 			goto logical_done;
1232 
1233 		case 792:	/* sraw */
1234 			sh = regs->gpr[rb] & 0x3f;
1235 			ival = (signed int) regs->gpr[rd];
1236 			regs->gpr[ra] = ival >> (sh < 32 ? sh : 31);
1237 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1238 				regs->xer |= XER_CA;
1239 			else
1240 				regs->xer &= ~XER_CA;
1241 			goto logical_done;
1242 
1243 		case 824:	/* srawi */
1244 			sh = rb;
1245 			ival = (signed int) regs->gpr[rd];
1246 			regs->gpr[ra] = ival >> sh;
1247 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1248 				regs->xer |= XER_CA;
1249 			else
1250 				regs->xer &= ~XER_CA;
1251 			goto logical_done;
1252 
1253 #ifdef __powerpc64__
1254 		case 27:	/* sld */
1255 			sh = regs->gpr[rb] & 0x7f;
1256 			if (sh < 64)
1257 				regs->gpr[ra] = regs->gpr[rd] << sh;
1258 			else
1259 				regs->gpr[ra] = 0;
1260 			goto logical_done;
1261 
1262 		case 539:	/* srd */
1263 			sh = regs->gpr[rb] & 0x7f;
1264 			if (sh < 64)
1265 				regs->gpr[ra] = regs->gpr[rd] >> sh;
1266 			else
1267 				regs->gpr[ra] = 0;
1268 			goto logical_done;
1269 
1270 		case 794:	/* srad */
1271 			sh = regs->gpr[rb] & 0x7f;
1272 			ival = (signed long int) regs->gpr[rd];
1273 			regs->gpr[ra] = ival >> (sh < 64 ? sh : 63);
1274 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1275 				regs->xer |= XER_CA;
1276 			else
1277 				regs->xer &= ~XER_CA;
1278 			goto logical_done;
1279 
1280 		case 826:	/* sradi with sh_5 = 0 */
1281 		case 827:	/* sradi with sh_5 = 1 */
1282 			sh = rb | ((instr & 2) << 4);
1283 			ival = (signed long int) regs->gpr[rd];
1284 			regs->gpr[ra] = ival >> sh;
1285 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1286 				regs->xer |= XER_CA;
1287 			else
1288 				regs->xer &= ~XER_CA;
1289 			goto logical_done;
1290 #endif /* __powerpc64__ */
1291 
1292 /*
1293  * Cache instructions
1294  */
1295 		case 54:	/* dcbst */
1296 			op->type = MKOP(CACHEOP, DCBST, 0);
1297 			op->ea = xform_ea(instr, regs);
1298 			return 0;
1299 
1300 		case 86:	/* dcbf */
1301 			op->type = MKOP(CACHEOP, DCBF, 0);
1302 			op->ea = xform_ea(instr, regs);
1303 			return 0;
1304 
1305 		case 246:	/* dcbtst */
1306 			op->type = MKOP(CACHEOP, DCBTST, 0);
1307 			op->ea = xform_ea(instr, regs);
1308 			op->reg = rd;
1309 			return 0;
1310 
1311 		case 278:	/* dcbt */
1312 			op->type = MKOP(CACHEOP, DCBTST, 0);
1313 			op->ea = xform_ea(instr, regs);
1314 			op->reg = rd;
1315 			return 0;
1316 
1317 		case 982:	/* icbi */
1318 			op->type = MKOP(CACHEOP, ICBI, 0);
1319 			op->ea = xform_ea(instr, regs);
1320 			return 0;
1321 		}
1322 		break;
1323 	}
1324 
1325 	/*
1326 	 * Loads and stores.
1327 	 */
1328 	op->type = UNKNOWN;
1329 	op->update_reg = ra;
1330 	op->reg = rd;
1331 	op->val = regs->gpr[rd];
1332 	u = (instr >> 20) & UPDATE;
1333 
1334 	switch (opcode) {
1335 	case 31:
1336 		u = instr & UPDATE;
1337 		op->ea = xform_ea(instr, regs);
1338 		switch ((instr >> 1) & 0x3ff) {
1339 		case 20:	/* lwarx */
1340 			op->type = MKOP(LARX, 0, 4);
1341 			break;
1342 
1343 		case 150:	/* stwcx. */
1344 			op->type = MKOP(STCX, 0, 4);
1345 			break;
1346 
1347 #ifdef __powerpc64__
1348 		case 84:	/* ldarx */
1349 			op->type = MKOP(LARX, 0, 8);
1350 			break;
1351 
1352 		case 214:	/* stdcx. */
1353 			op->type = MKOP(STCX, 0, 8);
1354 			break;
1355 
1356 		case 21:	/* ldx */
1357 		case 53:	/* ldux */
1358 			op->type = MKOP(LOAD, u, 8);
1359 			break;
1360 #endif
1361 
1362 		case 23:	/* lwzx */
1363 		case 55:	/* lwzux */
1364 			op->type = MKOP(LOAD, u, 4);
1365 			break;
1366 
1367 		case 87:	/* lbzx */
1368 		case 119:	/* lbzux */
1369 			op->type = MKOP(LOAD, u, 1);
1370 			break;
1371 
1372 #ifdef CONFIG_ALTIVEC
1373 		case 103:	/* lvx */
1374 		case 359:	/* lvxl */
1375 			if (!(regs->msr & MSR_VEC))
1376 				goto vecunavail;
1377 			op->type = MKOP(LOAD_VMX, 0, 16);
1378 			break;
1379 
1380 		case 231:	/* stvx */
1381 		case 487:	/* stvxl */
1382 			if (!(regs->msr & MSR_VEC))
1383 				goto vecunavail;
1384 			op->type = MKOP(STORE_VMX, 0, 16);
1385 			break;
1386 #endif /* CONFIG_ALTIVEC */
1387 
1388 #ifdef __powerpc64__
1389 		case 149:	/* stdx */
1390 		case 181:	/* stdux */
1391 			op->type = MKOP(STORE, u, 8);
1392 			break;
1393 #endif
1394 
1395 		case 151:	/* stwx */
1396 		case 183:	/* stwux */
1397 			op->type = MKOP(STORE, u, 4);
1398 			break;
1399 
1400 		case 215:	/* stbx */
1401 		case 247:	/* stbux */
1402 			op->type = MKOP(STORE, u, 1);
1403 			break;
1404 
1405 		case 279:	/* lhzx */
1406 		case 311:	/* lhzux */
1407 			op->type = MKOP(LOAD, u, 2);
1408 			break;
1409 
1410 #ifdef __powerpc64__
1411 		case 341:	/* lwax */
1412 		case 373:	/* lwaux */
1413 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
1414 			break;
1415 #endif
1416 
1417 		case 343:	/* lhax */
1418 		case 375:	/* lhaux */
1419 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
1420 			break;
1421 
1422 		case 407:	/* sthx */
1423 		case 439:	/* sthux */
1424 			op->type = MKOP(STORE, u, 2);
1425 			break;
1426 
1427 #ifdef __powerpc64__
1428 		case 532:	/* ldbrx */
1429 			op->type = MKOP(LOAD, BYTEREV, 8);
1430 			break;
1431 
1432 #endif
1433 		case 533:	/* lswx */
1434 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
1435 			break;
1436 
1437 		case 534:	/* lwbrx */
1438 			op->type = MKOP(LOAD, BYTEREV, 4);
1439 			break;
1440 
1441 		case 597:	/* lswi */
1442 			if (rb == 0)
1443 				rb = 32;	/* # bytes to load */
1444 			op->type = MKOP(LOAD_MULTI, 0, rb);
1445 			op->ea = 0;
1446 			if (ra)
1447 				op->ea = truncate_if_32bit(regs->msr,
1448 							   regs->gpr[ra]);
1449 			break;
1450 
1451 #ifdef CONFIG_PPC_FPU
1452 		case 535:	/* lfsx */
1453 		case 567:	/* lfsux */
1454 			if (!(regs->msr & MSR_FP))
1455 				goto fpunavail;
1456 			op->type = MKOP(LOAD_FP, u, 4);
1457 			break;
1458 
1459 		case 599:	/* lfdx */
1460 		case 631:	/* lfdux */
1461 			if (!(regs->msr & MSR_FP))
1462 				goto fpunavail;
1463 			op->type = MKOP(LOAD_FP, u, 8);
1464 			break;
1465 
1466 		case 663:	/* stfsx */
1467 		case 695:	/* stfsux */
1468 			if (!(regs->msr & MSR_FP))
1469 				goto fpunavail;
1470 			op->type = MKOP(STORE_FP, u, 4);
1471 			break;
1472 
1473 		case 727:	/* stfdx */
1474 		case 759:	/* stfdux */
1475 			if (!(regs->msr & MSR_FP))
1476 				goto fpunavail;
1477 			op->type = MKOP(STORE_FP, u, 8);
1478 			break;
1479 #endif
1480 
1481 #ifdef __powerpc64__
1482 		case 660:	/* stdbrx */
1483 			op->type = MKOP(STORE, BYTEREV, 8);
1484 			op->val = byterev_8(regs->gpr[rd]);
1485 			break;
1486 
1487 #endif
1488 		case 661:	/* stswx */
1489 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
1490 			break;
1491 
1492 		case 662:	/* stwbrx */
1493 			op->type = MKOP(STORE, BYTEREV, 4);
1494 			op->val = byterev_4(regs->gpr[rd]);
1495 			break;
1496 
1497 		case 725:
1498 			if (rb == 0)
1499 				rb = 32;	/* # bytes to store */
1500 			op->type = MKOP(STORE_MULTI, 0, rb);
1501 			op->ea = 0;
1502 			if (ra)
1503 				op->ea = truncate_if_32bit(regs->msr,
1504 							   regs->gpr[ra]);
1505 			break;
1506 
1507 		case 790:	/* lhbrx */
1508 			op->type = MKOP(LOAD, BYTEREV, 2);
1509 			break;
1510 
1511 		case 918:	/* sthbrx */
1512 			op->type = MKOP(STORE, BYTEREV, 2);
1513 			op->val = byterev_2(regs->gpr[rd]);
1514 			break;
1515 
1516 #ifdef CONFIG_VSX
1517 		case 844:	/* lxvd2x */
1518 		case 876:	/* lxvd2ux */
1519 			if (!(regs->msr & MSR_VSX))
1520 				goto vsxunavail;
1521 			op->reg = rd | ((instr & 1) << 5);
1522 			op->type = MKOP(LOAD_VSX, u, 16);
1523 			break;
1524 
1525 		case 972:	/* stxvd2x */
1526 		case 1004:	/* stxvd2ux */
1527 			if (!(regs->msr & MSR_VSX))
1528 				goto vsxunavail;
1529 			op->reg = rd | ((instr & 1) << 5);
1530 			op->type = MKOP(STORE_VSX, u, 16);
1531 			break;
1532 
1533 #endif /* CONFIG_VSX */
1534 		}
1535 		break;
1536 
1537 	case 32:	/* lwz */
1538 	case 33:	/* lwzu */
1539 		op->type = MKOP(LOAD, u, 4);
1540 		op->ea = dform_ea(instr, regs);
1541 		break;
1542 
1543 	case 34:	/* lbz */
1544 	case 35:	/* lbzu */
1545 		op->type = MKOP(LOAD, u, 1);
1546 		op->ea = dform_ea(instr, regs);
1547 		break;
1548 
1549 	case 36:	/* stw */
1550 	case 37:	/* stwu */
1551 		op->type = MKOP(STORE, u, 4);
1552 		op->ea = dform_ea(instr, regs);
1553 		break;
1554 
1555 	case 38:	/* stb */
1556 	case 39:	/* stbu */
1557 		op->type = MKOP(STORE, u, 1);
1558 		op->ea = dform_ea(instr, regs);
1559 		break;
1560 
1561 	case 40:	/* lhz */
1562 	case 41:	/* lhzu */
1563 		op->type = MKOP(LOAD, u, 2);
1564 		op->ea = dform_ea(instr, regs);
1565 		break;
1566 
1567 	case 42:	/* lha */
1568 	case 43:	/* lhau */
1569 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
1570 		op->ea = dform_ea(instr, regs);
1571 		break;
1572 
1573 	case 44:	/* sth */
1574 	case 45:	/* sthu */
1575 		op->type = MKOP(STORE, u, 2);
1576 		op->ea = dform_ea(instr, regs);
1577 		break;
1578 
1579 	case 46:	/* lmw */
1580 		if (ra >= rd)
1581 			break;		/* invalid form, ra in range to load */
1582 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
1583 		op->ea = dform_ea(instr, regs);
1584 		break;
1585 
1586 	case 47:	/* stmw */
1587 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
1588 		op->ea = dform_ea(instr, regs);
1589 		break;
1590 
1591 #ifdef CONFIG_PPC_FPU
1592 	case 48:	/* lfs */
1593 	case 49:	/* lfsu */
1594 		if (!(regs->msr & MSR_FP))
1595 			goto fpunavail;
1596 		op->type = MKOP(LOAD_FP, u, 4);
1597 		op->ea = dform_ea(instr, regs);
1598 		break;
1599 
1600 	case 50:	/* lfd */
1601 	case 51:	/* lfdu */
1602 		if (!(regs->msr & MSR_FP))
1603 			goto fpunavail;
1604 		op->type = MKOP(LOAD_FP, u, 8);
1605 		op->ea = dform_ea(instr, regs);
1606 		break;
1607 
1608 	case 52:	/* stfs */
1609 	case 53:	/* stfsu */
1610 		if (!(regs->msr & MSR_FP))
1611 			goto fpunavail;
1612 		op->type = MKOP(STORE_FP, u, 4);
1613 		op->ea = dform_ea(instr, regs);
1614 		break;
1615 
1616 	case 54:	/* stfd */
1617 	case 55:	/* stfdu */
1618 		if (!(regs->msr & MSR_FP))
1619 			goto fpunavail;
1620 		op->type = MKOP(STORE_FP, u, 8);
1621 		op->ea = dform_ea(instr, regs);
1622 		break;
1623 #endif
1624 
1625 #ifdef __powerpc64__
1626 	case 58:	/* ld[u], lwa */
1627 		op->ea = dsform_ea(instr, regs);
1628 		switch (instr & 3) {
1629 		case 0:		/* ld */
1630 			op->type = MKOP(LOAD, 0, 8);
1631 			break;
1632 		case 1:		/* ldu */
1633 			op->type = MKOP(LOAD, UPDATE, 8);
1634 			break;
1635 		case 2:		/* lwa */
1636 			op->type = MKOP(LOAD, SIGNEXT, 4);
1637 			break;
1638 		}
1639 		break;
1640 
1641 	case 62:	/* std[u] */
1642 		op->ea = dsform_ea(instr, regs);
1643 		switch (instr & 3) {
1644 		case 0:		/* std */
1645 			op->type = MKOP(STORE, 0, 8);
1646 			break;
1647 		case 1:		/* stdu */
1648 			op->type = MKOP(STORE, UPDATE, 8);
1649 			break;
1650 		}
1651 		break;
1652 #endif /* __powerpc64__ */
1653 
1654 	}
1655 	return 0;
1656 
1657  logical_done:
1658 	if (instr & 1)
1659 		set_cr0(regs, ra);
1660 	goto instr_done;
1661 
1662  arith_done:
1663 	if (instr & 1)
1664 		set_cr0(regs, rd);
1665 
1666  instr_done:
1667 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
1668 	return 1;
1669 
1670  priv:
1671 	op->type = INTERRUPT | 0x700;
1672 	op->val = SRR1_PROGPRIV;
1673 	return 0;
1674 
1675  trap:
1676 	op->type = INTERRUPT | 0x700;
1677 	op->val = SRR1_PROGTRAP;
1678 	return 0;
1679 
1680 #ifdef CONFIG_PPC_FPU
1681  fpunavail:
1682 	op->type = INTERRUPT | 0x800;
1683 	return 0;
1684 #endif
1685 
1686 #ifdef CONFIG_ALTIVEC
1687  vecunavail:
1688 	op->type = INTERRUPT | 0xf20;
1689 	return 0;
1690 #endif
1691 
1692 #ifdef CONFIG_VSX
1693  vsxunavail:
1694 	op->type = INTERRUPT | 0xf40;
1695 	return 0;
1696 #endif
1697 }
1698 EXPORT_SYMBOL_GPL(analyse_instr);
1699 NOKPROBE_SYMBOL(analyse_instr);
1700 
1701 /*
1702  * For PPC32 we always use stwu with r1 to change the stack pointer.
1703  * So this emulated store may corrupt the exception frame, now we
1704  * have to provide the exception frame trampoline, which is pushed
1705  * below the kprobed function stack. So we only update gpr[1] but
1706  * don't emulate the real store operation. We will do real store
1707  * operation safely in exception return code by checking this flag.
1708  */
1709 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
1710 {
1711 #ifdef CONFIG_PPC32
1712 	/*
1713 	 * Check if we will touch kernel stack overflow
1714 	 */
1715 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
1716 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
1717 		return -EINVAL;
1718 	}
1719 #endif /* CONFIG_PPC32 */
1720 	/*
1721 	 * Check if we already set since that means we'll
1722 	 * lose the previous value.
1723 	 */
1724 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
1725 	set_thread_flag(TIF_EMULATE_STACK_STORE);
1726 	return 0;
1727 }
1728 
1729 static nokprobe_inline void do_signext(unsigned long *valp, int size)
1730 {
1731 	switch (size) {
1732 	case 2:
1733 		*valp = (signed short) *valp;
1734 		break;
1735 	case 4:
1736 		*valp = (signed int) *valp;
1737 		break;
1738 	}
1739 }
1740 
1741 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
1742 {
1743 	switch (size) {
1744 	case 2:
1745 		*valp = byterev_2(*valp);
1746 		break;
1747 	case 4:
1748 		*valp = byterev_4(*valp);
1749 		break;
1750 #ifdef __powerpc64__
1751 	case 8:
1752 		*valp = byterev_8(*valp);
1753 		break;
1754 #endif
1755 	}
1756 }
1757 
1758 /*
1759  * Emulate instructions that cause a transfer of control,
1760  * loads and stores, and a few other instructions.
1761  * Returns 1 if the step was emulated, 0 if not,
1762  * or -1 if the instruction is one that should not be stepped,
1763  * such as an rfid, or a mtmsrd that would clear MSR_RI.
1764  */
1765 int emulate_step(struct pt_regs *regs, unsigned int instr)
1766 {
1767 	struct instruction_op op;
1768 	int r, err, size;
1769 	unsigned long val;
1770 	unsigned int cr;
1771 	int i, rd, nb;
1772 
1773 	r = analyse_instr(&op, regs, instr);
1774 	if (r != 0)
1775 		return r;
1776 
1777 	err = 0;
1778 	size = GETSIZE(op.type);
1779 	switch (op.type & INSTR_TYPE_MASK) {
1780 	case CACHEOP:
1781 		if (!address_ok(regs, op.ea, 8))
1782 			return 0;
1783 		switch (op.type & CACHEOP_MASK) {
1784 		case DCBST:
1785 			__cacheop_user_asmx(op.ea, err, "dcbst");
1786 			break;
1787 		case DCBF:
1788 			__cacheop_user_asmx(op.ea, err, "dcbf");
1789 			break;
1790 		case DCBTST:
1791 			if (op.reg == 0)
1792 				prefetchw((void *) op.ea);
1793 			break;
1794 		case DCBT:
1795 			if (op.reg == 0)
1796 				prefetch((void *) op.ea);
1797 			break;
1798 		case ICBI:
1799 			__cacheop_user_asmx(op.ea, err, "icbi");
1800 			break;
1801 		}
1802 		if (err)
1803 			return 0;
1804 		goto instr_done;
1805 
1806 	case LARX:
1807 		if (op.ea & (size - 1))
1808 			break;		/* can't handle misaligned */
1809 		if (!address_ok(regs, op.ea, size))
1810 			return 0;
1811 		err = 0;
1812 		switch (size) {
1813 		case 4:
1814 			__get_user_asmx(val, op.ea, err, "lwarx");
1815 			break;
1816 #ifdef __powerpc64__
1817 		case 8:
1818 			__get_user_asmx(val, op.ea, err, "ldarx");
1819 			break;
1820 #endif
1821 		default:
1822 			return 0;
1823 		}
1824 		if (!err)
1825 			regs->gpr[op.reg] = val;
1826 		goto ldst_done;
1827 
1828 	case STCX:
1829 		if (op.ea & (size - 1))
1830 			break;		/* can't handle misaligned */
1831 		if (!address_ok(regs, op.ea, size))
1832 			return 0;
1833 		err = 0;
1834 		switch (size) {
1835 		case 4:
1836 			__put_user_asmx(op.val, op.ea, err, "stwcx.", cr);
1837 			break;
1838 #ifdef __powerpc64__
1839 		case 8:
1840 			__put_user_asmx(op.val, op.ea, err, "stdcx.", cr);
1841 			break;
1842 #endif
1843 		default:
1844 			return 0;
1845 		}
1846 		if (!err)
1847 			regs->ccr = (regs->ccr & 0x0fffffff) |
1848 				(cr & 0xe0000000) |
1849 				((regs->xer >> 3) & 0x10000000);
1850 		goto ldst_done;
1851 
1852 	case LOAD:
1853 		err = read_mem(&regs->gpr[op.reg], op.ea, size, regs);
1854 		if (!err) {
1855 			if (op.type & SIGNEXT)
1856 				do_signext(&regs->gpr[op.reg], size);
1857 			if (op.type & BYTEREV)
1858 				do_byterev(&regs->gpr[op.reg], size);
1859 		}
1860 		goto ldst_done;
1861 
1862 #ifdef CONFIG_PPC_FPU
1863 	case LOAD_FP:
1864 		if (size == 4)
1865 			err = do_fp_load(op.reg, do_lfs, op.ea, size, regs);
1866 		else
1867 			err = do_fp_load(op.reg, do_lfd, op.ea, size, regs);
1868 		goto ldst_done;
1869 #endif
1870 #ifdef CONFIG_ALTIVEC
1871 	case LOAD_VMX:
1872 		err = do_vec_load(op.reg, do_lvx, op.ea & ~0xfUL, regs);
1873 		goto ldst_done;
1874 #endif
1875 #ifdef CONFIG_VSX
1876 	case LOAD_VSX:
1877 		err = do_vsx_load(op.reg, do_lxvd2x, op.ea, regs);
1878 		goto ldst_done;
1879 #endif
1880 	case LOAD_MULTI:
1881 		if (regs->msr & MSR_LE)
1882 			return 0;
1883 		rd = op.reg;
1884 		for (i = 0; i < size; i += 4) {
1885 			nb = size - i;
1886 			if (nb > 4)
1887 				nb = 4;
1888 			err = read_mem(&regs->gpr[rd], op.ea, nb, regs);
1889 			if (err)
1890 				return 0;
1891 			if (nb < 4)	/* left-justify last bytes */
1892 				regs->gpr[rd] <<= 32 - 8 * nb;
1893 			op.ea += 4;
1894 			++rd;
1895 		}
1896 		goto instr_done;
1897 
1898 	case STORE:
1899 		if ((op.type & UPDATE) && size == sizeof(long) &&
1900 		    op.reg == 1 && op.update_reg == 1 &&
1901 		    !(regs->msr & MSR_PR) &&
1902 		    op.ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
1903 			err = handle_stack_update(op.ea, regs);
1904 			goto ldst_done;
1905 		}
1906 		err = write_mem(op.val, op.ea, size, regs);
1907 		goto ldst_done;
1908 
1909 #ifdef CONFIG_PPC_FPU
1910 	case STORE_FP:
1911 		if (size == 4)
1912 			err = do_fp_store(op.reg, do_stfs, op.ea, size, regs);
1913 		else
1914 			err = do_fp_store(op.reg, do_stfd, op.ea, size, regs);
1915 		goto ldst_done;
1916 #endif
1917 #ifdef CONFIG_ALTIVEC
1918 	case STORE_VMX:
1919 		err = do_vec_store(op.reg, do_stvx, op.ea & ~0xfUL, regs);
1920 		goto ldst_done;
1921 #endif
1922 #ifdef CONFIG_VSX
1923 	case STORE_VSX:
1924 		err = do_vsx_store(op.reg, do_stxvd2x, op.ea, regs);
1925 		goto ldst_done;
1926 #endif
1927 	case STORE_MULTI:
1928 		if (regs->msr & MSR_LE)
1929 			return 0;
1930 		rd = op.reg;
1931 		for (i = 0; i < size; i += 4) {
1932 			val = regs->gpr[rd];
1933 			nb = size - i;
1934 			if (nb > 4)
1935 				nb = 4;
1936 			else
1937 				val >>= 32 - 8 * nb;
1938 			err = write_mem(val, op.ea, nb, regs);
1939 			if (err)
1940 				return 0;
1941 			op.ea += 4;
1942 			++rd;
1943 		}
1944 		goto instr_done;
1945 
1946 	case MFMSR:
1947 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
1948 		goto instr_done;
1949 
1950 	case MTMSR:
1951 		val = regs->gpr[op.reg];
1952 		if ((val & MSR_RI) == 0)
1953 			/* can't step mtmsr[d] that would clear MSR_RI */
1954 			return -1;
1955 		/* here op.val is the mask of bits to change */
1956 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
1957 		goto instr_done;
1958 
1959 #ifdef CONFIG_PPC64
1960 	case SYSCALL:	/* sc */
1961 		/*
1962 		 * N.B. this uses knowledge about how the syscall
1963 		 * entry code works.  If that is changed, this will
1964 		 * need to be changed also.
1965 		 */
1966 		if (regs->gpr[0] == 0x1ebe &&
1967 		    cpu_has_feature(CPU_FTR_REAL_LE)) {
1968 			regs->msr ^= MSR_LE;
1969 			goto instr_done;
1970 		}
1971 		regs->gpr[9] = regs->gpr[13];
1972 		regs->gpr[10] = MSR_KERNEL;
1973 		regs->gpr[11] = regs->nip + 4;
1974 		regs->gpr[12] = regs->msr & MSR_MASK;
1975 		regs->gpr[13] = (unsigned long) get_paca();
1976 		regs->nip = (unsigned long) &system_call_common;
1977 		regs->msr = MSR_KERNEL;
1978 		return 1;
1979 
1980 	case RFI:
1981 		return -1;
1982 #endif
1983 	}
1984 	return 0;
1985 
1986  ldst_done:
1987 	if (err)
1988 		return 0;
1989 	if (op.type & UPDATE)
1990 		regs->gpr[op.update_reg] = op.ea;
1991 
1992  instr_done:
1993 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
1994 	return 1;
1995 }
1996 NOKPROBE_SYMBOL(emulate_step);
1997