xref: /linux/arch/powerpc/kvm/book3s_64_mmu_hv.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 
28 #include <asm/tlbflush.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu-hash64.h>
32 #include <asm/hvcall.h>
33 #include <asm/synch.h>
34 #include <asm/ppc-opcode.h>
35 #include <asm/cputable.h>
36 
37 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
38 #define MAX_LPID_970	63
39 
40 /* Power architecture requires HPT is at least 256kB */
41 #define PPC_MIN_HPT_ORDER	18
42 
43 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
44 {
45 	unsigned long hpt;
46 	struct revmap_entry *rev;
47 	struct kvmppc_linear_info *li;
48 	long order = kvm_hpt_order;
49 
50 	if (htab_orderp) {
51 		order = *htab_orderp;
52 		if (order < PPC_MIN_HPT_ORDER)
53 			order = PPC_MIN_HPT_ORDER;
54 	}
55 
56 	/*
57 	 * If the user wants a different size from default,
58 	 * try first to allocate it from the kernel page allocator.
59 	 */
60 	hpt = 0;
61 	if (order != kvm_hpt_order) {
62 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
63 				       __GFP_NOWARN, order - PAGE_SHIFT);
64 		if (!hpt)
65 			--order;
66 	}
67 
68 	/* Next try to allocate from the preallocated pool */
69 	if (!hpt) {
70 		li = kvm_alloc_hpt();
71 		if (li) {
72 			hpt = (ulong)li->base_virt;
73 			kvm->arch.hpt_li = li;
74 			order = kvm_hpt_order;
75 		}
76 	}
77 
78 	/* Lastly try successively smaller sizes from the page allocator */
79 	while (!hpt && order > PPC_MIN_HPT_ORDER) {
80 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
81 				       __GFP_NOWARN, order - PAGE_SHIFT);
82 		if (!hpt)
83 			--order;
84 	}
85 
86 	if (!hpt)
87 		return -ENOMEM;
88 
89 	kvm->arch.hpt_virt = hpt;
90 	kvm->arch.hpt_order = order;
91 	/* HPTEs are 2**4 bytes long */
92 	kvm->arch.hpt_npte = 1ul << (order - 4);
93 	/* 128 (2**7) bytes in each HPTEG */
94 	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
95 
96 	/* Allocate reverse map array */
97 	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
98 	if (!rev) {
99 		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
100 		goto out_freehpt;
101 	}
102 	kvm->arch.revmap = rev;
103 	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
104 
105 	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
106 		hpt, order, kvm->arch.lpid);
107 
108 	if (htab_orderp)
109 		*htab_orderp = order;
110 	return 0;
111 
112  out_freehpt:
113 	if (kvm->arch.hpt_li)
114 		kvm_release_hpt(kvm->arch.hpt_li);
115 	else
116 		free_pages(hpt, order - PAGE_SHIFT);
117 	return -ENOMEM;
118 }
119 
120 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
121 {
122 	long err = -EBUSY;
123 	long order;
124 
125 	mutex_lock(&kvm->lock);
126 	if (kvm->arch.rma_setup_done) {
127 		kvm->arch.rma_setup_done = 0;
128 		/* order rma_setup_done vs. vcpus_running */
129 		smp_mb();
130 		if (atomic_read(&kvm->arch.vcpus_running)) {
131 			kvm->arch.rma_setup_done = 1;
132 			goto out;
133 		}
134 	}
135 	if (kvm->arch.hpt_virt) {
136 		order = kvm->arch.hpt_order;
137 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
138 		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
139 		/*
140 		 * Set the whole last_vcpu array to an invalid vcpu number.
141 		 * This ensures that each vcpu will flush its TLB on next entry.
142 		 */
143 		memset(kvm->arch.last_vcpu, 0xff, sizeof(kvm->arch.last_vcpu));
144 		*htab_orderp = order;
145 		err = 0;
146 	} else {
147 		err = kvmppc_alloc_hpt(kvm, htab_orderp);
148 		order = *htab_orderp;
149 	}
150  out:
151 	mutex_unlock(&kvm->lock);
152 	return err;
153 }
154 
155 void kvmppc_free_hpt(struct kvm *kvm)
156 {
157 	kvmppc_free_lpid(kvm->arch.lpid);
158 	vfree(kvm->arch.revmap);
159 	if (kvm->arch.hpt_li)
160 		kvm_release_hpt(kvm->arch.hpt_li);
161 	else
162 		free_pages(kvm->arch.hpt_virt,
163 			   kvm->arch.hpt_order - PAGE_SHIFT);
164 }
165 
166 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
167 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
168 {
169 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
170 }
171 
172 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
173 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
174 {
175 	return (pgsize == 0x10000) ? 0x1000 : 0;
176 }
177 
178 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
179 		     unsigned long porder)
180 {
181 	unsigned long i;
182 	unsigned long npages;
183 	unsigned long hp_v, hp_r;
184 	unsigned long addr, hash;
185 	unsigned long psize;
186 	unsigned long hp0, hp1;
187 	long ret;
188 	struct kvm *kvm = vcpu->kvm;
189 
190 	psize = 1ul << porder;
191 	npages = memslot->npages >> (porder - PAGE_SHIFT);
192 
193 	/* VRMA can't be > 1TB */
194 	if (npages > 1ul << (40 - porder))
195 		npages = 1ul << (40 - porder);
196 	/* Can't use more than 1 HPTE per HPTEG */
197 	if (npages > kvm->arch.hpt_mask + 1)
198 		npages = kvm->arch.hpt_mask + 1;
199 
200 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
201 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
202 	hp1 = hpte1_pgsize_encoding(psize) |
203 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
204 
205 	for (i = 0; i < npages; ++i) {
206 		addr = i << porder;
207 		/* can't use hpt_hash since va > 64 bits */
208 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
209 		/*
210 		 * We assume that the hash table is empty and no
211 		 * vcpus are using it at this stage.  Since we create
212 		 * at most one HPTE per HPTEG, we just assume entry 7
213 		 * is available and use it.
214 		 */
215 		hash = (hash << 3) + 7;
216 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
217 		hp_r = hp1 | addr;
218 		ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
219 		if (ret != H_SUCCESS) {
220 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
221 			       addr, ret);
222 			break;
223 		}
224 	}
225 }
226 
227 int kvmppc_mmu_hv_init(void)
228 {
229 	unsigned long host_lpid, rsvd_lpid;
230 
231 	if (!cpu_has_feature(CPU_FTR_HVMODE))
232 		return -EINVAL;
233 
234 	/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
235 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
236 		host_lpid = mfspr(SPRN_LPID);	/* POWER7 */
237 		rsvd_lpid = LPID_RSVD;
238 	} else {
239 		host_lpid = 0;			/* PPC970 */
240 		rsvd_lpid = MAX_LPID_970;
241 	}
242 
243 	kvmppc_init_lpid(rsvd_lpid + 1);
244 
245 	kvmppc_claim_lpid(host_lpid);
246 	/* rsvd_lpid is reserved for use in partition switching */
247 	kvmppc_claim_lpid(rsvd_lpid);
248 
249 	return 0;
250 }
251 
252 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
253 {
254 }
255 
256 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
257 {
258 	kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
259 }
260 
261 /*
262  * This is called to get a reference to a guest page if there isn't
263  * one already in the kvm->arch.slot_phys[][] arrays.
264  */
265 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
266 				  struct kvm_memory_slot *memslot,
267 				  unsigned long psize)
268 {
269 	unsigned long start;
270 	long np, err;
271 	struct page *page, *hpage, *pages[1];
272 	unsigned long s, pgsize;
273 	unsigned long *physp;
274 	unsigned int is_io, got, pgorder;
275 	struct vm_area_struct *vma;
276 	unsigned long pfn, i, npages;
277 
278 	physp = kvm->arch.slot_phys[memslot->id];
279 	if (!physp)
280 		return -EINVAL;
281 	if (physp[gfn - memslot->base_gfn])
282 		return 0;
283 
284 	is_io = 0;
285 	got = 0;
286 	page = NULL;
287 	pgsize = psize;
288 	err = -EINVAL;
289 	start = gfn_to_hva_memslot(memslot, gfn);
290 
291 	/* Instantiate and get the page we want access to */
292 	np = get_user_pages_fast(start, 1, 1, pages);
293 	if (np != 1) {
294 		/* Look up the vma for the page */
295 		down_read(&current->mm->mmap_sem);
296 		vma = find_vma(current->mm, start);
297 		if (!vma || vma->vm_start > start ||
298 		    start + psize > vma->vm_end ||
299 		    !(vma->vm_flags & VM_PFNMAP))
300 			goto up_err;
301 		is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
302 		pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
303 		/* check alignment of pfn vs. requested page size */
304 		if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
305 			goto up_err;
306 		up_read(&current->mm->mmap_sem);
307 
308 	} else {
309 		page = pages[0];
310 		got = KVMPPC_GOT_PAGE;
311 
312 		/* See if this is a large page */
313 		s = PAGE_SIZE;
314 		if (PageHuge(page)) {
315 			hpage = compound_head(page);
316 			s <<= compound_order(hpage);
317 			/* Get the whole large page if slot alignment is ok */
318 			if (s > psize && slot_is_aligned(memslot, s) &&
319 			    !(memslot->userspace_addr & (s - 1))) {
320 				start &= ~(s - 1);
321 				pgsize = s;
322 				get_page(hpage);
323 				put_page(page);
324 				page = hpage;
325 			}
326 		}
327 		if (s < psize)
328 			goto out;
329 		pfn = page_to_pfn(page);
330 	}
331 
332 	npages = pgsize >> PAGE_SHIFT;
333 	pgorder = __ilog2(npages);
334 	physp += (gfn - memslot->base_gfn) & ~(npages - 1);
335 	spin_lock(&kvm->arch.slot_phys_lock);
336 	for (i = 0; i < npages; ++i) {
337 		if (!physp[i]) {
338 			physp[i] = ((pfn + i) << PAGE_SHIFT) +
339 				got + is_io + pgorder;
340 			got = 0;
341 		}
342 	}
343 	spin_unlock(&kvm->arch.slot_phys_lock);
344 	err = 0;
345 
346  out:
347 	if (got)
348 		put_page(page);
349 	return err;
350 
351  up_err:
352 	up_read(&current->mm->mmap_sem);
353 	return err;
354 }
355 
356 /*
357  * We come here on a H_ENTER call from the guest when we are not
358  * using mmu notifiers and we don't have the requested page pinned
359  * already.
360  */
361 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
362 			long pte_index, unsigned long pteh, unsigned long ptel)
363 {
364 	struct kvm *kvm = vcpu->kvm;
365 	unsigned long psize, gpa, gfn;
366 	struct kvm_memory_slot *memslot;
367 	long ret;
368 
369 	if (kvm->arch.using_mmu_notifiers)
370 		goto do_insert;
371 
372 	psize = hpte_page_size(pteh, ptel);
373 	if (!psize)
374 		return H_PARAMETER;
375 
376 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
377 
378 	/* Find the memslot (if any) for this address */
379 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
380 	gfn = gpa >> PAGE_SHIFT;
381 	memslot = gfn_to_memslot(kvm, gfn);
382 	if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
383 		if (!slot_is_aligned(memslot, psize))
384 			return H_PARAMETER;
385 		if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
386 			return H_PARAMETER;
387 	}
388 
389  do_insert:
390 	/* Protect linux PTE lookup from page table destruction */
391 	rcu_read_lock_sched();	/* this disables preemption too */
392 	vcpu->arch.pgdir = current->mm->pgd;
393 	ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
394 	rcu_read_unlock_sched();
395 	if (ret == H_TOO_HARD) {
396 		/* this can't happen */
397 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
398 		ret = H_RESOURCE;	/* or something */
399 	}
400 	return ret;
401 
402 }
403 
404 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
405 							 gva_t eaddr)
406 {
407 	u64 mask;
408 	int i;
409 
410 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
411 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
412 			continue;
413 
414 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
415 			mask = ESID_MASK_1T;
416 		else
417 			mask = ESID_MASK;
418 
419 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
420 			return &vcpu->arch.slb[i];
421 	}
422 	return NULL;
423 }
424 
425 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
426 			unsigned long ea)
427 {
428 	unsigned long ra_mask;
429 
430 	ra_mask = hpte_page_size(v, r) - 1;
431 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
432 }
433 
434 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
435 			struct kvmppc_pte *gpte, bool data)
436 {
437 	struct kvm *kvm = vcpu->kvm;
438 	struct kvmppc_slb *slbe;
439 	unsigned long slb_v;
440 	unsigned long pp, key;
441 	unsigned long v, gr;
442 	unsigned long *hptep;
443 	int index;
444 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
445 
446 	/* Get SLB entry */
447 	if (virtmode) {
448 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
449 		if (!slbe)
450 			return -EINVAL;
451 		slb_v = slbe->origv;
452 	} else {
453 		/* real mode access */
454 		slb_v = vcpu->kvm->arch.vrma_slb_v;
455 	}
456 
457 	/* Find the HPTE in the hash table */
458 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
459 					 HPTE_V_VALID | HPTE_V_ABSENT);
460 	if (index < 0)
461 		return -ENOENT;
462 	hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
463 	v = hptep[0] & ~HPTE_V_HVLOCK;
464 	gr = kvm->arch.revmap[index].guest_rpte;
465 
466 	/* Unlock the HPTE */
467 	asm volatile("lwsync" : : : "memory");
468 	hptep[0] = v;
469 
470 	gpte->eaddr = eaddr;
471 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
472 
473 	/* Get PP bits and key for permission check */
474 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
475 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
476 	key &= slb_v;
477 
478 	/* Calculate permissions */
479 	gpte->may_read = hpte_read_permission(pp, key);
480 	gpte->may_write = hpte_write_permission(pp, key);
481 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
482 
483 	/* Storage key permission check for POWER7 */
484 	if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
485 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
486 		if (amrfield & 1)
487 			gpte->may_read = 0;
488 		if (amrfield & 2)
489 			gpte->may_write = 0;
490 	}
491 
492 	/* Get the guest physical address */
493 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
494 	return 0;
495 }
496 
497 /*
498  * Quick test for whether an instruction is a load or a store.
499  * If the instruction is a load or a store, then this will indicate
500  * which it is, at least on server processors.  (Embedded processors
501  * have some external PID instructions that don't follow the rule
502  * embodied here.)  If the instruction isn't a load or store, then
503  * this doesn't return anything useful.
504  */
505 static int instruction_is_store(unsigned int instr)
506 {
507 	unsigned int mask;
508 
509 	mask = 0x10000000;
510 	if ((instr & 0xfc000000) == 0x7c000000)
511 		mask = 0x100;		/* major opcode 31 */
512 	return (instr & mask) != 0;
513 }
514 
515 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
516 				  unsigned long gpa, gva_t ea, int is_store)
517 {
518 	int ret;
519 	u32 last_inst;
520 	unsigned long srr0 = kvmppc_get_pc(vcpu);
521 
522 	/* We try to load the last instruction.  We don't let
523 	 * emulate_instruction do it as it doesn't check what
524 	 * kvmppc_ld returns.
525 	 * If we fail, we just return to the guest and try executing it again.
526 	 */
527 	if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
528 		ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
529 		if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
530 			return RESUME_GUEST;
531 		vcpu->arch.last_inst = last_inst;
532 	}
533 
534 	/*
535 	 * WARNING: We do not know for sure whether the instruction we just
536 	 * read from memory is the same that caused the fault in the first
537 	 * place.  If the instruction we read is neither an load or a store,
538 	 * then it can't access memory, so we don't need to worry about
539 	 * enforcing access permissions.  So, assuming it is a load or
540 	 * store, we just check that its direction (load or store) is
541 	 * consistent with the original fault, since that's what we
542 	 * checked the access permissions against.  If there is a mismatch
543 	 * we just return and retry the instruction.
544 	 */
545 
546 	if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
547 		return RESUME_GUEST;
548 
549 	/*
550 	 * Emulated accesses are emulated by looking at the hash for
551 	 * translation once, then performing the access later. The
552 	 * translation could be invalidated in the meantime in which
553 	 * point performing the subsequent memory access on the old
554 	 * physical address could possibly be a security hole for the
555 	 * guest (but not the host).
556 	 *
557 	 * This is less of an issue for MMIO stores since they aren't
558 	 * globally visible. It could be an issue for MMIO loads to
559 	 * a certain extent but we'll ignore it for now.
560 	 */
561 
562 	vcpu->arch.paddr_accessed = gpa;
563 	vcpu->arch.vaddr_accessed = ea;
564 	return kvmppc_emulate_mmio(run, vcpu);
565 }
566 
567 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
568 				unsigned long ea, unsigned long dsisr)
569 {
570 	struct kvm *kvm = vcpu->kvm;
571 	unsigned long *hptep, hpte[3], r;
572 	unsigned long mmu_seq, psize, pte_size;
573 	unsigned long gfn, hva, pfn;
574 	struct kvm_memory_slot *memslot;
575 	unsigned long *rmap;
576 	struct revmap_entry *rev;
577 	struct page *page, *pages[1];
578 	long index, ret, npages;
579 	unsigned long is_io;
580 	unsigned int writing, write_ok;
581 	struct vm_area_struct *vma;
582 	unsigned long rcbits;
583 
584 	/*
585 	 * Real-mode code has already searched the HPT and found the
586 	 * entry we're interested in.  Lock the entry and check that
587 	 * it hasn't changed.  If it has, just return and re-execute the
588 	 * instruction.
589 	 */
590 	if (ea != vcpu->arch.pgfault_addr)
591 		return RESUME_GUEST;
592 	index = vcpu->arch.pgfault_index;
593 	hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
594 	rev = &kvm->arch.revmap[index];
595 	preempt_disable();
596 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
597 		cpu_relax();
598 	hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
599 	hpte[1] = hptep[1];
600 	hpte[2] = r = rev->guest_rpte;
601 	asm volatile("lwsync" : : : "memory");
602 	hptep[0] = hpte[0];
603 	preempt_enable();
604 
605 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
606 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
607 		return RESUME_GUEST;
608 
609 	/* Translate the logical address and get the page */
610 	psize = hpte_page_size(hpte[0], r);
611 	gfn = hpte_rpn(r, psize);
612 	memslot = gfn_to_memslot(kvm, gfn);
613 
614 	/* No memslot means it's an emulated MMIO region */
615 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
616 		unsigned long gpa = (gfn << PAGE_SHIFT) | (ea & (psize - 1));
617 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
618 					      dsisr & DSISR_ISSTORE);
619 	}
620 
621 	if (!kvm->arch.using_mmu_notifiers)
622 		return -EFAULT;		/* should never get here */
623 
624 	/* used to check for invalidations in progress */
625 	mmu_seq = kvm->mmu_notifier_seq;
626 	smp_rmb();
627 
628 	is_io = 0;
629 	pfn = 0;
630 	page = NULL;
631 	pte_size = PAGE_SIZE;
632 	writing = (dsisr & DSISR_ISSTORE) != 0;
633 	/* If writing != 0, then the HPTE must allow writing, if we get here */
634 	write_ok = writing;
635 	hva = gfn_to_hva_memslot(memslot, gfn);
636 	npages = get_user_pages_fast(hva, 1, writing, pages);
637 	if (npages < 1) {
638 		/* Check if it's an I/O mapping */
639 		down_read(&current->mm->mmap_sem);
640 		vma = find_vma(current->mm, hva);
641 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
642 		    (vma->vm_flags & VM_PFNMAP)) {
643 			pfn = vma->vm_pgoff +
644 				((hva - vma->vm_start) >> PAGE_SHIFT);
645 			pte_size = psize;
646 			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
647 			write_ok = vma->vm_flags & VM_WRITE;
648 		}
649 		up_read(&current->mm->mmap_sem);
650 		if (!pfn)
651 			return -EFAULT;
652 	} else {
653 		page = pages[0];
654 		if (PageHuge(page)) {
655 			page = compound_head(page);
656 			pte_size <<= compound_order(page);
657 		}
658 		/* if the guest wants write access, see if that is OK */
659 		if (!writing && hpte_is_writable(r)) {
660 			pte_t *ptep, pte;
661 
662 			/*
663 			 * We need to protect against page table destruction
664 			 * while looking up and updating the pte.
665 			 */
666 			rcu_read_lock_sched();
667 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
668 							 hva, NULL);
669 			if (ptep && pte_present(*ptep)) {
670 				pte = kvmppc_read_update_linux_pte(ptep, 1);
671 				if (pte_write(pte))
672 					write_ok = 1;
673 			}
674 			rcu_read_unlock_sched();
675 		}
676 		pfn = page_to_pfn(page);
677 	}
678 
679 	ret = -EFAULT;
680 	if (psize > pte_size)
681 		goto out_put;
682 
683 	/* Check WIMG vs. the actual page we're accessing */
684 	if (!hpte_cache_flags_ok(r, is_io)) {
685 		if (is_io)
686 			return -EFAULT;
687 		/*
688 		 * Allow guest to map emulated device memory as
689 		 * uncacheable, but actually make it cacheable.
690 		 */
691 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
692 	}
693 
694 	/* Set the HPTE to point to pfn */
695 	r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
696 	if (hpte_is_writable(r) && !write_ok)
697 		r = hpte_make_readonly(r);
698 	ret = RESUME_GUEST;
699 	preempt_disable();
700 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
701 		cpu_relax();
702 	if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
703 	    rev->guest_rpte != hpte[2])
704 		/* HPTE has been changed under us; let the guest retry */
705 		goto out_unlock;
706 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
707 
708 	rmap = &memslot->rmap[gfn - memslot->base_gfn];
709 	lock_rmap(rmap);
710 
711 	/* Check if we might have been invalidated; let the guest retry if so */
712 	ret = RESUME_GUEST;
713 	if (mmu_notifier_retry(vcpu, mmu_seq)) {
714 		unlock_rmap(rmap);
715 		goto out_unlock;
716 	}
717 
718 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
719 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
720 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
721 
722 	if (hptep[0] & HPTE_V_VALID) {
723 		/* HPTE was previously valid, so we need to invalidate it */
724 		unlock_rmap(rmap);
725 		hptep[0] |= HPTE_V_ABSENT;
726 		kvmppc_invalidate_hpte(kvm, hptep, index);
727 		/* don't lose previous R and C bits */
728 		r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
729 	} else {
730 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
731 	}
732 
733 	hptep[1] = r;
734 	eieio();
735 	hptep[0] = hpte[0];
736 	asm volatile("ptesync" : : : "memory");
737 	preempt_enable();
738 	if (page && hpte_is_writable(r))
739 		SetPageDirty(page);
740 
741  out_put:
742 	if (page) {
743 		/*
744 		 * We drop pages[0] here, not page because page might
745 		 * have been set to the head page of a compound, but
746 		 * we have to drop the reference on the correct tail
747 		 * page to match the get inside gup()
748 		 */
749 		put_page(pages[0]);
750 	}
751 	return ret;
752 
753  out_unlock:
754 	hptep[0] &= ~HPTE_V_HVLOCK;
755 	preempt_enable();
756 	goto out_put;
757 }
758 
759 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
760 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
761 					 unsigned long gfn))
762 {
763 	int ret;
764 	int retval = 0;
765 	struct kvm_memslots *slots;
766 	struct kvm_memory_slot *memslot;
767 
768 	slots = kvm_memslots(kvm);
769 	kvm_for_each_memslot(memslot, slots) {
770 		unsigned long start = memslot->userspace_addr;
771 		unsigned long end;
772 
773 		end = start + (memslot->npages << PAGE_SHIFT);
774 		if (hva >= start && hva < end) {
775 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
776 
777 			ret = handler(kvm, &memslot->rmap[gfn_offset],
778 				      memslot->base_gfn + gfn_offset);
779 			retval |= ret;
780 		}
781 	}
782 
783 	return retval;
784 }
785 
786 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
787 			   unsigned long gfn)
788 {
789 	struct revmap_entry *rev = kvm->arch.revmap;
790 	unsigned long h, i, j;
791 	unsigned long *hptep;
792 	unsigned long ptel, psize, rcbits;
793 
794 	for (;;) {
795 		lock_rmap(rmapp);
796 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
797 			unlock_rmap(rmapp);
798 			break;
799 		}
800 
801 		/*
802 		 * To avoid an ABBA deadlock with the HPTE lock bit,
803 		 * we can't spin on the HPTE lock while holding the
804 		 * rmap chain lock.
805 		 */
806 		i = *rmapp & KVMPPC_RMAP_INDEX;
807 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
808 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
809 			/* unlock rmap before spinning on the HPTE lock */
810 			unlock_rmap(rmapp);
811 			while (hptep[0] & HPTE_V_HVLOCK)
812 				cpu_relax();
813 			continue;
814 		}
815 		j = rev[i].forw;
816 		if (j == i) {
817 			/* chain is now empty */
818 			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
819 		} else {
820 			/* remove i from chain */
821 			h = rev[i].back;
822 			rev[h].forw = j;
823 			rev[j].back = h;
824 			rev[i].forw = rev[i].back = i;
825 			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
826 		}
827 
828 		/* Now check and modify the HPTE */
829 		ptel = rev[i].guest_rpte;
830 		psize = hpte_page_size(hptep[0], ptel);
831 		if ((hptep[0] & HPTE_V_VALID) &&
832 		    hpte_rpn(ptel, psize) == gfn) {
833 			hptep[0] |= HPTE_V_ABSENT;
834 			kvmppc_invalidate_hpte(kvm, hptep, i);
835 			/* Harvest R and C */
836 			rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
837 			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
838 			rev[i].guest_rpte = ptel | rcbits;
839 		}
840 		unlock_rmap(rmapp);
841 		hptep[0] &= ~HPTE_V_HVLOCK;
842 	}
843 	return 0;
844 }
845 
846 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
847 {
848 	if (kvm->arch.using_mmu_notifiers)
849 		kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
850 	return 0;
851 }
852 
853 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
854 			 unsigned long gfn)
855 {
856 	struct revmap_entry *rev = kvm->arch.revmap;
857 	unsigned long head, i, j;
858 	unsigned long *hptep;
859 	int ret = 0;
860 
861  retry:
862 	lock_rmap(rmapp);
863 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
864 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
865 		ret = 1;
866 	}
867 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
868 		unlock_rmap(rmapp);
869 		return ret;
870 	}
871 
872 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
873 	do {
874 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
875 		j = rev[i].forw;
876 
877 		/* If this HPTE isn't referenced, ignore it */
878 		if (!(hptep[1] & HPTE_R_R))
879 			continue;
880 
881 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
882 			/* unlock rmap before spinning on the HPTE lock */
883 			unlock_rmap(rmapp);
884 			while (hptep[0] & HPTE_V_HVLOCK)
885 				cpu_relax();
886 			goto retry;
887 		}
888 
889 		/* Now check and modify the HPTE */
890 		if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
891 			kvmppc_clear_ref_hpte(kvm, hptep, i);
892 			rev[i].guest_rpte |= HPTE_R_R;
893 			ret = 1;
894 		}
895 		hptep[0] &= ~HPTE_V_HVLOCK;
896 	} while ((i = j) != head);
897 
898 	unlock_rmap(rmapp);
899 	return ret;
900 }
901 
902 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
903 {
904 	if (!kvm->arch.using_mmu_notifiers)
905 		return 0;
906 	return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
907 }
908 
909 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
910 			      unsigned long gfn)
911 {
912 	struct revmap_entry *rev = kvm->arch.revmap;
913 	unsigned long head, i, j;
914 	unsigned long *hp;
915 	int ret = 1;
916 
917 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
918 		return 1;
919 
920 	lock_rmap(rmapp);
921 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
922 		goto out;
923 
924 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
925 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
926 		do {
927 			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
928 			j = rev[i].forw;
929 			if (hp[1] & HPTE_R_R)
930 				goto out;
931 		} while ((i = j) != head);
932 	}
933 	ret = 0;
934 
935  out:
936 	unlock_rmap(rmapp);
937 	return ret;
938 }
939 
940 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
941 {
942 	if (!kvm->arch.using_mmu_notifiers)
943 		return 0;
944 	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
945 }
946 
947 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
948 {
949 	if (!kvm->arch.using_mmu_notifiers)
950 		return;
951 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
952 }
953 
954 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
955 {
956 	struct revmap_entry *rev = kvm->arch.revmap;
957 	unsigned long head, i, j;
958 	unsigned long *hptep;
959 	int ret = 0;
960 
961  retry:
962 	lock_rmap(rmapp);
963 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
964 		*rmapp &= ~KVMPPC_RMAP_CHANGED;
965 		ret = 1;
966 	}
967 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
968 		unlock_rmap(rmapp);
969 		return ret;
970 	}
971 
972 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
973 	do {
974 		hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
975 		j = rev[i].forw;
976 
977 		if (!(hptep[1] & HPTE_R_C))
978 			continue;
979 
980 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
981 			/* unlock rmap before spinning on the HPTE lock */
982 			unlock_rmap(rmapp);
983 			while (hptep[0] & HPTE_V_HVLOCK)
984 				cpu_relax();
985 			goto retry;
986 		}
987 
988 		/* Now check and modify the HPTE */
989 		if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
990 			/* need to make it temporarily absent to clear C */
991 			hptep[0] |= HPTE_V_ABSENT;
992 			kvmppc_invalidate_hpte(kvm, hptep, i);
993 			hptep[1] &= ~HPTE_R_C;
994 			eieio();
995 			hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
996 			rev[i].guest_rpte |= HPTE_R_C;
997 			ret = 1;
998 		}
999 		hptep[0] &= ~HPTE_V_HVLOCK;
1000 	} while ((i = j) != head);
1001 
1002 	unlock_rmap(rmapp);
1003 	return ret;
1004 }
1005 
1006 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1007 {
1008 	unsigned long i;
1009 	unsigned long *rmapp, *map;
1010 
1011 	preempt_disable();
1012 	rmapp = memslot->rmap;
1013 	map = memslot->dirty_bitmap;
1014 	for (i = 0; i < memslot->npages; ++i) {
1015 		if (kvm_test_clear_dirty(kvm, rmapp))
1016 			__set_bit_le(i, map);
1017 		++rmapp;
1018 	}
1019 	preempt_enable();
1020 	return 0;
1021 }
1022 
1023 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1024 			    unsigned long *nb_ret)
1025 {
1026 	struct kvm_memory_slot *memslot;
1027 	unsigned long gfn = gpa >> PAGE_SHIFT;
1028 	struct page *page, *pages[1];
1029 	int npages;
1030 	unsigned long hva, psize, offset;
1031 	unsigned long pa;
1032 	unsigned long *physp;
1033 
1034 	memslot = gfn_to_memslot(kvm, gfn);
1035 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1036 		return NULL;
1037 	if (!kvm->arch.using_mmu_notifiers) {
1038 		physp = kvm->arch.slot_phys[memslot->id];
1039 		if (!physp)
1040 			return NULL;
1041 		physp += gfn - memslot->base_gfn;
1042 		pa = *physp;
1043 		if (!pa) {
1044 			if (kvmppc_get_guest_page(kvm, gfn, memslot,
1045 						  PAGE_SIZE) < 0)
1046 				return NULL;
1047 			pa = *physp;
1048 		}
1049 		page = pfn_to_page(pa >> PAGE_SHIFT);
1050 		get_page(page);
1051 	} else {
1052 		hva = gfn_to_hva_memslot(memslot, gfn);
1053 		npages = get_user_pages_fast(hva, 1, 1, pages);
1054 		if (npages < 1)
1055 			return NULL;
1056 		page = pages[0];
1057 	}
1058 	psize = PAGE_SIZE;
1059 	if (PageHuge(page)) {
1060 		page = compound_head(page);
1061 		psize <<= compound_order(page);
1062 	}
1063 	offset = gpa & (psize - 1);
1064 	if (nb_ret)
1065 		*nb_ret = psize - offset;
1066 	return page_address(page) + offset;
1067 }
1068 
1069 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1070 {
1071 	struct page *page = virt_to_page(va);
1072 
1073 	put_page(page);
1074 }
1075 
1076 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1077 {
1078 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1079 
1080 	if (cpu_has_feature(CPU_FTR_ARCH_206))
1081 		vcpu->arch.slb_nr = 32;		/* POWER7 */
1082 	else
1083 		vcpu->arch.slb_nr = 64;
1084 
1085 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1086 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1087 
1088 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1089 }
1090