xref: /linux/arch/powerpc/kernel/process.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59 
60 extern unsigned long _get_SP(void);
61 
62 #ifndef CONFIG_SMP
63 struct task_struct *last_task_used_math = NULL;
64 struct task_struct *last_task_used_altivec = NULL;
65 struct task_struct *last_task_used_vsx = NULL;
66 struct task_struct *last_task_used_spe = NULL;
67 #endif
68 
69 /*
70  * Make sure the floating-point register state in the
71  * the thread_struct is up to date for task tsk.
72  */
73 void flush_fp_to_thread(struct task_struct *tsk)
74 {
75 	if (tsk->thread.regs) {
76 		/*
77 		 * We need to disable preemption here because if we didn't,
78 		 * another process could get scheduled after the regs->msr
79 		 * test but before we have finished saving the FP registers
80 		 * to the thread_struct.  That process could take over the
81 		 * FPU, and then when we get scheduled again we would store
82 		 * bogus values for the remaining FP registers.
83 		 */
84 		preempt_disable();
85 		if (tsk->thread.regs->msr & MSR_FP) {
86 #ifdef CONFIG_SMP
87 			/*
88 			 * This should only ever be called for current or
89 			 * for a stopped child process.  Since we save away
90 			 * the FP register state on context switch on SMP,
91 			 * there is something wrong if a stopped child appears
92 			 * to still have its FP state in the CPU registers.
93 			 */
94 			BUG_ON(tsk != current);
95 #endif
96 			giveup_fpu(tsk);
97 		}
98 		preempt_enable();
99 	}
100 }
101 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
102 
103 void enable_kernel_fp(void)
104 {
105 	WARN_ON(preemptible());
106 
107 #ifdef CONFIG_SMP
108 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
109 		giveup_fpu(current);
110 	else
111 		giveup_fpu(NULL);	/* just enables FP for kernel */
112 #else
113 	giveup_fpu(last_task_used_math);
114 #endif /* CONFIG_SMP */
115 }
116 EXPORT_SYMBOL(enable_kernel_fp);
117 
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 	WARN_ON(preemptible());
122 
123 #ifdef CONFIG_SMP
124 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 		giveup_altivec(current);
126 	else
127 		giveup_altivec_notask();
128 #else
129 	giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133 
134 /*
135  * Make sure the VMX/Altivec register state in the
136  * the thread_struct is up to date for task tsk.
137  */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 	if (tsk->thread.regs) {
141 		preempt_disable();
142 		if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 			BUG_ON(tsk != current);
145 #endif
146 			giveup_altivec(tsk);
147 		}
148 		preempt_enable();
149 	}
150 }
151 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
152 #endif /* CONFIG_ALTIVEC */
153 
154 #ifdef CONFIG_VSX
155 #if 0
156 /* not currently used, but some crazy RAID module might want to later */
157 void enable_kernel_vsx(void)
158 {
159 	WARN_ON(preemptible());
160 
161 #ifdef CONFIG_SMP
162 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
163 		giveup_vsx(current);
164 	else
165 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
166 #else
167 	giveup_vsx(last_task_used_vsx);
168 #endif /* CONFIG_SMP */
169 }
170 EXPORT_SYMBOL(enable_kernel_vsx);
171 #endif
172 
173 void giveup_vsx(struct task_struct *tsk)
174 {
175 	giveup_fpu(tsk);
176 	giveup_altivec(tsk);
177 	__giveup_vsx(tsk);
178 }
179 
180 void flush_vsx_to_thread(struct task_struct *tsk)
181 {
182 	if (tsk->thread.regs) {
183 		preempt_disable();
184 		if (tsk->thread.regs->msr & MSR_VSX) {
185 #ifdef CONFIG_SMP
186 			BUG_ON(tsk != current);
187 #endif
188 			giveup_vsx(tsk);
189 		}
190 		preempt_enable();
191 	}
192 }
193 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
194 #endif /* CONFIG_VSX */
195 
196 #ifdef CONFIG_SPE
197 
198 void enable_kernel_spe(void)
199 {
200 	WARN_ON(preemptible());
201 
202 #ifdef CONFIG_SMP
203 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
204 		giveup_spe(current);
205 	else
206 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
207 #else
208 	giveup_spe(last_task_used_spe);
209 #endif /* __SMP __ */
210 }
211 EXPORT_SYMBOL(enable_kernel_spe);
212 
213 void flush_spe_to_thread(struct task_struct *tsk)
214 {
215 	if (tsk->thread.regs) {
216 		preempt_disable();
217 		if (tsk->thread.regs->msr & MSR_SPE) {
218 #ifdef CONFIG_SMP
219 			BUG_ON(tsk != current);
220 #endif
221 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
222 			giveup_spe(tsk);
223 		}
224 		preempt_enable();
225 	}
226 }
227 #endif /* CONFIG_SPE */
228 
229 #ifndef CONFIG_SMP
230 /*
231  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
232  * and the current task has some state, discard it.
233  */
234 void discard_lazy_cpu_state(void)
235 {
236 	preempt_disable();
237 	if (last_task_used_math == current)
238 		last_task_used_math = NULL;
239 #ifdef CONFIG_ALTIVEC
240 	if (last_task_used_altivec == current)
241 		last_task_used_altivec = NULL;
242 #endif /* CONFIG_ALTIVEC */
243 #ifdef CONFIG_VSX
244 	if (last_task_used_vsx == current)
245 		last_task_used_vsx = NULL;
246 #endif /* CONFIG_VSX */
247 #ifdef CONFIG_SPE
248 	if (last_task_used_spe == current)
249 		last_task_used_spe = NULL;
250 #endif
251 	preempt_enable();
252 }
253 #endif /* CONFIG_SMP */
254 
255 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
256 void do_send_trap(struct pt_regs *regs, unsigned long address,
257 		  unsigned long error_code, int signal_code, int breakpt)
258 {
259 	siginfo_t info;
260 
261 	current->thread.trap_nr = signal_code;
262 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
263 			11, SIGSEGV) == NOTIFY_STOP)
264 		return;
265 
266 	/* Deliver the signal to userspace */
267 	info.si_signo = SIGTRAP;
268 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
269 	info.si_code = signal_code;
270 	info.si_addr = (void __user *)address;
271 	force_sig_info(SIGTRAP, &info, current);
272 }
273 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
274 void do_dabr(struct pt_regs *regs, unsigned long address,
275 		    unsigned long error_code)
276 {
277 	siginfo_t info;
278 
279 	current->thread.trap_nr = TRAP_HWBKPT;
280 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
281 			11, SIGSEGV) == NOTIFY_STOP)
282 		return;
283 
284 	if (debugger_dabr_match(regs))
285 		return;
286 
287 	/* Clear the DABR */
288 	set_dabr(0, 0);
289 
290 	/* Deliver the signal to userspace */
291 	info.si_signo = SIGTRAP;
292 	info.si_errno = 0;
293 	info.si_code = TRAP_HWBKPT;
294 	info.si_addr = (void __user *)address;
295 	force_sig_info(SIGTRAP, &info, current);
296 }
297 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
298 
299 static DEFINE_PER_CPU(unsigned long, current_dabr);
300 
301 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
302 /*
303  * Set the debug registers back to their default "safe" values.
304  */
305 static void set_debug_reg_defaults(struct thread_struct *thread)
306 {
307 	thread->iac1 = thread->iac2 = 0;
308 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
309 	thread->iac3 = thread->iac4 = 0;
310 #endif
311 	thread->dac1 = thread->dac2 = 0;
312 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
313 	thread->dvc1 = thread->dvc2 = 0;
314 #endif
315 	thread->dbcr0 = 0;
316 #ifdef CONFIG_BOOKE
317 	/*
318 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
319 	 */
320 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
321 			DBCR1_IAC3US | DBCR1_IAC4US;
322 	/*
323 	 * Force Data Address Compare User/Supervisor bits to be User-only
324 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
325 	 */
326 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
327 #else
328 	thread->dbcr1 = 0;
329 #endif
330 }
331 
332 static void prime_debug_regs(struct thread_struct *thread)
333 {
334 	mtspr(SPRN_IAC1, thread->iac1);
335 	mtspr(SPRN_IAC2, thread->iac2);
336 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
337 	mtspr(SPRN_IAC3, thread->iac3);
338 	mtspr(SPRN_IAC4, thread->iac4);
339 #endif
340 	mtspr(SPRN_DAC1, thread->dac1);
341 	mtspr(SPRN_DAC2, thread->dac2);
342 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
343 	mtspr(SPRN_DVC1, thread->dvc1);
344 	mtspr(SPRN_DVC2, thread->dvc2);
345 #endif
346 	mtspr(SPRN_DBCR0, thread->dbcr0);
347 	mtspr(SPRN_DBCR1, thread->dbcr1);
348 #ifdef CONFIG_BOOKE
349 	mtspr(SPRN_DBCR2, thread->dbcr2);
350 #endif
351 }
352 /*
353  * Unless neither the old or new thread are making use of the
354  * debug registers, set the debug registers from the values
355  * stored in the new thread.
356  */
357 static void switch_booke_debug_regs(struct thread_struct *new_thread)
358 {
359 	if ((current->thread.dbcr0 & DBCR0_IDM)
360 		|| (new_thread->dbcr0 & DBCR0_IDM))
361 			prime_debug_regs(new_thread);
362 }
363 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
364 #ifndef CONFIG_HAVE_HW_BREAKPOINT
365 static void set_debug_reg_defaults(struct thread_struct *thread)
366 {
367 	if (thread->dabr) {
368 		thread->dabr = 0;
369 		thread->dabrx = 0;
370 		set_dabr(0, 0);
371 	}
372 }
373 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
374 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
375 
376 int set_dabr(unsigned long dabr, unsigned long dabrx)
377 {
378 	__get_cpu_var(current_dabr) = dabr;
379 
380 	if (ppc_md.set_dabr)
381 		return ppc_md.set_dabr(dabr, dabrx);
382 
383 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
384 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
385 	mtspr(SPRN_DAC1, dabr);
386 #ifdef CONFIG_PPC_47x
387 	isync();
388 #endif
389 #elif defined(CONFIG_PPC_BOOK3S)
390 	mtspr(SPRN_DABR, dabr);
391 	mtspr(SPRN_DABRX, dabrx);
392 #endif
393 	return 0;
394 }
395 
396 #ifdef CONFIG_PPC64
397 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
398 #endif
399 
400 struct task_struct *__switch_to(struct task_struct *prev,
401 	struct task_struct *new)
402 {
403 	struct thread_struct *new_thread, *old_thread;
404 	unsigned long flags;
405 	struct task_struct *last;
406 #ifdef CONFIG_PPC_BOOK3S_64
407 	struct ppc64_tlb_batch *batch;
408 #endif
409 
410 #ifdef CONFIG_SMP
411 	/* avoid complexity of lazy save/restore of fpu
412 	 * by just saving it every time we switch out if
413 	 * this task used the fpu during the last quantum.
414 	 *
415 	 * If it tries to use the fpu again, it'll trap and
416 	 * reload its fp regs.  So we don't have to do a restore
417 	 * every switch, just a save.
418 	 *  -- Cort
419 	 */
420 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
421 		giveup_fpu(prev);
422 #ifdef CONFIG_ALTIVEC
423 	/*
424 	 * If the previous thread used altivec in the last quantum
425 	 * (thus changing altivec regs) then save them.
426 	 * We used to check the VRSAVE register but not all apps
427 	 * set it, so we don't rely on it now (and in fact we need
428 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
429 	 *
430 	 * On SMP we always save/restore altivec regs just to avoid the
431 	 * complexity of changing processors.
432 	 *  -- Cort
433 	 */
434 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
435 		giveup_altivec(prev);
436 #endif /* CONFIG_ALTIVEC */
437 #ifdef CONFIG_VSX
438 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
439 		/* VMX and FPU registers are already save here */
440 		__giveup_vsx(prev);
441 #endif /* CONFIG_VSX */
442 #ifdef CONFIG_SPE
443 	/*
444 	 * If the previous thread used spe in the last quantum
445 	 * (thus changing spe regs) then save them.
446 	 *
447 	 * On SMP we always save/restore spe regs just to avoid the
448 	 * complexity of changing processors.
449 	 */
450 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
451 		giveup_spe(prev);
452 #endif /* CONFIG_SPE */
453 
454 #else  /* CONFIG_SMP */
455 #ifdef CONFIG_ALTIVEC
456 	/* Avoid the trap.  On smp this this never happens since
457 	 * we don't set last_task_used_altivec -- Cort
458 	 */
459 	if (new->thread.regs && last_task_used_altivec == new)
460 		new->thread.regs->msr |= MSR_VEC;
461 #endif /* CONFIG_ALTIVEC */
462 #ifdef CONFIG_VSX
463 	if (new->thread.regs && last_task_used_vsx == new)
464 		new->thread.regs->msr |= MSR_VSX;
465 #endif /* CONFIG_VSX */
466 #ifdef CONFIG_SPE
467 	/* Avoid the trap.  On smp this this never happens since
468 	 * we don't set last_task_used_spe
469 	 */
470 	if (new->thread.regs && last_task_used_spe == new)
471 		new->thread.regs->msr |= MSR_SPE;
472 #endif /* CONFIG_SPE */
473 
474 #endif /* CONFIG_SMP */
475 
476 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
477 	switch_booke_debug_regs(&new->thread);
478 #else
479 /*
480  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
481  * schedule DABR
482  */
483 #ifndef CONFIG_HAVE_HW_BREAKPOINT
484 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
485 		set_dabr(new->thread.dabr, new->thread.dabrx);
486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
487 #endif
488 
489 
490 	new_thread = &new->thread;
491 	old_thread = &current->thread;
492 
493 #ifdef CONFIG_PPC64
494 	/*
495 	 * Collect processor utilization data per process
496 	 */
497 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
498 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
499 		long unsigned start_tb, current_tb;
500 		start_tb = old_thread->start_tb;
501 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
502 		old_thread->accum_tb += (current_tb - start_tb);
503 		new_thread->start_tb = current_tb;
504 	}
505 #endif /* CONFIG_PPC64 */
506 
507 #ifdef CONFIG_PPC_BOOK3S_64
508 	batch = &__get_cpu_var(ppc64_tlb_batch);
509 	if (batch->active) {
510 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
511 		if (batch->index)
512 			__flush_tlb_pending(batch);
513 		batch->active = 0;
514 	}
515 #endif /* CONFIG_PPC_BOOK3S_64 */
516 
517 	local_irq_save(flags);
518 
519 	/*
520 	 * We can't take a PMU exception inside _switch() since there is a
521 	 * window where the kernel stack SLB and the kernel stack are out
522 	 * of sync. Hard disable here.
523 	 */
524 	hard_irq_disable();
525 	last = _switch(old_thread, new_thread);
526 
527 #ifdef CONFIG_PPC_BOOK3S_64
528 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
529 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
530 		batch = &__get_cpu_var(ppc64_tlb_batch);
531 		batch->active = 1;
532 	}
533 #endif /* CONFIG_PPC_BOOK3S_64 */
534 
535 	local_irq_restore(flags);
536 
537 	return last;
538 }
539 
540 static int instructions_to_print = 16;
541 
542 static void show_instructions(struct pt_regs *regs)
543 {
544 	int i;
545 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
546 			sizeof(int));
547 
548 	printk("Instruction dump:");
549 
550 	for (i = 0; i < instructions_to_print; i++) {
551 		int instr;
552 
553 		if (!(i % 8))
554 			printk("\n");
555 
556 #if !defined(CONFIG_BOOKE)
557 		/* If executing with the IMMU off, adjust pc rather
558 		 * than print XXXXXXXX.
559 		 */
560 		if (!(regs->msr & MSR_IR))
561 			pc = (unsigned long)phys_to_virt(pc);
562 #endif
563 
564 		/* We use __get_user here *only* to avoid an OOPS on a
565 		 * bad address because the pc *should* only be a
566 		 * kernel address.
567 		 */
568 		if (!__kernel_text_address(pc) ||
569 		     __get_user(instr, (unsigned int __user *)pc)) {
570 			printk(KERN_CONT "XXXXXXXX ");
571 		} else {
572 			if (regs->nip == pc)
573 				printk(KERN_CONT "<%08x> ", instr);
574 			else
575 				printk(KERN_CONT "%08x ", instr);
576 		}
577 
578 		pc += sizeof(int);
579 	}
580 
581 	printk("\n");
582 }
583 
584 static struct regbit {
585 	unsigned long bit;
586 	const char *name;
587 } msr_bits[] = {
588 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
589 	{MSR_SF,	"SF"},
590 	{MSR_HV,	"HV"},
591 #endif
592 	{MSR_VEC,	"VEC"},
593 	{MSR_VSX,	"VSX"},
594 #ifdef CONFIG_BOOKE
595 	{MSR_CE,	"CE"},
596 #endif
597 	{MSR_EE,	"EE"},
598 	{MSR_PR,	"PR"},
599 	{MSR_FP,	"FP"},
600 	{MSR_ME,	"ME"},
601 #ifdef CONFIG_BOOKE
602 	{MSR_DE,	"DE"},
603 #else
604 	{MSR_SE,	"SE"},
605 	{MSR_BE,	"BE"},
606 #endif
607 	{MSR_IR,	"IR"},
608 	{MSR_DR,	"DR"},
609 	{MSR_PMM,	"PMM"},
610 #ifndef CONFIG_BOOKE
611 	{MSR_RI,	"RI"},
612 	{MSR_LE,	"LE"},
613 #endif
614 	{0,		NULL}
615 };
616 
617 static void printbits(unsigned long val, struct regbit *bits)
618 {
619 	const char *sep = "";
620 
621 	printk("<");
622 	for (; bits->bit; ++bits)
623 		if (val & bits->bit) {
624 			printk("%s%s", sep, bits->name);
625 			sep = ",";
626 		}
627 	printk(">");
628 }
629 
630 #ifdef CONFIG_PPC64
631 #define REG		"%016lx"
632 #define REGS_PER_LINE	4
633 #define LAST_VOLATILE	13
634 #else
635 #define REG		"%08lx"
636 #define REGS_PER_LINE	8
637 #define LAST_VOLATILE	12
638 #endif
639 
640 void show_regs(struct pt_regs * regs)
641 {
642 	int i, trap;
643 
644 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
645 	       regs->nip, regs->link, regs->ctr);
646 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
647 	       regs, regs->trap, print_tainted(), init_utsname()->release);
648 	printk("MSR: "REG" ", regs->msr);
649 	printbits(regs->msr, msr_bits);
650 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
651 #ifdef CONFIG_PPC64
652 	printk("SOFTE: %ld\n", regs->softe);
653 #endif
654 	trap = TRAP(regs);
655 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
656 		printk("CFAR: "REG"\n", regs->orig_gpr3);
657 	if (trap == 0x300 || trap == 0x600)
658 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
659 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
660 #else
661 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
662 #endif
663 	printk("TASK = %p[%d] '%s' THREAD: %p",
664 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
665 
666 #ifdef CONFIG_SMP
667 	printk(" CPU: %d", raw_smp_processor_id());
668 #endif /* CONFIG_SMP */
669 
670 	for (i = 0;  i < 32;  i++) {
671 		if ((i % REGS_PER_LINE) == 0)
672 			printk("\nGPR%02d: ", i);
673 		printk(REG " ", regs->gpr[i]);
674 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
675 			break;
676 	}
677 	printk("\n");
678 #ifdef CONFIG_KALLSYMS
679 	/*
680 	 * Lookup NIP late so we have the best change of getting the
681 	 * above info out without failing
682 	 */
683 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
684 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
685 #endif
686 	show_stack(current, (unsigned long *) regs->gpr[1]);
687 	if (!user_mode(regs))
688 		show_instructions(regs);
689 }
690 
691 void exit_thread(void)
692 {
693 	discard_lazy_cpu_state();
694 }
695 
696 void flush_thread(void)
697 {
698 	discard_lazy_cpu_state();
699 
700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
701 	flush_ptrace_hw_breakpoint(current);
702 #else /* CONFIG_HAVE_HW_BREAKPOINT */
703 	set_debug_reg_defaults(&current->thread);
704 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
705 }
706 
707 void
708 release_thread(struct task_struct *t)
709 {
710 }
711 
712 /*
713  * this gets called so that we can store coprocessor state into memory and
714  * copy the current task into the new thread.
715  */
716 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
717 {
718 	flush_fp_to_thread(src);
719 	flush_altivec_to_thread(src);
720 	flush_vsx_to_thread(src);
721 	flush_spe_to_thread(src);
722 #ifdef CONFIG_HAVE_HW_BREAKPOINT
723 	flush_ptrace_hw_breakpoint(src);
724 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
725 
726 	*dst = *src;
727 	return 0;
728 }
729 
730 /*
731  * Copy a thread..
732  */
733 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
734 
735 int copy_thread(unsigned long clone_flags, unsigned long usp,
736 		unsigned long unused, struct task_struct *p,
737 		struct pt_regs *regs)
738 {
739 	struct pt_regs *childregs, *kregs;
740 	extern void ret_from_fork(void);
741 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
742 
743 	CHECK_FULL_REGS(regs);
744 	/* Copy registers */
745 	sp -= sizeof(struct pt_regs);
746 	childregs = (struct pt_regs *) sp;
747 	*childregs = *regs;
748 	if ((childregs->msr & MSR_PR) == 0) {
749 		/* for kernel thread, set `current' and stackptr in new task */
750 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
751 #ifdef CONFIG_PPC32
752 		childregs->gpr[2] = (unsigned long) p;
753 #else
754 		clear_tsk_thread_flag(p, TIF_32BIT);
755 #endif
756 		p->thread.regs = NULL;	/* no user register state */
757 	} else {
758 		childregs->gpr[1] = usp;
759 		p->thread.regs = childregs;
760 		if (clone_flags & CLONE_SETTLS) {
761 #ifdef CONFIG_PPC64
762 			if (!is_32bit_task())
763 				childregs->gpr[13] = childregs->gpr[6];
764 			else
765 #endif
766 				childregs->gpr[2] = childregs->gpr[6];
767 		}
768 	}
769 	childregs->gpr[3] = 0;  /* Result from fork() */
770 	sp -= STACK_FRAME_OVERHEAD;
771 
772 	/*
773 	 * The way this works is that at some point in the future
774 	 * some task will call _switch to switch to the new task.
775 	 * That will pop off the stack frame created below and start
776 	 * the new task running at ret_from_fork.  The new task will
777 	 * do some house keeping and then return from the fork or clone
778 	 * system call, using the stack frame created above.
779 	 */
780 	sp -= sizeof(struct pt_regs);
781 	kregs = (struct pt_regs *) sp;
782 	sp -= STACK_FRAME_OVERHEAD;
783 	p->thread.ksp = sp;
784 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
785 				_ALIGN_UP(sizeof(struct thread_info), 16);
786 
787 #ifdef CONFIG_PPC_STD_MMU_64
788 	if (mmu_has_feature(MMU_FTR_SLB)) {
789 		unsigned long sp_vsid;
790 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
791 
792 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
793 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
794 				<< SLB_VSID_SHIFT_1T;
795 		else
796 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
797 				<< SLB_VSID_SHIFT;
798 		sp_vsid |= SLB_VSID_KERNEL | llp;
799 		p->thread.ksp_vsid = sp_vsid;
800 	}
801 #endif /* CONFIG_PPC_STD_MMU_64 */
802 #ifdef CONFIG_PPC64
803 	if (cpu_has_feature(CPU_FTR_DSCR)) {
804 		p->thread.dscr_inherit = current->thread.dscr_inherit;
805 		p->thread.dscr = current->thread.dscr;
806 	}
807 #endif
808 
809 	/*
810 	 * The PPC64 ABI makes use of a TOC to contain function
811 	 * pointers.  The function (ret_from_except) is actually a pointer
812 	 * to the TOC entry.  The first entry is a pointer to the actual
813 	 * function.
814  	 */
815 #ifdef CONFIG_PPC64
816 	kregs->nip = *((unsigned long *)ret_from_fork);
817 #else
818 	kregs->nip = (unsigned long)ret_from_fork;
819 #endif
820 
821 	return 0;
822 }
823 
824 /*
825  * Set up a thread for executing a new program
826  */
827 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
828 {
829 #ifdef CONFIG_PPC64
830 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
831 #endif
832 
833 	/*
834 	 * If we exec out of a kernel thread then thread.regs will not be
835 	 * set.  Do it now.
836 	 */
837 	if (!current->thread.regs) {
838 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
839 		current->thread.regs = regs - 1;
840 	}
841 
842 	memset(regs->gpr, 0, sizeof(regs->gpr));
843 	regs->ctr = 0;
844 	regs->link = 0;
845 	regs->xer = 0;
846 	regs->ccr = 0;
847 	regs->gpr[1] = sp;
848 
849 	/*
850 	 * We have just cleared all the nonvolatile GPRs, so make
851 	 * FULL_REGS(regs) return true.  This is necessary to allow
852 	 * ptrace to examine the thread immediately after exec.
853 	 */
854 	regs->trap &= ~1UL;
855 
856 #ifdef CONFIG_PPC32
857 	regs->mq = 0;
858 	regs->nip = start;
859 	regs->msr = MSR_USER;
860 #else
861 	if (!is_32bit_task()) {
862 		unsigned long entry, toc;
863 
864 		/* start is a relocated pointer to the function descriptor for
865 		 * the elf _start routine.  The first entry in the function
866 		 * descriptor is the entry address of _start and the second
867 		 * entry is the TOC value we need to use.
868 		 */
869 		__get_user(entry, (unsigned long __user *)start);
870 		__get_user(toc, (unsigned long __user *)start+1);
871 
872 		/* Check whether the e_entry function descriptor entries
873 		 * need to be relocated before we can use them.
874 		 */
875 		if (load_addr != 0) {
876 			entry += load_addr;
877 			toc   += load_addr;
878 		}
879 		regs->nip = entry;
880 		regs->gpr[2] = toc;
881 		regs->msr = MSR_USER64;
882 	} else {
883 		regs->nip = start;
884 		regs->gpr[2] = 0;
885 		regs->msr = MSR_USER32;
886 	}
887 #endif
888 
889 	discard_lazy_cpu_state();
890 #ifdef CONFIG_VSX
891 	current->thread.used_vsr = 0;
892 #endif
893 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
894 	current->thread.fpscr.val = 0;
895 #ifdef CONFIG_ALTIVEC
896 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
897 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
898 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
899 	current->thread.vrsave = 0;
900 	current->thread.used_vr = 0;
901 #endif /* CONFIG_ALTIVEC */
902 #ifdef CONFIG_SPE
903 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
904 	current->thread.acc = 0;
905 	current->thread.spefscr = 0;
906 	current->thread.used_spe = 0;
907 #endif /* CONFIG_SPE */
908 }
909 
910 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
911 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
912 
913 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
914 {
915 	struct pt_regs *regs = tsk->thread.regs;
916 
917 	/* This is a bit hairy.  If we are an SPE enabled  processor
918 	 * (have embedded fp) we store the IEEE exception enable flags in
919 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
920 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
921 	if (val & PR_FP_EXC_SW_ENABLE) {
922 #ifdef CONFIG_SPE
923 		if (cpu_has_feature(CPU_FTR_SPE)) {
924 			tsk->thread.fpexc_mode = val &
925 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
926 			return 0;
927 		} else {
928 			return -EINVAL;
929 		}
930 #else
931 		return -EINVAL;
932 #endif
933 	}
934 
935 	/* on a CONFIG_SPE this does not hurt us.  The bits that
936 	 * __pack_fe01 use do not overlap with bits used for
937 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
938 	 * on CONFIG_SPE implementations are reserved so writing to
939 	 * them does not change anything */
940 	if (val > PR_FP_EXC_PRECISE)
941 		return -EINVAL;
942 	tsk->thread.fpexc_mode = __pack_fe01(val);
943 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
944 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
945 			| tsk->thread.fpexc_mode;
946 	return 0;
947 }
948 
949 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
950 {
951 	unsigned int val;
952 
953 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
954 #ifdef CONFIG_SPE
955 		if (cpu_has_feature(CPU_FTR_SPE))
956 			val = tsk->thread.fpexc_mode;
957 		else
958 			return -EINVAL;
959 #else
960 		return -EINVAL;
961 #endif
962 	else
963 		val = __unpack_fe01(tsk->thread.fpexc_mode);
964 	return put_user(val, (unsigned int __user *) adr);
965 }
966 
967 int set_endian(struct task_struct *tsk, unsigned int val)
968 {
969 	struct pt_regs *regs = tsk->thread.regs;
970 
971 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
972 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
973 		return -EINVAL;
974 
975 	if (regs == NULL)
976 		return -EINVAL;
977 
978 	if (val == PR_ENDIAN_BIG)
979 		regs->msr &= ~MSR_LE;
980 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
981 		regs->msr |= MSR_LE;
982 	else
983 		return -EINVAL;
984 
985 	return 0;
986 }
987 
988 int get_endian(struct task_struct *tsk, unsigned long adr)
989 {
990 	struct pt_regs *regs = tsk->thread.regs;
991 	unsigned int val;
992 
993 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
994 	    !cpu_has_feature(CPU_FTR_REAL_LE))
995 		return -EINVAL;
996 
997 	if (regs == NULL)
998 		return -EINVAL;
999 
1000 	if (regs->msr & MSR_LE) {
1001 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1002 			val = PR_ENDIAN_LITTLE;
1003 		else
1004 			val = PR_ENDIAN_PPC_LITTLE;
1005 	} else
1006 		val = PR_ENDIAN_BIG;
1007 
1008 	return put_user(val, (unsigned int __user *)adr);
1009 }
1010 
1011 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1012 {
1013 	tsk->thread.align_ctl = val;
1014 	return 0;
1015 }
1016 
1017 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1018 {
1019 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1020 }
1021 
1022 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1023 
1024 int sys_clone(unsigned long clone_flags, unsigned long usp,
1025 	      int __user *parent_tidp, void __user *child_threadptr,
1026 	      int __user *child_tidp, int p6,
1027 	      struct pt_regs *regs)
1028 {
1029 	CHECK_FULL_REGS(regs);
1030 	if (usp == 0)
1031 		usp = regs->gpr[1];	/* stack pointer for child */
1032 #ifdef CONFIG_PPC64
1033 	if (is_32bit_task()) {
1034 		parent_tidp = TRUNC_PTR(parent_tidp);
1035 		child_tidp = TRUNC_PTR(child_tidp);
1036 	}
1037 #endif
1038  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1039 }
1040 
1041 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1042 	     unsigned long p4, unsigned long p5, unsigned long p6,
1043 	     struct pt_regs *regs)
1044 {
1045 	CHECK_FULL_REGS(regs);
1046 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1047 }
1048 
1049 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1050 	      unsigned long p4, unsigned long p5, unsigned long p6,
1051 	      struct pt_regs *regs)
1052 {
1053 	CHECK_FULL_REGS(regs);
1054 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1055 			regs, 0, NULL, NULL);
1056 }
1057 
1058 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1059 	       unsigned long a3, unsigned long a4, unsigned long a5,
1060 	       struct pt_regs *regs)
1061 {
1062 	int error;
1063 	char *filename;
1064 
1065 	filename = getname((const char __user *) a0);
1066 	error = PTR_ERR(filename);
1067 	if (IS_ERR(filename))
1068 		goto out;
1069 	flush_fp_to_thread(current);
1070 	flush_altivec_to_thread(current);
1071 	flush_spe_to_thread(current);
1072 	error = do_execve(filename,
1073 			  (const char __user *const __user *) a1,
1074 			  (const char __user *const __user *) a2, regs);
1075 	putname(filename);
1076 out:
1077 	return error;
1078 }
1079 
1080 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1081 				  unsigned long nbytes)
1082 {
1083 	unsigned long stack_page;
1084 	unsigned long cpu = task_cpu(p);
1085 
1086 	/*
1087 	 * Avoid crashing if the stack has overflowed and corrupted
1088 	 * task_cpu(p), which is in the thread_info struct.
1089 	 */
1090 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1091 		stack_page = (unsigned long) hardirq_ctx[cpu];
1092 		if (sp >= stack_page + sizeof(struct thread_struct)
1093 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1094 			return 1;
1095 
1096 		stack_page = (unsigned long) softirq_ctx[cpu];
1097 		if (sp >= stack_page + sizeof(struct thread_struct)
1098 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1099 			return 1;
1100 	}
1101 	return 0;
1102 }
1103 
1104 int validate_sp(unsigned long sp, struct task_struct *p,
1105 		       unsigned long nbytes)
1106 {
1107 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1108 
1109 	if (sp >= stack_page + sizeof(struct thread_struct)
1110 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1111 		return 1;
1112 
1113 	return valid_irq_stack(sp, p, nbytes);
1114 }
1115 
1116 EXPORT_SYMBOL(validate_sp);
1117 
1118 unsigned long get_wchan(struct task_struct *p)
1119 {
1120 	unsigned long ip, sp;
1121 	int count = 0;
1122 
1123 	if (!p || p == current || p->state == TASK_RUNNING)
1124 		return 0;
1125 
1126 	sp = p->thread.ksp;
1127 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1128 		return 0;
1129 
1130 	do {
1131 		sp = *(unsigned long *)sp;
1132 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1133 			return 0;
1134 		if (count > 0) {
1135 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1136 			if (!in_sched_functions(ip))
1137 				return ip;
1138 		}
1139 	} while (count++ < 16);
1140 	return 0;
1141 }
1142 
1143 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1144 
1145 void show_stack(struct task_struct *tsk, unsigned long *stack)
1146 {
1147 	unsigned long sp, ip, lr, newsp;
1148 	int count = 0;
1149 	int firstframe = 1;
1150 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1151 	int curr_frame = current->curr_ret_stack;
1152 	extern void return_to_handler(void);
1153 	unsigned long rth = (unsigned long)return_to_handler;
1154 	unsigned long mrth = -1;
1155 #ifdef CONFIG_PPC64
1156 	extern void mod_return_to_handler(void);
1157 	rth = *(unsigned long *)rth;
1158 	mrth = (unsigned long)mod_return_to_handler;
1159 	mrth = *(unsigned long *)mrth;
1160 #endif
1161 #endif
1162 
1163 	sp = (unsigned long) stack;
1164 	if (tsk == NULL)
1165 		tsk = current;
1166 	if (sp == 0) {
1167 		if (tsk == current)
1168 			asm("mr %0,1" : "=r" (sp));
1169 		else
1170 			sp = tsk->thread.ksp;
1171 	}
1172 
1173 	lr = 0;
1174 	printk("Call Trace:\n");
1175 	do {
1176 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1177 			return;
1178 
1179 		stack = (unsigned long *) sp;
1180 		newsp = stack[0];
1181 		ip = stack[STACK_FRAME_LR_SAVE];
1182 		if (!firstframe || ip != lr) {
1183 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1184 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1185 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1186 				printk(" (%pS)",
1187 				       (void *)current->ret_stack[curr_frame].ret);
1188 				curr_frame--;
1189 			}
1190 #endif
1191 			if (firstframe)
1192 				printk(" (unreliable)");
1193 			printk("\n");
1194 		}
1195 		firstframe = 0;
1196 
1197 		/*
1198 		 * See if this is an exception frame.
1199 		 * We look for the "regshere" marker in the current frame.
1200 		 */
1201 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1202 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1203 			struct pt_regs *regs = (struct pt_regs *)
1204 				(sp + STACK_FRAME_OVERHEAD);
1205 			lr = regs->link;
1206 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1207 			       regs->trap, (void *)regs->nip, (void *)lr);
1208 			firstframe = 1;
1209 		}
1210 
1211 		sp = newsp;
1212 	} while (count++ < kstack_depth_to_print);
1213 }
1214 
1215 void dump_stack(void)
1216 {
1217 	show_stack(current, NULL);
1218 }
1219 EXPORT_SYMBOL(dump_stack);
1220 
1221 #ifdef CONFIG_PPC64
1222 /* Called with hard IRQs off */
1223 void __ppc64_runlatch_on(void)
1224 {
1225 	struct thread_info *ti = current_thread_info();
1226 	unsigned long ctrl;
1227 
1228 	ctrl = mfspr(SPRN_CTRLF);
1229 	ctrl |= CTRL_RUNLATCH;
1230 	mtspr(SPRN_CTRLT, ctrl);
1231 
1232 	ti->local_flags |= _TLF_RUNLATCH;
1233 }
1234 
1235 /* Called with hard IRQs off */
1236 void __ppc64_runlatch_off(void)
1237 {
1238 	struct thread_info *ti = current_thread_info();
1239 	unsigned long ctrl;
1240 
1241 	ti->local_flags &= ~_TLF_RUNLATCH;
1242 
1243 	ctrl = mfspr(SPRN_CTRLF);
1244 	ctrl &= ~CTRL_RUNLATCH;
1245 	mtspr(SPRN_CTRLT, ctrl);
1246 }
1247 #endif /* CONFIG_PPC64 */
1248 
1249 unsigned long arch_align_stack(unsigned long sp)
1250 {
1251 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1252 		sp -= get_random_int() & ~PAGE_MASK;
1253 	return sp & ~0xf;
1254 }
1255 
1256 static inline unsigned long brk_rnd(void)
1257 {
1258         unsigned long rnd = 0;
1259 
1260 	/* 8MB for 32bit, 1GB for 64bit */
1261 	if (is_32bit_task())
1262 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1263 	else
1264 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1265 
1266 	return rnd << PAGE_SHIFT;
1267 }
1268 
1269 unsigned long arch_randomize_brk(struct mm_struct *mm)
1270 {
1271 	unsigned long base = mm->brk;
1272 	unsigned long ret;
1273 
1274 #ifdef CONFIG_PPC_STD_MMU_64
1275 	/*
1276 	 * If we are using 1TB segments and we are allowed to randomise
1277 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1278 	 * segment. Otherwise the heap will be in the bottom 1TB
1279 	 * which always uses 256MB segments and this may result in a
1280 	 * performance penalty.
1281 	 */
1282 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1283 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1284 #endif
1285 
1286 	ret = PAGE_ALIGN(base + brk_rnd());
1287 
1288 	if (ret < mm->brk)
1289 		return mm->brk;
1290 
1291 	return ret;
1292 }
1293 
1294 unsigned long randomize_et_dyn(unsigned long base)
1295 {
1296 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1297 
1298 	if (ret < base)
1299 		return base;
1300 
1301 	return ret;
1302 }
1303