xref: /linux/arch/mips/mm/uasm.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * A small micro-assembler. It is intentionally kept simple, does only
7  * support a subset of instructions, and does not try to hide pipeline
8  * effects like branch delay slots.
9  *
10  * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
11  * Copyright (C) 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/init.h>
18 
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #include <asm/uasm.h>
23 
24 enum fields {
25 	RS = 0x001,
26 	RT = 0x002,
27 	RD = 0x004,
28 	RE = 0x008,
29 	SIMM = 0x010,
30 	UIMM = 0x020,
31 	BIMM = 0x040,
32 	JIMM = 0x080,
33 	FUNC = 0x100,
34 	SET = 0x200,
35 	SCIMM = 0x400
36 };
37 
38 #define OP_MASK		0x3f
39 #define OP_SH		26
40 #define RS_MASK		0x1f
41 #define RS_SH		21
42 #define RT_MASK		0x1f
43 #define RT_SH		16
44 #define RD_MASK		0x1f
45 #define RD_SH		11
46 #define RE_MASK		0x1f
47 #define RE_SH		6
48 #define IMM_MASK	0xffff
49 #define IMM_SH		0
50 #define JIMM_MASK	0x3ffffff
51 #define JIMM_SH		0
52 #define FUNC_MASK	0x3f
53 #define FUNC_SH		0
54 #define SET_MASK	0x7
55 #define SET_SH		0
56 #define SCIMM_MASK	0xfffff
57 #define SCIMM_SH	6
58 
59 enum opcode {
60 	insn_invalid,
61 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
62 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
63 	insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0,
64 	insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
65 	insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret,
66 	insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld,
67 	insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori,
68 	insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
69 	insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp,
70 	insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori,
71 	insn_dins, insn_syscall, insn_bbit0, insn_bbit1
72 };
73 
74 struct insn {
75 	enum opcode opcode;
76 	u32 match;
77 	enum fields fields;
78 };
79 
80 /* This macro sets the non-variable bits of an instruction. */
81 #define M(a, b, c, d, e, f)					\
82 	((a) << OP_SH						\
83 	 | (b) << RS_SH						\
84 	 | (c) << RT_SH						\
85 	 | (d) << RD_SH						\
86 	 | (e) << RE_SH						\
87 	 | (f) << FUNC_SH)
88 
89 static struct insn insn_table[] __uasminitdata = {
90 	{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
91 	{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
92 	{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
93 	{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
94 	{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
95 	{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
96 	{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
97 	{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
98 	{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
99 	{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
100 	{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
101 	{ insn_cache,  M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
102 	{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103 	{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
104 	{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
105 	{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
106 	{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
107 	{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
108 	{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
109 	{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
110 	{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
111 	{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
112 	{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
113 	{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
114 	{ insn_eret,  M(cop0_op, cop_op, 0, 0, 0, eret_op),  0 },
115 	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
116 	{ insn_jal,  M(jal_op, 0, 0, 0, 0, 0),  JIMM },
117 	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jr_op),  RS },
118 	{ insn_ld,  M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
119 	{ insn_ll,  M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
120 	{ insn_lld,  M(lld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
121 	{ insn_lui,  M(lui_op, 0, 0, 0, 0, 0),  RT | SIMM },
122 	{ insn_lw,  M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
123 	{ insn_mfc0,  M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
124 	{ insn_mtc0,  M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
125 	{ insn_or,  M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD },
126 	{ insn_ori,  M(ori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
127 	{ insn_pref,  M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
128 	{ insn_rfe,  M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0 },
129 	{ insn_sc,  M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
130 	{ insn_scd,  M(scd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
131 	{ insn_sd,  M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
132 	{ insn_sll,  M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE },
133 	{ insn_sra,  M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE },
134 	{ insn_srl,  M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE },
135 	{ insn_rotr,  M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE },
136 	{ insn_subu,  M(spec_op, 0, 0, 0, 0, subu_op),  RS | RT | RD },
137 	{ insn_sw,  M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
138 	{ insn_tlbp,  M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0 },
139 	{ insn_tlbr,  M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0 },
140 	{ insn_tlbwi,  M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0 },
141 	{ insn_tlbwr,  M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0 },
142 	{ insn_xor,  M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD },
143 	{ insn_xori,  M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
144 	{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
145 	{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
146 	{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
147 	{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
148 	{ insn_invalid, 0, 0 }
149 };
150 
151 #undef M
152 
153 static inline __uasminit u32 build_rs(u32 arg)
154 {
155 	if (arg & ~RS_MASK)
156 		printk(KERN_WARNING "Micro-assembler field overflow\n");
157 
158 	return (arg & RS_MASK) << RS_SH;
159 }
160 
161 static inline __uasminit u32 build_rt(u32 arg)
162 {
163 	if (arg & ~RT_MASK)
164 		printk(KERN_WARNING "Micro-assembler field overflow\n");
165 
166 	return (arg & RT_MASK) << RT_SH;
167 }
168 
169 static inline __uasminit u32 build_rd(u32 arg)
170 {
171 	if (arg & ~RD_MASK)
172 		printk(KERN_WARNING "Micro-assembler field overflow\n");
173 
174 	return (arg & RD_MASK) << RD_SH;
175 }
176 
177 static inline __uasminit u32 build_re(u32 arg)
178 {
179 	if (arg & ~RE_MASK)
180 		printk(KERN_WARNING "Micro-assembler field overflow\n");
181 
182 	return (arg & RE_MASK) << RE_SH;
183 }
184 
185 static inline __uasminit u32 build_simm(s32 arg)
186 {
187 	if (arg > 0x7fff || arg < -0x8000)
188 		printk(KERN_WARNING "Micro-assembler field overflow\n");
189 
190 	return arg & 0xffff;
191 }
192 
193 static inline __uasminit u32 build_uimm(u32 arg)
194 {
195 	if (arg & ~IMM_MASK)
196 		printk(KERN_WARNING "Micro-assembler field overflow\n");
197 
198 	return arg & IMM_MASK;
199 }
200 
201 static inline __uasminit u32 build_bimm(s32 arg)
202 {
203 	if (arg > 0x1ffff || arg < -0x20000)
204 		printk(KERN_WARNING "Micro-assembler field overflow\n");
205 
206 	if (arg & 0x3)
207 		printk(KERN_WARNING "Invalid micro-assembler branch target\n");
208 
209 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
210 }
211 
212 static inline __uasminit u32 build_jimm(u32 arg)
213 {
214 	if (arg & ~((JIMM_MASK) << 2))
215 		printk(KERN_WARNING "Micro-assembler field overflow\n");
216 
217 	return (arg >> 2) & JIMM_MASK;
218 }
219 
220 static inline __uasminit u32 build_scimm(u32 arg)
221 {
222 	if (arg & ~SCIMM_MASK)
223 		printk(KERN_WARNING "Micro-assembler field overflow\n");
224 
225 	return (arg & SCIMM_MASK) << SCIMM_SH;
226 }
227 
228 static inline __uasminit u32 build_func(u32 arg)
229 {
230 	if (arg & ~FUNC_MASK)
231 		printk(KERN_WARNING "Micro-assembler field overflow\n");
232 
233 	return arg & FUNC_MASK;
234 }
235 
236 static inline __uasminit u32 build_set(u32 arg)
237 {
238 	if (arg & ~SET_MASK)
239 		printk(KERN_WARNING "Micro-assembler field overflow\n");
240 
241 	return arg & SET_MASK;
242 }
243 
244 /*
245  * The order of opcode arguments is implicitly left to right,
246  * starting with RS and ending with FUNC or IMM.
247  */
248 static void __uasminit build_insn(u32 **buf, enum opcode opc, ...)
249 {
250 	struct insn *ip = NULL;
251 	unsigned int i;
252 	va_list ap;
253 	u32 op;
254 
255 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
256 		if (insn_table[i].opcode == opc) {
257 			ip = &insn_table[i];
258 			break;
259 		}
260 
261 	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
262 		panic("Unsupported Micro-assembler instruction %d", opc);
263 
264 	op = ip->match;
265 	va_start(ap, opc);
266 	if (ip->fields & RS)
267 		op |= build_rs(va_arg(ap, u32));
268 	if (ip->fields & RT)
269 		op |= build_rt(va_arg(ap, u32));
270 	if (ip->fields & RD)
271 		op |= build_rd(va_arg(ap, u32));
272 	if (ip->fields & RE)
273 		op |= build_re(va_arg(ap, u32));
274 	if (ip->fields & SIMM)
275 		op |= build_simm(va_arg(ap, s32));
276 	if (ip->fields & UIMM)
277 		op |= build_uimm(va_arg(ap, u32));
278 	if (ip->fields & BIMM)
279 		op |= build_bimm(va_arg(ap, s32));
280 	if (ip->fields & JIMM)
281 		op |= build_jimm(va_arg(ap, u32));
282 	if (ip->fields & FUNC)
283 		op |= build_func(va_arg(ap, u32));
284 	if (ip->fields & SET)
285 		op |= build_set(va_arg(ap, u32));
286 	if (ip->fields & SCIMM)
287 		op |= build_scimm(va_arg(ap, u32));
288 	va_end(ap);
289 
290 	**buf = op;
291 	(*buf)++;
292 }
293 
294 #define I_u1u2u3(op)					\
295 Ip_u1u2u3(op)						\
296 {							\
297 	build_insn(buf, insn##op, a, b, c);		\
298 }							\
299 UASM_EXPORT_SYMBOL(uasm_i##op);
300 
301 #define I_u2u1u3(op)					\
302 Ip_u2u1u3(op)						\
303 {							\
304 	build_insn(buf, insn##op, b, a, c);		\
305 }							\
306 UASM_EXPORT_SYMBOL(uasm_i##op);
307 
308 #define I_u3u1u2(op)					\
309 Ip_u3u1u2(op)						\
310 {							\
311 	build_insn(buf, insn##op, b, c, a);		\
312 }							\
313 UASM_EXPORT_SYMBOL(uasm_i##op);
314 
315 #define I_u1u2s3(op)					\
316 Ip_u1u2s3(op)						\
317 {							\
318 	build_insn(buf, insn##op, a, b, c);		\
319 }							\
320 UASM_EXPORT_SYMBOL(uasm_i##op);
321 
322 #define I_u2s3u1(op)					\
323 Ip_u2s3u1(op)						\
324 {							\
325 	build_insn(buf, insn##op, c, a, b);		\
326 }							\
327 UASM_EXPORT_SYMBOL(uasm_i##op);
328 
329 #define I_u2u1s3(op)					\
330 Ip_u2u1s3(op)						\
331 {							\
332 	build_insn(buf, insn##op, b, a, c);		\
333 }							\
334 UASM_EXPORT_SYMBOL(uasm_i##op);
335 
336 #define I_u2u1msbu3(op)					\
337 Ip_u2u1msbu3(op)					\
338 {							\
339 	build_insn(buf, insn##op, b, a, c+d-1, c);	\
340 }							\
341 UASM_EXPORT_SYMBOL(uasm_i##op);
342 
343 #define I_u1u2(op)					\
344 Ip_u1u2(op)						\
345 {							\
346 	build_insn(buf, insn##op, a, b);		\
347 }							\
348 UASM_EXPORT_SYMBOL(uasm_i##op);
349 
350 #define I_u1s2(op)					\
351 Ip_u1s2(op)						\
352 {							\
353 	build_insn(buf, insn##op, a, b);		\
354 }							\
355 UASM_EXPORT_SYMBOL(uasm_i##op);
356 
357 #define I_u1(op)					\
358 Ip_u1(op)						\
359 {							\
360 	build_insn(buf, insn##op, a);			\
361 }							\
362 UASM_EXPORT_SYMBOL(uasm_i##op);
363 
364 #define I_0(op)						\
365 Ip_0(op)						\
366 {							\
367 	build_insn(buf, insn##op);			\
368 }							\
369 UASM_EXPORT_SYMBOL(uasm_i##op);
370 
371 I_u2u1s3(_addiu)
372 I_u3u1u2(_addu)
373 I_u2u1u3(_andi)
374 I_u3u1u2(_and)
375 I_u1u2s3(_beq)
376 I_u1u2s3(_beql)
377 I_u1s2(_bgez)
378 I_u1s2(_bgezl)
379 I_u1s2(_bltz)
380 I_u1s2(_bltzl)
381 I_u1u2s3(_bne)
382 I_u2s3u1(_cache)
383 I_u1u2u3(_dmfc0)
384 I_u1u2u3(_dmtc0)
385 I_u2u1s3(_daddiu)
386 I_u3u1u2(_daddu)
387 I_u2u1u3(_dsll)
388 I_u2u1u3(_dsll32)
389 I_u2u1u3(_dsra)
390 I_u2u1u3(_dsrl)
391 I_u2u1u3(_dsrl32)
392 I_u2u1u3(_drotr)
393 I_u2u1u3(_drotr32)
394 I_u3u1u2(_dsubu)
395 I_0(_eret)
396 I_u1(_j)
397 I_u1(_jal)
398 I_u1(_jr)
399 I_u2s3u1(_ld)
400 I_u2s3u1(_ll)
401 I_u2s3u1(_lld)
402 I_u1s2(_lui)
403 I_u2s3u1(_lw)
404 I_u1u2u3(_mfc0)
405 I_u1u2u3(_mtc0)
406 I_u2u1u3(_ori)
407 I_u3u1u2(_or)
408 I_u2s3u1(_pref)
409 I_0(_rfe)
410 I_u2s3u1(_sc)
411 I_u2s3u1(_scd)
412 I_u2s3u1(_sd)
413 I_u2u1u3(_sll)
414 I_u2u1u3(_sra)
415 I_u2u1u3(_srl)
416 I_u2u1u3(_rotr)
417 I_u3u1u2(_subu)
418 I_u2s3u1(_sw)
419 I_0(_tlbp)
420 I_0(_tlbr)
421 I_0(_tlbwi)
422 I_0(_tlbwr)
423 I_u3u1u2(_xor)
424 I_u2u1u3(_xori)
425 I_u2u1msbu3(_dins);
426 I_u1(_syscall);
427 I_u1u2s3(_bbit0);
428 I_u1u2s3(_bbit1);
429 
430 /* Handle labels. */
431 void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
432 {
433 	(*lab)->addr = addr;
434 	(*lab)->lab = lid;
435 	(*lab)++;
436 }
437 UASM_EXPORT_SYMBOL(uasm_build_label);
438 
439 int __uasminit uasm_in_compat_space_p(long addr)
440 {
441 	/* Is this address in 32bit compat space? */
442 #ifdef CONFIG_64BIT
443 	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
444 #else
445 	return 1;
446 #endif
447 }
448 UASM_EXPORT_SYMBOL(uasm_in_compat_space_p);
449 
450 static int __uasminit uasm_rel_highest(long val)
451 {
452 #ifdef CONFIG_64BIT
453 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
454 #else
455 	return 0;
456 #endif
457 }
458 
459 static int __uasminit uasm_rel_higher(long val)
460 {
461 #ifdef CONFIG_64BIT
462 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
463 #else
464 	return 0;
465 #endif
466 }
467 
468 int __uasminit uasm_rel_hi(long val)
469 {
470 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
471 }
472 UASM_EXPORT_SYMBOL(uasm_rel_hi);
473 
474 int __uasminit uasm_rel_lo(long val)
475 {
476 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
477 }
478 UASM_EXPORT_SYMBOL(uasm_rel_lo);
479 
480 void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
481 {
482 	if (!uasm_in_compat_space_p(addr)) {
483 		uasm_i_lui(buf, rs, uasm_rel_highest(addr));
484 		if (uasm_rel_higher(addr))
485 			uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
486 		if (uasm_rel_hi(addr)) {
487 			uasm_i_dsll(buf, rs, rs, 16);
488 			uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
489 			uasm_i_dsll(buf, rs, rs, 16);
490 		} else
491 			uasm_i_dsll32(buf, rs, rs, 0);
492 	} else
493 		uasm_i_lui(buf, rs, uasm_rel_hi(addr));
494 }
495 UASM_EXPORT_SYMBOL(UASM_i_LA_mostly);
496 
497 void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr)
498 {
499 	UASM_i_LA_mostly(buf, rs, addr);
500 	if (uasm_rel_lo(addr)) {
501 		if (!uasm_in_compat_space_p(addr))
502 			uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
503 		else
504 			uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
505 	}
506 }
507 UASM_EXPORT_SYMBOL(UASM_i_LA);
508 
509 /* Handle relocations. */
510 void __uasminit
511 uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
512 {
513 	(*rel)->addr = addr;
514 	(*rel)->type = R_MIPS_PC16;
515 	(*rel)->lab = lid;
516 	(*rel)++;
517 }
518 UASM_EXPORT_SYMBOL(uasm_r_mips_pc16);
519 
520 static inline void __uasminit
521 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
522 {
523 	long laddr = (long)lab->addr;
524 	long raddr = (long)rel->addr;
525 
526 	switch (rel->type) {
527 	case R_MIPS_PC16:
528 		*rel->addr |= build_bimm(laddr - (raddr + 4));
529 		break;
530 
531 	default:
532 		panic("Unsupported Micro-assembler relocation %d",
533 		      rel->type);
534 	}
535 }
536 
537 void __uasminit
538 uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
539 {
540 	struct uasm_label *l;
541 
542 	for (; rel->lab != UASM_LABEL_INVALID; rel++)
543 		for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
544 			if (rel->lab == l->lab)
545 				__resolve_relocs(rel, l);
546 }
547 UASM_EXPORT_SYMBOL(uasm_resolve_relocs);
548 
549 void __uasminit
550 uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
551 {
552 	for (; rel->lab != UASM_LABEL_INVALID; rel++)
553 		if (rel->addr >= first && rel->addr < end)
554 			rel->addr += off;
555 }
556 UASM_EXPORT_SYMBOL(uasm_move_relocs);
557 
558 void __uasminit
559 uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
560 {
561 	for (; lab->lab != UASM_LABEL_INVALID; lab++)
562 		if (lab->addr >= first && lab->addr < end)
563 			lab->addr += off;
564 }
565 UASM_EXPORT_SYMBOL(uasm_move_labels);
566 
567 void __uasminit
568 uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
569 		  u32 *end, u32 *target)
570 {
571 	long off = (long)(target - first);
572 
573 	memcpy(target, first, (end - first) * sizeof(u32));
574 
575 	uasm_move_relocs(rel, first, end, off);
576 	uasm_move_labels(lab, first, end, off);
577 }
578 UASM_EXPORT_SYMBOL(uasm_copy_handler);
579 
580 int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
581 {
582 	for (; rel->lab != UASM_LABEL_INVALID; rel++) {
583 		if (rel->addr == addr
584 		    && (rel->type == R_MIPS_PC16
585 			|| rel->type == R_MIPS_26))
586 			return 1;
587 	}
588 
589 	return 0;
590 }
591 UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay);
592 
593 /* Convenience functions for labeled branches. */
594 void __uasminit
595 uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
596 {
597 	uasm_r_mips_pc16(r, *p, lid);
598 	uasm_i_bltz(p, reg, 0);
599 }
600 UASM_EXPORT_SYMBOL(uasm_il_bltz);
601 
602 void __uasminit
603 uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
604 {
605 	uasm_r_mips_pc16(r, *p, lid);
606 	uasm_i_b(p, 0);
607 }
608 UASM_EXPORT_SYMBOL(uasm_il_b);
609 
610 void __uasminit
611 uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
612 {
613 	uasm_r_mips_pc16(r, *p, lid);
614 	uasm_i_beqz(p, reg, 0);
615 }
616 UASM_EXPORT_SYMBOL(uasm_il_beqz);
617 
618 void __uasminit
619 uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
620 {
621 	uasm_r_mips_pc16(r, *p, lid);
622 	uasm_i_beqzl(p, reg, 0);
623 }
624 UASM_EXPORT_SYMBOL(uasm_il_beqzl);
625 
626 void __uasminit
627 uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1,
628 	unsigned int reg2, int lid)
629 {
630 	uasm_r_mips_pc16(r, *p, lid);
631 	uasm_i_bne(p, reg1, reg2, 0);
632 }
633 UASM_EXPORT_SYMBOL(uasm_il_bne);
634 
635 void __uasminit
636 uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
637 {
638 	uasm_r_mips_pc16(r, *p, lid);
639 	uasm_i_bnez(p, reg, 0);
640 }
641 UASM_EXPORT_SYMBOL(uasm_il_bnez);
642 
643 void __uasminit
644 uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
645 {
646 	uasm_r_mips_pc16(r, *p, lid);
647 	uasm_i_bgezl(p, reg, 0);
648 }
649 UASM_EXPORT_SYMBOL(uasm_il_bgezl);
650 
651 void __uasminit
652 uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
653 {
654 	uasm_r_mips_pc16(r, *p, lid);
655 	uasm_i_bgez(p, reg, 0);
656 }
657 UASM_EXPORT_SYMBOL(uasm_il_bgez);
658 
659 void __uasminit
660 uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg,
661 	      unsigned int bit, int lid)
662 {
663 	uasm_r_mips_pc16(r, *p, lid);
664 	uasm_i_bbit0(p, reg, bit, 0);
665 }
666 UASM_EXPORT_SYMBOL(uasm_il_bbit0);
667 
668 void __uasminit
669 uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg,
670 	      unsigned int bit, int lid)
671 {
672 	uasm_r_mips_pc16(r, *p, lid);
673 	uasm_i_bbit1(p, reg, bit, 0);
674 }
675 UASM_EXPORT_SYMBOL(uasm_il_bbit1);
676