xref: /linux/arch/mips/kvm/mmu.c (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29 				  int min, int max)
30 {
31 	void *page;
32 
33 	BUG_ON(max > KVM_NR_MEM_OBJS);
34 	if (cache->nobjs >= min)
35 		return 0;
36 	while (cache->nobjs < max) {
37 		page = (void *)__get_free_page(GFP_KERNEL);
38 		if (!page)
39 			return -ENOMEM;
40 		cache->objects[cache->nobjs++] = page;
41 	}
42 	return 0;
43 }
44 
45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
46 {
47 	while (mc->nobjs)
48 		free_page((unsigned long)mc->objects[--mc->nobjs]);
49 }
50 
51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
52 {
53 	void *p;
54 
55 	BUG_ON(!mc || !mc->nobjs);
56 	p = mc->objects[--mc->nobjs];
57 	return p;
58 }
59 
60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
61 {
62 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
63 }
64 
65 /**
66  * kvm_pgd_init() - Initialise KVM GPA page directory.
67  * @page:	Pointer to page directory (PGD) for KVM GPA.
68  *
69  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70  * representing no mappings. This is similar to pgd_init(), however it
71  * initialises all the page directory pointers, not just the ones corresponding
72  * to the userland address space (since it is for the guest physical address
73  * space rather than a virtual address space).
74  */
75 static void kvm_pgd_init(void *page)
76 {
77 	unsigned long *p, *end;
78 	unsigned long entry;
79 
80 #ifdef __PAGETABLE_PMD_FOLDED
81 	entry = (unsigned long)invalid_pte_table;
82 #else
83 	entry = (unsigned long)invalid_pmd_table;
84 #endif
85 
86 	p = (unsigned long *)page;
87 	end = p + PTRS_PER_PGD;
88 
89 	do {
90 		p[0] = entry;
91 		p[1] = entry;
92 		p[2] = entry;
93 		p[3] = entry;
94 		p[4] = entry;
95 		p += 8;
96 		p[-3] = entry;
97 		p[-2] = entry;
98 		p[-1] = entry;
99 	} while (p != end);
100 }
101 
102 /**
103  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
104  *
105  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106  * to host physical page mappings.
107  *
108  * Returns:	Pointer to new KVM GPA page directory.
109  *		NULL on allocation failure.
110  */
111 pgd_t *kvm_pgd_alloc(void)
112 {
113 	pgd_t *ret;
114 
115 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116 	if (ret)
117 		kvm_pgd_init(ret);
118 
119 	return ret;
120 }
121 
122 /**
123  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124  * @pgd:	Page directory pointer.
125  * @addr:	Address to index page table using.
126  * @cache:	MMU page cache to allocate new page tables from, or NULL.
127  *
128  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129  * address @addr. If page tables don't exist for @addr, they will be created
130  * from the MMU cache if @cache is not NULL.
131  *
132  * Returns:	Pointer to pte_t corresponding to @addr.
133  *		NULL if a page table doesn't exist for @addr and !@cache.
134  *		NULL if a page table allocation failed.
135  */
136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137 				unsigned long addr)
138 {
139 	pud_t *pud;
140 	pmd_t *pmd;
141 
142 	pgd += pgd_index(addr);
143 	if (pgd_none(*pgd)) {
144 		/* Not used on MIPS yet */
145 		BUG();
146 		return NULL;
147 	}
148 	pud = pud_offset(pgd, addr);
149 	if (pud_none(*pud)) {
150 		pmd_t *new_pmd;
151 
152 		if (!cache)
153 			return NULL;
154 		new_pmd = mmu_memory_cache_alloc(cache);
155 		pmd_init((unsigned long)new_pmd,
156 			 (unsigned long)invalid_pte_table);
157 		pud_populate(NULL, pud, new_pmd);
158 	}
159 	pmd = pmd_offset(pud, addr);
160 	if (pmd_none(*pmd)) {
161 		pte_t *new_pte;
162 
163 		if (!cache)
164 			return NULL;
165 		new_pte = mmu_memory_cache_alloc(cache);
166 		clear_page(new_pte);
167 		pmd_populate_kernel(NULL, pmd, new_pte);
168 	}
169 	return pte_offset(pmd, addr);
170 }
171 
172 /* Caller must hold kvm->mm_lock */
173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
174 				   struct kvm_mmu_memory_cache *cache,
175 				   unsigned long addr)
176 {
177 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
178 }
179 
180 /*
181  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
182  * Flush a range of guest physical address space from the VM's GPA page tables.
183  */
184 
185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
186 				   unsigned long end_gpa)
187 {
188 	int i_min = __pte_offset(start_gpa);
189 	int i_max = __pte_offset(end_gpa);
190 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
191 	int i;
192 
193 	for (i = i_min; i <= i_max; ++i) {
194 		if (!pte_present(pte[i]))
195 			continue;
196 
197 		set_pte(pte + i, __pte(0));
198 	}
199 	return safe_to_remove;
200 }
201 
202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
203 				   unsigned long end_gpa)
204 {
205 	pte_t *pte;
206 	unsigned long end = ~0ul;
207 	int i_min = __pmd_offset(start_gpa);
208 	int i_max = __pmd_offset(end_gpa);
209 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
210 	int i;
211 
212 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
213 		if (!pmd_present(pmd[i]))
214 			continue;
215 
216 		pte = pte_offset(pmd + i, 0);
217 		if (i == i_max)
218 			end = end_gpa;
219 
220 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
221 			pmd_clear(pmd + i);
222 			pte_free_kernel(NULL, pte);
223 		} else {
224 			safe_to_remove = false;
225 		}
226 	}
227 	return safe_to_remove;
228 }
229 
230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
231 				   unsigned long end_gpa)
232 {
233 	pmd_t *pmd;
234 	unsigned long end = ~0ul;
235 	int i_min = __pud_offset(start_gpa);
236 	int i_max = __pud_offset(end_gpa);
237 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
238 	int i;
239 
240 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
241 		if (!pud_present(pud[i]))
242 			continue;
243 
244 		pmd = pmd_offset(pud + i, 0);
245 		if (i == i_max)
246 			end = end_gpa;
247 
248 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
249 			pud_clear(pud + i);
250 			pmd_free(NULL, pmd);
251 		} else {
252 			safe_to_remove = false;
253 		}
254 	}
255 	return safe_to_remove;
256 }
257 
258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
259 				   unsigned long end_gpa)
260 {
261 	pud_t *pud;
262 	unsigned long end = ~0ul;
263 	int i_min = pgd_index(start_gpa);
264 	int i_max = pgd_index(end_gpa);
265 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
266 	int i;
267 
268 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
269 		if (!pgd_present(pgd[i]))
270 			continue;
271 
272 		pud = pud_offset(pgd + i, 0);
273 		if (i == i_max)
274 			end = end_gpa;
275 
276 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
277 			pgd_clear(pgd + i);
278 			pud_free(NULL, pud);
279 		} else {
280 			safe_to_remove = false;
281 		}
282 	}
283 	return safe_to_remove;
284 }
285 
286 /**
287  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
288  * @kvm:	KVM pointer.
289  * @start_gfn:	Guest frame number of first page in GPA range to flush.
290  * @end_gfn:	Guest frame number of last page in GPA range to flush.
291  *
292  * Flushes a range of GPA mappings from the GPA page tables.
293  *
294  * The caller must hold the @kvm->mmu_lock spinlock.
295  *
296  * Returns:	Whether its safe to remove the top level page directory because
297  *		all lower levels have been removed.
298  */
299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
300 {
301 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
302 				      start_gfn << PAGE_SHIFT,
303 				      end_gfn << PAGE_SHIFT);
304 }
305 
306 #define BUILD_PTE_RANGE_OP(name, op)					\
307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
308 				 unsigned long end)			\
309 {									\
310 	int ret = 0;							\
311 	int i_min = __pte_offset(start);				\
312 	int i_max = __pte_offset(end);					\
313 	int i;								\
314 	pte_t old, new;							\
315 									\
316 	for (i = i_min; i <= i_max; ++i) {				\
317 		if (!pte_present(pte[i]))				\
318 			continue;					\
319 									\
320 		old = pte[i];						\
321 		new = op(old);						\
322 		if (pte_val(new) == pte_val(old))			\
323 			continue;					\
324 		set_pte(pte + i, new);					\
325 		ret = 1;						\
326 	}								\
327 	return ret;							\
328 }									\
329 									\
330 /* returns true if anything was done */					\
331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
332 				 unsigned long end)			\
333 {									\
334 	int ret = 0;							\
335 	pte_t *pte;							\
336 	unsigned long cur_end = ~0ul;					\
337 	int i_min = __pmd_offset(start);				\
338 	int i_max = __pmd_offset(end);					\
339 	int i;								\
340 									\
341 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
342 		if (!pmd_present(pmd[i]))				\
343 			continue;					\
344 									\
345 		pte = pte_offset(pmd + i, 0);				\
346 		if (i == i_max)						\
347 			cur_end = end;					\
348 									\
349 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
350 	}								\
351 	return ret;							\
352 }									\
353 									\
354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
355 				 unsigned long end)			\
356 {									\
357 	int ret = 0;							\
358 	pmd_t *pmd;							\
359 	unsigned long cur_end = ~0ul;					\
360 	int i_min = __pud_offset(start);				\
361 	int i_max = __pud_offset(end);					\
362 	int i;								\
363 									\
364 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
365 		if (!pud_present(pud[i]))				\
366 			continue;					\
367 									\
368 		pmd = pmd_offset(pud + i, 0);				\
369 		if (i == i_max)						\
370 			cur_end = end;					\
371 									\
372 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
373 	}								\
374 	return ret;							\
375 }									\
376 									\
377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
378 				 unsigned long end)			\
379 {									\
380 	int ret = 0;							\
381 	pud_t *pud;							\
382 	unsigned long cur_end = ~0ul;					\
383 	int i_min = pgd_index(start);					\
384 	int i_max = pgd_index(end);					\
385 	int i;								\
386 									\
387 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
388 		if (!pgd_present(pgd[i]))				\
389 			continue;					\
390 									\
391 		pud = pud_offset(pgd + i, 0);				\
392 		if (i == i_max)						\
393 			cur_end = end;					\
394 									\
395 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
396 	}								\
397 	return ret;							\
398 }
399 
400 /*
401  * kvm_mips_mkclean_gpa_pt.
402  * Mark a range of guest physical address space clean (writes fault) in the VM's
403  * GPA page table to allow dirty page tracking.
404  */
405 
406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
407 
408 /**
409  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
410  * @kvm:	KVM pointer.
411  * @start_gfn:	Guest frame number of first page in GPA range to flush.
412  * @end_gfn:	Guest frame number of last page in GPA range to flush.
413  *
414  * Make a range of GPA mappings clean so that guest writes will fault and
415  * trigger dirty page logging.
416  *
417  * The caller must hold the @kvm->mmu_lock spinlock.
418  *
419  * Returns:	Whether any GPA mappings were modified, which would require
420  *		derived mappings (GVA page tables & TLB enties) to be
421  *		invalidated.
422  */
423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
424 {
425 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
426 				    start_gfn << PAGE_SHIFT,
427 				    end_gfn << PAGE_SHIFT);
428 }
429 
430 /**
431  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
432  * @kvm:	The KVM pointer
433  * @slot:	The memory slot associated with mask
434  * @gfn_offset:	The gfn offset in memory slot
435  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
436  *		slot to be write protected
437  *
438  * Walks bits set in mask write protects the associated pte's. Caller must
439  * acquire @kvm->mmu_lock.
440  */
441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
442 		struct kvm_memory_slot *slot,
443 		gfn_t gfn_offset, unsigned long mask)
444 {
445 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
446 	gfn_t start = base_gfn +  __ffs(mask);
447 	gfn_t end = base_gfn + __fls(mask);
448 
449 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
450 }
451 
452 /*
453  * kvm_mips_mkold_gpa_pt.
454  * Mark a range of guest physical address space old (all accesses fault) in the
455  * VM's GPA page table to allow detection of commonly used pages.
456  */
457 
458 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
459 
460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
461 				 gfn_t end_gfn)
462 {
463 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
464 				  start_gfn << PAGE_SHIFT,
465 				  end_gfn << PAGE_SHIFT);
466 }
467 
468 static int handle_hva_to_gpa(struct kvm *kvm,
469 			     unsigned long start,
470 			     unsigned long end,
471 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
472 					    gpa_t gfn_end,
473 					    struct kvm_memory_slot *memslot,
474 					    void *data),
475 			     void *data)
476 {
477 	struct kvm_memslots *slots;
478 	struct kvm_memory_slot *memslot;
479 	int ret = 0;
480 
481 	slots = kvm_memslots(kvm);
482 
483 	/* we only care about the pages that the guest sees */
484 	kvm_for_each_memslot(memslot, slots) {
485 		unsigned long hva_start, hva_end;
486 		gfn_t gfn, gfn_end;
487 
488 		hva_start = max(start, memslot->userspace_addr);
489 		hva_end = min(end, memslot->userspace_addr +
490 					(memslot->npages << PAGE_SHIFT));
491 		if (hva_start >= hva_end)
492 			continue;
493 
494 		/*
495 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
496 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
497 		 */
498 		gfn = hva_to_gfn_memslot(hva_start, memslot);
499 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
500 
501 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
502 	}
503 
504 	return ret;
505 }
506 
507 
508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
509 				 struct kvm_memory_slot *memslot, void *data)
510 {
511 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
512 	return 1;
513 }
514 
515 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
516 {
517 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
518 
519 	kvm_mips_callbacks->flush_shadow_all(kvm);
520 	return 0;
521 }
522 
523 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
524 				struct kvm_memory_slot *memslot, void *data)
525 {
526 	gpa_t gpa = gfn << PAGE_SHIFT;
527 	pte_t hva_pte = *(pte_t *)data;
528 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
529 	pte_t old_pte;
530 
531 	if (!gpa_pte)
532 		return 0;
533 
534 	/* Mapping may need adjusting depending on memslot flags */
535 	old_pte = *gpa_pte;
536 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
537 		hva_pte = pte_mkclean(hva_pte);
538 	else if (memslot->flags & KVM_MEM_READONLY)
539 		hva_pte = pte_wrprotect(hva_pte);
540 
541 	set_pte(gpa_pte, hva_pte);
542 
543 	/* Replacing an absent or old page doesn't need flushes */
544 	if (!pte_present(old_pte) || !pte_young(old_pte))
545 		return 0;
546 
547 	/* Pages swapped, aged, moved, or cleaned require flushes */
548 	return !pte_present(hva_pte) ||
549 	       !pte_young(hva_pte) ||
550 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
551 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
552 }
553 
554 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
555 {
556 	unsigned long end = hva + PAGE_SIZE;
557 	int ret;
558 
559 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
560 	if (ret)
561 		kvm_mips_callbacks->flush_shadow_all(kvm);
562 	return 0;
563 }
564 
565 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
566 			       struct kvm_memory_slot *memslot, void *data)
567 {
568 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
569 }
570 
571 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
572 				    struct kvm_memory_slot *memslot, void *data)
573 {
574 	gpa_t gpa = gfn << PAGE_SHIFT;
575 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
576 
577 	if (!gpa_pte)
578 		return 0;
579 	return pte_young(*gpa_pte);
580 }
581 
582 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
583 {
584 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
585 }
586 
587 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
588 {
589 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
590 }
591 
592 /**
593  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
594  * @vcpu:		VCPU pointer.
595  * @gpa:		Guest physical address of fault.
596  * @write_fault:	Whether the fault was due to a write.
597  * @out_entry:		New PTE for @gpa (written on success unless NULL).
598  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
599  *			NULL).
600  *
601  * Perform fast path GPA fault handling, doing all that can be done without
602  * calling into KVM. This handles marking old pages young (for idle page
603  * tracking), and dirtying of clean pages (for dirty page logging).
604  *
605  * Returns:	0 on success, in which case we can update derived mappings and
606  *		resume guest execution.
607  *		-EFAULT on failure due to absent GPA mapping or write to
608  *		read-only page, in which case KVM must be consulted.
609  */
610 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
611 				   bool write_fault,
612 				   pte_t *out_entry, pte_t *out_buddy)
613 {
614 	struct kvm *kvm = vcpu->kvm;
615 	gfn_t gfn = gpa >> PAGE_SHIFT;
616 	pte_t *ptep;
617 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
618 	bool pfn_valid = false;
619 	int ret = 0;
620 
621 	spin_lock(&kvm->mmu_lock);
622 
623 	/* Fast path - just check GPA page table for an existing entry */
624 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
625 	if (!ptep || !pte_present(*ptep)) {
626 		ret = -EFAULT;
627 		goto out;
628 	}
629 
630 	/* Track access to pages marked old */
631 	if (!pte_young(*ptep)) {
632 		set_pte(ptep, pte_mkyoung(*ptep));
633 		pfn = pte_pfn(*ptep);
634 		pfn_valid = true;
635 		/* call kvm_set_pfn_accessed() after unlock */
636 	}
637 	if (write_fault && !pte_dirty(*ptep)) {
638 		if (!pte_write(*ptep)) {
639 			ret = -EFAULT;
640 			goto out;
641 		}
642 
643 		/* Track dirtying of writeable pages */
644 		set_pte(ptep, pte_mkdirty(*ptep));
645 		pfn = pte_pfn(*ptep);
646 		mark_page_dirty(kvm, gfn);
647 		kvm_set_pfn_dirty(pfn);
648 	}
649 
650 	if (out_entry)
651 		*out_entry = *ptep;
652 	if (out_buddy)
653 		*out_buddy = *ptep_buddy(ptep);
654 
655 out:
656 	spin_unlock(&kvm->mmu_lock);
657 	if (pfn_valid)
658 		kvm_set_pfn_accessed(pfn);
659 	return ret;
660 }
661 
662 /**
663  * kvm_mips_map_page() - Map a guest physical page.
664  * @vcpu:		VCPU pointer.
665  * @gpa:		Guest physical address of fault.
666  * @write_fault:	Whether the fault was due to a write.
667  * @out_entry:		New PTE for @gpa (written on success unless NULL).
668  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
669  *			NULL).
670  *
671  * Handle GPA faults by creating a new GPA mapping (or updating an existing
672  * one).
673  *
674  * This takes care of marking pages young or dirty (idle/dirty page tracking),
675  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
676  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
677  * caller.
678  *
679  * Returns:	0 on success, in which case the caller may use the @out_entry
680  *		and @out_buddy PTEs to update derived mappings and resume guest
681  *		execution.
682  *		-EFAULT if there is no memory region at @gpa or a write was
683  *		attempted to a read-only memory region. This is usually handled
684  *		as an MMIO access.
685  */
686 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
687 			     bool write_fault,
688 			     pte_t *out_entry, pte_t *out_buddy)
689 {
690 	struct kvm *kvm = vcpu->kvm;
691 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
692 	gfn_t gfn = gpa >> PAGE_SHIFT;
693 	int srcu_idx, err;
694 	kvm_pfn_t pfn;
695 	pte_t *ptep, entry, old_pte;
696 	bool writeable;
697 	unsigned long prot_bits;
698 	unsigned long mmu_seq;
699 
700 	/* Try the fast path to handle old / clean pages */
701 	srcu_idx = srcu_read_lock(&kvm->srcu);
702 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
703 				      out_buddy);
704 	if (!err)
705 		goto out;
706 
707 	/* We need a minimum of cached pages ready for page table creation */
708 	err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
709 				     KVM_NR_MEM_OBJS);
710 	if (err)
711 		goto out;
712 
713 retry:
714 	/*
715 	 * Used to check for invalidations in progress, of the pfn that is
716 	 * returned by pfn_to_pfn_prot below.
717 	 */
718 	mmu_seq = kvm->mmu_notifier_seq;
719 	/*
720 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
721 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
722 	 * risk the page we get a reference to getting unmapped before we have a
723 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
724 	 *
725 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
726 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
727 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
728 	 * mmu_notifier_seq is incremented.
729 	 */
730 	smp_rmb();
731 
732 	/* Slow path - ask KVM core whether we can access this GPA */
733 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
734 	if (is_error_noslot_pfn(pfn)) {
735 		err = -EFAULT;
736 		goto out;
737 	}
738 
739 	spin_lock(&kvm->mmu_lock);
740 	/* Check if an invalidation has taken place since we got pfn */
741 	if (mmu_notifier_retry(kvm, mmu_seq)) {
742 		/*
743 		 * This can happen when mappings are changed asynchronously, but
744 		 * also synchronously if a COW is triggered by
745 		 * gfn_to_pfn_prot().
746 		 */
747 		spin_unlock(&kvm->mmu_lock);
748 		kvm_release_pfn_clean(pfn);
749 		goto retry;
750 	}
751 
752 	/* Ensure page tables are allocated */
753 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
754 
755 	/* Set up the PTE */
756 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
757 	if (writeable) {
758 		prot_bits |= _PAGE_WRITE;
759 		if (write_fault) {
760 			prot_bits |= __WRITEABLE;
761 			mark_page_dirty(kvm, gfn);
762 			kvm_set_pfn_dirty(pfn);
763 		}
764 	}
765 	entry = pfn_pte(pfn, __pgprot(prot_bits));
766 
767 	/* Write the PTE */
768 	old_pte = *ptep;
769 	set_pte(ptep, entry);
770 
771 	err = 0;
772 	if (out_entry)
773 		*out_entry = *ptep;
774 	if (out_buddy)
775 		*out_buddy = *ptep_buddy(ptep);
776 
777 	spin_unlock(&kvm->mmu_lock);
778 	kvm_release_pfn_clean(pfn);
779 	kvm_set_pfn_accessed(pfn);
780 out:
781 	srcu_read_unlock(&kvm->srcu, srcu_idx);
782 	return err;
783 }
784 
785 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
786 					unsigned long addr)
787 {
788 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
789 	pgd_t *pgdp;
790 	int ret;
791 
792 	/* We need a minimum of cached pages ready for page table creation */
793 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
794 				     KVM_NR_MEM_OBJS);
795 	if (ret)
796 		return NULL;
797 
798 	if (KVM_GUEST_KERNEL_MODE(vcpu))
799 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
800 	else
801 		pgdp = vcpu->arch.guest_user_mm.pgd;
802 
803 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
804 }
805 
806 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
807 				  bool user)
808 {
809 	pgd_t *pgdp;
810 	pte_t *ptep;
811 
812 	addr &= PAGE_MASK << 1;
813 
814 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
815 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
816 	if (ptep) {
817 		ptep[0] = pfn_pte(0, __pgprot(0));
818 		ptep[1] = pfn_pte(0, __pgprot(0));
819 	}
820 
821 	if (user) {
822 		pgdp = vcpu->arch.guest_user_mm.pgd;
823 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
824 		if (ptep) {
825 			ptep[0] = pfn_pte(0, __pgprot(0));
826 			ptep[1] = pfn_pte(0, __pgprot(0));
827 		}
828 	}
829 }
830 
831 /*
832  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
833  * Flush a range of guest physical address space from the VM's GPA page tables.
834  */
835 
836 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
837 				   unsigned long end_gva)
838 {
839 	int i_min = __pte_offset(start_gva);
840 	int i_max = __pte_offset(end_gva);
841 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
842 	int i;
843 
844 	/*
845 	 * There's no freeing to do, so there's no point clearing individual
846 	 * entries unless only part of the last level page table needs flushing.
847 	 */
848 	if (safe_to_remove)
849 		return true;
850 
851 	for (i = i_min; i <= i_max; ++i) {
852 		if (!pte_present(pte[i]))
853 			continue;
854 
855 		set_pte(pte + i, __pte(0));
856 	}
857 	return false;
858 }
859 
860 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
861 				   unsigned long end_gva)
862 {
863 	pte_t *pte;
864 	unsigned long end = ~0ul;
865 	int i_min = __pmd_offset(start_gva);
866 	int i_max = __pmd_offset(end_gva);
867 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
868 	int i;
869 
870 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
871 		if (!pmd_present(pmd[i]))
872 			continue;
873 
874 		pte = pte_offset(pmd + i, 0);
875 		if (i == i_max)
876 			end = end_gva;
877 
878 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
879 			pmd_clear(pmd + i);
880 			pte_free_kernel(NULL, pte);
881 		} else {
882 			safe_to_remove = false;
883 		}
884 	}
885 	return safe_to_remove;
886 }
887 
888 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
889 				   unsigned long end_gva)
890 {
891 	pmd_t *pmd;
892 	unsigned long end = ~0ul;
893 	int i_min = __pud_offset(start_gva);
894 	int i_max = __pud_offset(end_gva);
895 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
896 	int i;
897 
898 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
899 		if (!pud_present(pud[i]))
900 			continue;
901 
902 		pmd = pmd_offset(pud + i, 0);
903 		if (i == i_max)
904 			end = end_gva;
905 
906 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
907 			pud_clear(pud + i);
908 			pmd_free(NULL, pmd);
909 		} else {
910 			safe_to_remove = false;
911 		}
912 	}
913 	return safe_to_remove;
914 }
915 
916 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
917 				   unsigned long end_gva)
918 {
919 	pud_t *pud;
920 	unsigned long end = ~0ul;
921 	int i_min = pgd_index(start_gva);
922 	int i_max = pgd_index(end_gva);
923 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
924 	int i;
925 
926 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
927 		if (!pgd_present(pgd[i]))
928 			continue;
929 
930 		pud = pud_offset(pgd + i, 0);
931 		if (i == i_max)
932 			end = end_gva;
933 
934 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
935 			pgd_clear(pgd + i);
936 			pud_free(NULL, pud);
937 		} else {
938 			safe_to_remove = false;
939 		}
940 	}
941 	return safe_to_remove;
942 }
943 
944 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
945 {
946 	if (flags & KMF_GPA) {
947 		/* all of guest virtual address space could be affected */
948 		if (flags & KMF_KERN)
949 			/* useg, kseg0, seg2/3 */
950 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
951 		else
952 			/* useg */
953 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
954 	} else {
955 		/* useg */
956 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
957 
958 		/* kseg2/3 */
959 		if (flags & KMF_KERN)
960 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
961 	}
962 }
963 
964 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
965 {
966 	/*
967 	 * Don't leak writeable but clean entries from GPA page tables. We don't
968 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
969 	 * accesses guest memory.
970 	 */
971 	if (!pte_dirty(pte))
972 		pte = pte_wrprotect(pte);
973 
974 	return pte;
975 }
976 
977 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
978 {
979 	/* Guest EntryLo overrides host EntryLo */
980 	if (!(entrylo & ENTRYLO_D))
981 		pte = pte_mkclean(pte);
982 
983 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
984 }
985 
986 #ifdef CONFIG_KVM_MIPS_VZ
987 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
988 				      struct kvm_vcpu *vcpu,
989 				      bool write_fault)
990 {
991 	int ret;
992 
993 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
994 	if (ret)
995 		return ret;
996 
997 	/* Invalidate this entry in the TLB */
998 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
999 }
1000 #endif
1001 
1002 /* XXXKYMA: Must be called with interrupts disabled */
1003 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1004 				    struct kvm_vcpu *vcpu,
1005 				    bool write_fault)
1006 {
1007 	unsigned long gpa;
1008 	pte_t pte_gpa[2], *ptep_gva;
1009 	int idx;
1010 
1011 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1012 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1013 		kvm_mips_dump_host_tlbs();
1014 		return -1;
1015 	}
1016 
1017 	/* Get the GPA page table entry */
1018 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1019 	idx = (badvaddr >> PAGE_SHIFT) & 1;
1020 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1021 			      &pte_gpa[!idx]) < 0)
1022 		return -1;
1023 
1024 	/* Get the GVA page table entry */
1025 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1026 	if (!ptep_gva) {
1027 		kvm_err("No ptep for gva %lx\n", badvaddr);
1028 		return -1;
1029 	}
1030 
1031 	/* Copy a pair of entries from GPA page table to GVA page table */
1032 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1033 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1034 
1035 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1036 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1037 	return 0;
1038 }
1039 
1040 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1041 					 struct kvm_mips_tlb *tlb,
1042 					 unsigned long gva,
1043 					 bool write_fault)
1044 {
1045 	struct kvm *kvm = vcpu->kvm;
1046 	long tlb_lo[2];
1047 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1048 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1049 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1050 
1051 	tlb_lo[0] = tlb->tlb_lo[0];
1052 	tlb_lo[1] = tlb->tlb_lo[1];
1053 
1054 	/*
1055 	 * The commpage address must not be mapped to anything else if the guest
1056 	 * TLB contains entries nearby, or commpage accesses will break.
1057 	 */
1058 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1059 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1060 
1061 	/* Get the GPA page table entry */
1062 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1063 			      write_fault, &pte_gpa[idx], NULL) < 0)
1064 		return -1;
1065 
1066 	/* And its GVA buddy's GPA page table entry if it also exists */
1067 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1068 	if (tlb_lo[!idx] & ENTRYLO_V) {
1069 		spin_lock(&kvm->mmu_lock);
1070 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1071 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1072 		if (ptep_buddy)
1073 			pte_gpa[!idx] = *ptep_buddy;
1074 		spin_unlock(&kvm->mmu_lock);
1075 	}
1076 
1077 	/* Get the GVA page table entry pair */
1078 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1079 	if (!ptep_gva) {
1080 		kvm_err("No ptep for gva %lx\n", gva);
1081 		return -1;
1082 	}
1083 
1084 	/* Copy a pair of entries from GPA page table to GVA page table */
1085 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1086 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1087 
1088 	/* Invalidate this entry in the TLB, current guest mode ASID only */
1089 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1090 
1091 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1092 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1093 
1094 	return 0;
1095 }
1096 
1097 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1098 				       struct kvm_vcpu *vcpu)
1099 {
1100 	kvm_pfn_t pfn;
1101 	pte_t *ptep;
1102 
1103 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1104 	if (!ptep) {
1105 		kvm_err("No ptep for commpage %lx\n", badvaddr);
1106 		return -1;
1107 	}
1108 
1109 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1110 	/* Also set valid and dirty, so refill handler doesn't have to */
1111 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1112 
1113 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1114 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1115 	return 0;
1116 }
1117 
1118 /**
1119  * kvm_mips_migrate_count() - Migrate timer.
1120  * @vcpu:	Virtual CPU.
1121  *
1122  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1123  * if it was running prior to being cancelled.
1124  *
1125  * Must be called when the VCPU is migrated to a different CPU to ensure that
1126  * timer expiry during guest execution interrupts the guest and causes the
1127  * interrupt to be delivered in a timely manner.
1128  */
1129 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1130 {
1131 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1132 		hrtimer_restart(&vcpu->arch.comparecount_timer);
1133 }
1134 
1135 /* Restore ASID once we are scheduled back after preemption */
1136 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1137 {
1138 	unsigned long flags;
1139 
1140 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1141 
1142 	local_irq_save(flags);
1143 
1144 	vcpu->cpu = cpu;
1145 	if (vcpu->arch.last_sched_cpu != cpu) {
1146 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1147 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1148 		/*
1149 		 * Migrate the timer interrupt to the current CPU so that it
1150 		 * always interrupts the guest and synchronously triggers a
1151 		 * guest timer interrupt.
1152 		 */
1153 		kvm_mips_migrate_count(vcpu);
1154 	}
1155 
1156 	/* restore guest state to registers */
1157 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1158 
1159 	local_irq_restore(flags);
1160 }
1161 
1162 /* ASID can change if another task is scheduled during preemption */
1163 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1164 {
1165 	unsigned long flags;
1166 	int cpu;
1167 
1168 	local_irq_save(flags);
1169 
1170 	cpu = smp_processor_id();
1171 	vcpu->arch.last_sched_cpu = cpu;
1172 	vcpu->cpu = -1;
1173 
1174 	/* save guest state in registers */
1175 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1176 
1177 	local_irq_restore(flags);
1178 }
1179 
1180 /**
1181  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1182  * @vcpu:	Virtual CPU.
1183  * @gva:	Guest virtual address to be accessed.
1184  * @write:	True if write attempted (must be dirtied and made writable).
1185  *
1186  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1187  * dirtying the page if @write so that guest instructions can be modified.
1188  *
1189  * Returns:	KVM_MIPS_MAPPED on success.
1190  *		KVM_MIPS_GVA if bad guest virtual address.
1191  *		KVM_MIPS_GPA if bad guest physical address.
1192  *		KVM_MIPS_TLB if guest TLB not present.
1193  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1194  *		KVM_MIPS_TLBMOD if guest TLB read only.
1195  */
1196 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1197 						   unsigned long gva,
1198 						   bool write)
1199 {
1200 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1201 	struct kvm_mips_tlb *tlb;
1202 	int index;
1203 
1204 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1205 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1206 			return KVM_MIPS_GPA;
1207 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1208 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1209 		/* Address should be in the guest TLB */
1210 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1211 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1212 		if (index < 0)
1213 			return KVM_MIPS_TLB;
1214 		tlb = &vcpu->arch.guest_tlb[index];
1215 
1216 		/* Entry should be valid, and dirty for writes */
1217 		if (!TLB_IS_VALID(*tlb, gva))
1218 			return KVM_MIPS_TLBINV;
1219 		if (write && !TLB_IS_DIRTY(*tlb, gva))
1220 			return KVM_MIPS_TLBMOD;
1221 
1222 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1223 			return KVM_MIPS_GPA;
1224 	} else {
1225 		return KVM_MIPS_GVA;
1226 	}
1227 
1228 	return KVM_MIPS_MAPPED;
1229 }
1230 
1231 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1232 {
1233 	int err;
1234 
1235 	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1236 		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1237 		return -EINVAL;
1238 
1239 retry:
1240 	kvm_trap_emul_gva_lockless_begin(vcpu);
1241 	err = get_user(*out, opc);
1242 	kvm_trap_emul_gva_lockless_end(vcpu);
1243 
1244 	if (unlikely(err)) {
1245 		/*
1246 		 * Try to handle the fault, maybe we just raced with a GVA
1247 		 * invalidation.
1248 		 */
1249 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1250 					      false);
1251 		if (unlikely(err)) {
1252 			kvm_err("%s: illegal address: %p\n",
1253 				__func__, opc);
1254 			return -EFAULT;
1255 		}
1256 
1257 		/* Hopefully it'll work now */
1258 		goto retry;
1259 	}
1260 	return 0;
1261 }
1262