xref: /linux/arch/mips/kernel/traps.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 
32 #include <asm/bootinfo.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 #include <asm/cop2.h>
36 #include <asm/cpu.h>
37 #include <asm/dsp.h>
38 #include <asm/fpu.h>
39 #include <asm/fpu_emulator.h>
40 #include <asm/mipsregs.h>
41 #include <asm/mipsmtregs.h>
42 #include <asm/module.h>
43 #include <asm/pgtable.h>
44 #include <asm/ptrace.h>
45 #include <asm/sections.h>
46 #include <asm/system.h>
47 #include <asm/tlbdebug.h>
48 #include <asm/traps.h>
49 #include <asm/uaccess.h>
50 #include <asm/watch.h>
51 #include <asm/mmu_context.h>
52 #include <asm/types.h>
53 #include <asm/stacktrace.h>
54 #include <asm/irq.h>
55 #include <asm/uasm.h>
56 
57 extern void check_wait(void);
58 extern asmlinkage void r4k_wait(void);
59 extern asmlinkage void rollback_handle_int(void);
60 extern asmlinkage void handle_int(void);
61 extern asmlinkage void handle_tlbm(void);
62 extern asmlinkage void handle_tlbl(void);
63 extern asmlinkage void handle_tlbs(void);
64 extern asmlinkage void handle_adel(void);
65 extern asmlinkage void handle_ades(void);
66 extern asmlinkage void handle_ibe(void);
67 extern asmlinkage void handle_dbe(void);
68 extern asmlinkage void handle_sys(void);
69 extern asmlinkage void handle_bp(void);
70 extern asmlinkage void handle_ri(void);
71 extern asmlinkage void handle_ri_rdhwr_vivt(void);
72 extern asmlinkage void handle_ri_rdhwr(void);
73 extern asmlinkage void handle_cpu(void);
74 extern asmlinkage void handle_ov(void);
75 extern asmlinkage void handle_tr(void);
76 extern asmlinkage void handle_fpe(void);
77 extern asmlinkage void handle_mdmx(void);
78 extern asmlinkage void handle_watch(void);
79 extern asmlinkage void handle_mt(void);
80 extern asmlinkage void handle_dsp(void);
81 extern asmlinkage void handle_mcheck(void);
82 extern asmlinkage void handle_reserved(void);
83 
84 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
85 	struct mips_fpu_struct *ctx, int has_fpu);
86 
87 void (*board_be_init)(void);
88 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
89 void (*board_nmi_handler_setup)(void);
90 void (*board_ejtag_handler_setup)(void);
91 void (*board_bind_eic_interrupt)(int irq, int regset);
92 
93 
94 static void show_raw_backtrace(unsigned long reg29)
95 {
96 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
97 	unsigned long addr;
98 
99 	printk("Call Trace:");
100 #ifdef CONFIG_KALLSYMS
101 	printk("\n");
102 #endif
103 	while (!kstack_end(sp)) {
104 		unsigned long __user *p =
105 			(unsigned long __user *)(unsigned long)sp++;
106 		if (__get_user(addr, p)) {
107 			printk(" (Bad stack address)");
108 			break;
109 		}
110 		if (__kernel_text_address(addr))
111 			print_ip_sym(addr);
112 	}
113 	printk("\n");
114 }
115 
116 #ifdef CONFIG_KALLSYMS
117 int raw_show_trace;
118 static int __init set_raw_show_trace(char *str)
119 {
120 	raw_show_trace = 1;
121 	return 1;
122 }
123 __setup("raw_show_trace", set_raw_show_trace);
124 #endif
125 
126 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
127 {
128 	unsigned long sp = regs->regs[29];
129 	unsigned long ra = regs->regs[31];
130 	unsigned long pc = regs->cp0_epc;
131 
132 	if (raw_show_trace || !__kernel_text_address(pc)) {
133 		show_raw_backtrace(sp);
134 		return;
135 	}
136 	printk("Call Trace:\n");
137 	do {
138 		print_ip_sym(pc);
139 		pc = unwind_stack(task, &sp, pc, &ra);
140 	} while (pc);
141 	printk("\n");
142 }
143 
144 /*
145  * This routine abuses get_user()/put_user() to reference pointers
146  * with at least a bit of error checking ...
147  */
148 static void show_stacktrace(struct task_struct *task,
149 	const struct pt_regs *regs)
150 {
151 	const int field = 2 * sizeof(unsigned long);
152 	long stackdata;
153 	int i;
154 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
155 
156 	printk("Stack :");
157 	i = 0;
158 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
159 		if (i && ((i % (64 / field)) == 0))
160 			printk("\n       ");
161 		if (i > 39) {
162 			printk(" ...");
163 			break;
164 		}
165 
166 		if (__get_user(stackdata, sp++)) {
167 			printk(" (Bad stack address)");
168 			break;
169 		}
170 
171 		printk(" %0*lx", field, stackdata);
172 		i++;
173 	}
174 	printk("\n");
175 	show_backtrace(task, regs);
176 }
177 
178 void show_stack(struct task_struct *task, unsigned long *sp)
179 {
180 	struct pt_regs regs;
181 	if (sp) {
182 		regs.regs[29] = (unsigned long)sp;
183 		regs.regs[31] = 0;
184 		regs.cp0_epc = 0;
185 	} else {
186 		if (task && task != current) {
187 			regs.regs[29] = task->thread.reg29;
188 			regs.regs[31] = 0;
189 			regs.cp0_epc = task->thread.reg31;
190 #ifdef CONFIG_KGDB_KDB
191 		} else if (atomic_read(&kgdb_active) != -1 &&
192 			   kdb_current_regs) {
193 			memcpy(&regs, kdb_current_regs, sizeof(regs));
194 #endif /* CONFIG_KGDB_KDB */
195 		} else {
196 			prepare_frametrace(&regs);
197 		}
198 	}
199 	show_stacktrace(task, &regs);
200 }
201 
202 /*
203  * The architecture-independent dump_stack generator
204  */
205 void dump_stack(void)
206 {
207 	struct pt_regs regs;
208 
209 	prepare_frametrace(&regs);
210 	show_backtrace(current, &regs);
211 }
212 
213 EXPORT_SYMBOL(dump_stack);
214 
215 static void show_code(unsigned int __user *pc)
216 {
217 	long i;
218 	unsigned short __user *pc16 = NULL;
219 
220 	printk("\nCode:");
221 
222 	if ((unsigned long)pc & 1)
223 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
224 	for(i = -3 ; i < 6 ; i++) {
225 		unsigned int insn;
226 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
227 			printk(" (Bad address in epc)\n");
228 			break;
229 		}
230 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
231 	}
232 }
233 
234 static void __show_regs(const struct pt_regs *regs)
235 {
236 	const int field = 2 * sizeof(unsigned long);
237 	unsigned int cause = regs->cp0_cause;
238 	int i;
239 
240 	printk("Cpu %d\n", smp_processor_id());
241 
242 	/*
243 	 * Saved main processor registers
244 	 */
245 	for (i = 0; i < 32; ) {
246 		if ((i % 4) == 0)
247 			printk("$%2d   :", i);
248 		if (i == 0)
249 			printk(" %0*lx", field, 0UL);
250 		else if (i == 26 || i == 27)
251 			printk(" %*s", field, "");
252 		else
253 			printk(" %0*lx", field, regs->regs[i]);
254 
255 		i++;
256 		if ((i % 4) == 0)
257 			printk("\n");
258 	}
259 
260 #ifdef CONFIG_CPU_HAS_SMARTMIPS
261 	printk("Acx    : %0*lx\n", field, regs->acx);
262 #endif
263 	printk("Hi    : %0*lx\n", field, regs->hi);
264 	printk("Lo    : %0*lx\n", field, regs->lo);
265 
266 	/*
267 	 * Saved cp0 registers
268 	 */
269 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
270 	       (void *) regs->cp0_epc);
271 	printk("    %s\n", print_tainted());
272 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
273 	       (void *) regs->regs[31]);
274 
275 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
276 
277 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
278 		if (regs->cp0_status & ST0_KUO)
279 			printk("KUo ");
280 		if (regs->cp0_status & ST0_IEO)
281 			printk("IEo ");
282 		if (regs->cp0_status & ST0_KUP)
283 			printk("KUp ");
284 		if (regs->cp0_status & ST0_IEP)
285 			printk("IEp ");
286 		if (regs->cp0_status & ST0_KUC)
287 			printk("KUc ");
288 		if (regs->cp0_status & ST0_IEC)
289 			printk("IEc ");
290 	} else {
291 		if (regs->cp0_status & ST0_KX)
292 			printk("KX ");
293 		if (regs->cp0_status & ST0_SX)
294 			printk("SX ");
295 		if (regs->cp0_status & ST0_UX)
296 			printk("UX ");
297 		switch (regs->cp0_status & ST0_KSU) {
298 		case KSU_USER:
299 			printk("USER ");
300 			break;
301 		case KSU_SUPERVISOR:
302 			printk("SUPERVISOR ");
303 			break;
304 		case KSU_KERNEL:
305 			printk("KERNEL ");
306 			break;
307 		default:
308 			printk("BAD_MODE ");
309 			break;
310 		}
311 		if (regs->cp0_status & ST0_ERL)
312 			printk("ERL ");
313 		if (regs->cp0_status & ST0_EXL)
314 			printk("EXL ");
315 		if (regs->cp0_status & ST0_IE)
316 			printk("IE ");
317 	}
318 	printk("\n");
319 
320 	printk("Cause : %08x\n", cause);
321 
322 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
323 	if (1 <= cause && cause <= 5)
324 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
325 
326 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
327 	       cpu_name_string());
328 }
329 
330 /*
331  * FIXME: really the generic show_regs should take a const pointer argument.
332  */
333 void show_regs(struct pt_regs *regs)
334 {
335 	__show_regs((struct pt_regs *)regs);
336 }
337 
338 void show_registers(struct pt_regs *regs)
339 {
340 	const int field = 2 * sizeof(unsigned long);
341 
342 	__show_regs(regs);
343 	print_modules();
344 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 	       current->comm, current->pid, current_thread_info(), current,
346 	      field, current_thread_info()->tp_value);
347 	if (cpu_has_userlocal) {
348 		unsigned long tls;
349 
350 		tls = read_c0_userlocal();
351 		if (tls != current_thread_info()->tp_value)
352 			printk("*HwTLS: %0*lx\n", field, tls);
353 	}
354 
355 	show_stacktrace(current, regs);
356 	show_code((unsigned int __user *) regs->cp0_epc);
357 	printk("\n");
358 }
359 
360 static int regs_to_trapnr(struct pt_regs *regs)
361 {
362 	return (regs->cp0_cause >> 2) & 0x1f;
363 }
364 
365 static DEFINE_SPINLOCK(die_lock);
366 
367 void __noreturn die(const char *str, struct pt_regs *regs)
368 {
369 	static int die_counter;
370 	int sig = SIGSEGV;
371 #ifdef CONFIG_MIPS_MT_SMTC
372 	unsigned long dvpret = dvpe();
373 #endif /* CONFIG_MIPS_MT_SMTC */
374 
375 	notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV);
376 
377 	console_verbose();
378 	spin_lock_irq(&die_lock);
379 	bust_spinlocks(1);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 	mips_mt_regdump(dvpret);
382 #endif /* CONFIG_MIPS_MT_SMTC */
383 
384 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
385 		sig = 0;
386 
387 	printk("%s[#%d]:\n", str, ++die_counter);
388 	show_registers(regs);
389 	add_taint(TAINT_DIE);
390 	spin_unlock_irq(&die_lock);
391 
392 	if (in_interrupt())
393 		panic("Fatal exception in interrupt");
394 
395 	if (panic_on_oops) {
396 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
397 		ssleep(5);
398 		panic("Fatal exception");
399 	}
400 
401 	do_exit(sig);
402 }
403 
404 extern struct exception_table_entry __start___dbe_table[];
405 extern struct exception_table_entry __stop___dbe_table[];
406 
407 __asm__(
408 "	.section	__dbe_table, \"a\"\n"
409 "	.previous			\n");
410 
411 /* Given an address, look for it in the exception tables. */
412 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
413 {
414 	const struct exception_table_entry *e;
415 
416 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
417 	if (!e)
418 		e = search_module_dbetables(addr);
419 	return e;
420 }
421 
422 asmlinkage void do_be(struct pt_regs *regs)
423 {
424 	const int field = 2 * sizeof(unsigned long);
425 	const struct exception_table_entry *fixup = NULL;
426 	int data = regs->cp0_cause & 4;
427 	int action = MIPS_BE_FATAL;
428 
429 	/* XXX For now.  Fixme, this searches the wrong table ...  */
430 	if (data && !user_mode(regs))
431 		fixup = search_dbe_tables(exception_epc(regs));
432 
433 	if (fixup)
434 		action = MIPS_BE_FIXUP;
435 
436 	if (board_be_handler)
437 		action = board_be_handler(regs, fixup != NULL);
438 
439 	switch (action) {
440 	case MIPS_BE_DISCARD:
441 		return;
442 	case MIPS_BE_FIXUP:
443 		if (fixup) {
444 			regs->cp0_epc = fixup->nextinsn;
445 			return;
446 		}
447 		break;
448 	default:
449 		break;
450 	}
451 
452 	/*
453 	 * Assume it would be too dangerous to continue ...
454 	 */
455 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
456 	       data ? "Data" : "Instruction",
457 	       field, regs->cp0_epc, field, regs->regs[31]);
458 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
459 	    == NOTIFY_STOP)
460 		return;
461 
462 	die_if_kernel("Oops", regs);
463 	force_sig(SIGBUS, current);
464 }
465 
466 /*
467  * ll/sc, rdhwr, sync emulation
468  */
469 
470 #define OPCODE 0xfc000000
471 #define BASE   0x03e00000
472 #define RT     0x001f0000
473 #define OFFSET 0x0000ffff
474 #define LL     0xc0000000
475 #define SC     0xe0000000
476 #define SPEC0  0x00000000
477 #define SPEC3  0x7c000000
478 #define RD     0x0000f800
479 #define FUNC   0x0000003f
480 #define SYNC   0x0000000f
481 #define RDHWR  0x0000003b
482 
483 /*
484  * The ll_bit is cleared by r*_switch.S
485  */
486 
487 unsigned int ll_bit;
488 struct task_struct *ll_task;
489 
490 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
491 {
492 	unsigned long value, __user *vaddr;
493 	long offset;
494 
495 	/*
496 	 * analyse the ll instruction that just caused a ri exception
497 	 * and put the referenced address to addr.
498 	 */
499 
500 	/* sign extend offset */
501 	offset = opcode & OFFSET;
502 	offset <<= 16;
503 	offset >>= 16;
504 
505 	vaddr = (unsigned long __user *)
506 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
507 
508 	if ((unsigned long)vaddr & 3)
509 		return SIGBUS;
510 	if (get_user(value, vaddr))
511 		return SIGSEGV;
512 
513 	preempt_disable();
514 
515 	if (ll_task == NULL || ll_task == current) {
516 		ll_bit = 1;
517 	} else {
518 		ll_bit = 0;
519 	}
520 	ll_task = current;
521 
522 	preempt_enable();
523 
524 	regs->regs[(opcode & RT) >> 16] = value;
525 
526 	return 0;
527 }
528 
529 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
530 {
531 	unsigned long __user *vaddr;
532 	unsigned long reg;
533 	long offset;
534 
535 	/*
536 	 * analyse the sc instruction that just caused a ri exception
537 	 * and put the referenced address to addr.
538 	 */
539 
540 	/* sign extend offset */
541 	offset = opcode & OFFSET;
542 	offset <<= 16;
543 	offset >>= 16;
544 
545 	vaddr = (unsigned long __user *)
546 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
547 	reg = (opcode & RT) >> 16;
548 
549 	if ((unsigned long)vaddr & 3)
550 		return SIGBUS;
551 
552 	preempt_disable();
553 
554 	if (ll_bit == 0 || ll_task != current) {
555 		regs->regs[reg] = 0;
556 		preempt_enable();
557 		return 0;
558 	}
559 
560 	preempt_enable();
561 
562 	if (put_user(regs->regs[reg], vaddr))
563 		return SIGSEGV;
564 
565 	regs->regs[reg] = 1;
566 
567 	return 0;
568 }
569 
570 /*
571  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
572  * opcodes are supposed to result in coprocessor unusable exceptions if
573  * executed on ll/sc-less processors.  That's the theory.  In practice a
574  * few processors such as NEC's VR4100 throw reserved instruction exceptions
575  * instead, so we're doing the emulation thing in both exception handlers.
576  */
577 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
578 {
579 	if ((opcode & OPCODE) == LL)
580 		return simulate_ll(regs, opcode);
581 	if ((opcode & OPCODE) == SC)
582 		return simulate_sc(regs, opcode);
583 
584 	return -1;			/* Must be something else ... */
585 }
586 
587 /*
588  * Simulate trapping 'rdhwr' instructions to provide user accessible
589  * registers not implemented in hardware.
590  */
591 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
592 {
593 	struct thread_info *ti = task_thread_info(current);
594 
595 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
596 		int rd = (opcode & RD) >> 11;
597 		int rt = (opcode & RT) >> 16;
598 		switch (rd) {
599 		case 0:		/* CPU number */
600 			regs->regs[rt] = smp_processor_id();
601 			return 0;
602 		case 1:		/* SYNCI length */
603 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
604 					     current_cpu_data.icache.linesz);
605 			return 0;
606 		case 2:		/* Read count register */
607 			regs->regs[rt] = read_c0_count();
608 			return 0;
609 		case 3:		/* Count register resolution */
610 			switch (current_cpu_data.cputype) {
611 			case CPU_20KC:
612 			case CPU_25KF:
613 				regs->regs[rt] = 1;
614 				break;
615 			default:
616 				regs->regs[rt] = 2;
617 			}
618 			return 0;
619 		case 29:
620 			regs->regs[rt] = ti->tp_value;
621 			return 0;
622 		default:
623 			return -1;
624 		}
625 	}
626 
627 	/* Not ours.  */
628 	return -1;
629 }
630 
631 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
632 {
633 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
634 		return 0;
635 
636 	return -1;			/* Must be something else ... */
637 }
638 
639 asmlinkage void do_ov(struct pt_regs *regs)
640 {
641 	siginfo_t info;
642 
643 	die_if_kernel("Integer overflow", regs);
644 
645 	info.si_code = FPE_INTOVF;
646 	info.si_signo = SIGFPE;
647 	info.si_errno = 0;
648 	info.si_addr = (void __user *) regs->cp0_epc;
649 	force_sig_info(SIGFPE, &info, current);
650 }
651 
652 /*
653  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
654  */
655 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
656 {
657 	siginfo_t info;
658 
659 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
660 	    == NOTIFY_STOP)
661 		return;
662 	die_if_kernel("FP exception in kernel code", regs);
663 
664 	if (fcr31 & FPU_CSR_UNI_X) {
665 		int sig;
666 
667 		/*
668 		 * Unimplemented operation exception.  If we've got the full
669 		 * software emulator on-board, let's use it...
670 		 *
671 		 * Force FPU to dump state into task/thread context.  We're
672 		 * moving a lot of data here for what is probably a single
673 		 * instruction, but the alternative is to pre-decode the FP
674 		 * register operands before invoking the emulator, which seems
675 		 * a bit extreme for what should be an infrequent event.
676 		 */
677 		/* Ensure 'resume' not overwrite saved fp context again. */
678 		lose_fpu(1);
679 
680 		/* Run the emulator */
681 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
682 
683 		/*
684 		 * We can't allow the emulated instruction to leave any of
685 		 * the cause bit set in $fcr31.
686 		 */
687 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
688 
689 		/* Restore the hardware register state */
690 		own_fpu(1);	/* Using the FPU again.  */
691 
692 		/* If something went wrong, signal */
693 		if (sig)
694 			force_sig(sig, current);
695 
696 		return;
697 	} else if (fcr31 & FPU_CSR_INV_X)
698 		info.si_code = FPE_FLTINV;
699 	else if (fcr31 & FPU_CSR_DIV_X)
700 		info.si_code = FPE_FLTDIV;
701 	else if (fcr31 & FPU_CSR_OVF_X)
702 		info.si_code = FPE_FLTOVF;
703 	else if (fcr31 & FPU_CSR_UDF_X)
704 		info.si_code = FPE_FLTUND;
705 	else if (fcr31 & FPU_CSR_INE_X)
706 		info.si_code = FPE_FLTRES;
707 	else
708 		info.si_code = __SI_FAULT;
709 	info.si_signo = SIGFPE;
710 	info.si_errno = 0;
711 	info.si_addr = (void __user *) regs->cp0_epc;
712 	force_sig_info(SIGFPE, &info, current);
713 }
714 
715 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
716 	const char *str)
717 {
718 	siginfo_t info;
719 	char b[40];
720 
721 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
722 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
723 		return;
724 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
725 
726 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
727 		return;
728 
729 	/*
730 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
731 	 * insns, even for trap and break codes that indicate arithmetic
732 	 * failures.  Weird ...
733 	 * But should we continue the brokenness???  --macro
734 	 */
735 	switch (code) {
736 	case BRK_OVERFLOW:
737 	case BRK_DIVZERO:
738 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
739 		die_if_kernel(b, regs);
740 		if (code == BRK_DIVZERO)
741 			info.si_code = FPE_INTDIV;
742 		else
743 			info.si_code = FPE_INTOVF;
744 		info.si_signo = SIGFPE;
745 		info.si_errno = 0;
746 		info.si_addr = (void __user *) regs->cp0_epc;
747 		force_sig_info(SIGFPE, &info, current);
748 		break;
749 	case BRK_BUG:
750 		die_if_kernel("Kernel bug detected", regs);
751 		force_sig(SIGTRAP, current);
752 		break;
753 	case BRK_MEMU:
754 		/*
755 		 * Address errors may be deliberately induced by the FPU
756 		 * emulator to retake control of the CPU after executing the
757 		 * instruction in the delay slot of an emulated branch.
758 		 *
759 		 * Terminate if exception was recognized as a delay slot return
760 		 * otherwise handle as normal.
761 		 */
762 		if (do_dsemulret(regs))
763 			return;
764 
765 		die_if_kernel("Math emu break/trap", regs);
766 		force_sig(SIGTRAP, current);
767 		break;
768 	default:
769 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
770 		die_if_kernel(b, regs);
771 		force_sig(SIGTRAP, current);
772 	}
773 }
774 
775 asmlinkage void do_bp(struct pt_regs *regs)
776 {
777 	unsigned int opcode, bcode;
778 
779 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
780 		goto out_sigsegv;
781 
782 	/*
783 	 * There is the ancient bug in the MIPS assemblers that the break
784 	 * code starts left to bit 16 instead to bit 6 in the opcode.
785 	 * Gas is bug-compatible, but not always, grrr...
786 	 * We handle both cases with a simple heuristics.  --macro
787 	 */
788 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
789 	if (bcode >= (1 << 10))
790 		bcode >>= 10;
791 
792 	/*
793 	 * notify the kprobe handlers, if instruction is likely to
794 	 * pertain to them.
795 	 */
796 	switch (bcode) {
797 	case BRK_KPROBE_BP:
798 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
799 			return;
800 		else
801 			break;
802 	case BRK_KPROBE_SSTEPBP:
803 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
804 			return;
805 		else
806 			break;
807 	default:
808 		break;
809 	}
810 
811 	do_trap_or_bp(regs, bcode, "Break");
812 	return;
813 
814 out_sigsegv:
815 	force_sig(SIGSEGV, current);
816 }
817 
818 asmlinkage void do_tr(struct pt_regs *regs)
819 {
820 	unsigned int opcode, tcode = 0;
821 
822 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
823 		goto out_sigsegv;
824 
825 	/* Immediate versions don't provide a code.  */
826 	if (!(opcode & OPCODE))
827 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
828 
829 	do_trap_or_bp(regs, tcode, "Trap");
830 	return;
831 
832 out_sigsegv:
833 	force_sig(SIGSEGV, current);
834 }
835 
836 asmlinkage void do_ri(struct pt_regs *regs)
837 {
838 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
839 	unsigned long old_epc = regs->cp0_epc;
840 	unsigned int opcode = 0;
841 	int status = -1;
842 
843 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
844 	    == NOTIFY_STOP)
845 		return;
846 
847 	die_if_kernel("Reserved instruction in kernel code", regs);
848 
849 	if (unlikely(compute_return_epc(regs) < 0))
850 		return;
851 
852 	if (unlikely(get_user(opcode, epc) < 0))
853 		status = SIGSEGV;
854 
855 	if (!cpu_has_llsc && status < 0)
856 		status = simulate_llsc(regs, opcode);
857 
858 	if (status < 0)
859 		status = simulate_rdhwr(regs, opcode);
860 
861 	if (status < 0)
862 		status = simulate_sync(regs, opcode);
863 
864 	if (status < 0)
865 		status = SIGILL;
866 
867 	if (unlikely(status > 0)) {
868 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
869 		force_sig(status, current);
870 	}
871 }
872 
873 /*
874  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
875  * emulated more than some threshold number of instructions, force migration to
876  * a "CPU" that has FP support.
877  */
878 static void mt_ase_fp_affinity(void)
879 {
880 #ifdef CONFIG_MIPS_MT_FPAFF
881 	if (mt_fpemul_threshold > 0 &&
882 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
883 		/*
884 		 * If there's no FPU present, or if the application has already
885 		 * restricted the allowed set to exclude any CPUs with FPUs,
886 		 * we'll skip the procedure.
887 		 */
888 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
889 			cpumask_t tmask;
890 
891 			current->thread.user_cpus_allowed
892 				= current->cpus_allowed;
893 			cpus_and(tmask, current->cpus_allowed,
894 				mt_fpu_cpumask);
895 			set_cpus_allowed_ptr(current, &tmask);
896 			set_thread_flag(TIF_FPUBOUND);
897 		}
898 	}
899 #endif /* CONFIG_MIPS_MT_FPAFF */
900 }
901 
902 /*
903  * No lock; only written during early bootup by CPU 0.
904  */
905 static RAW_NOTIFIER_HEAD(cu2_chain);
906 
907 int __ref register_cu2_notifier(struct notifier_block *nb)
908 {
909 	return raw_notifier_chain_register(&cu2_chain, nb);
910 }
911 
912 int cu2_notifier_call_chain(unsigned long val, void *v)
913 {
914 	return raw_notifier_call_chain(&cu2_chain, val, v);
915 }
916 
917 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
918         void *data)
919 {
920 	struct pt_regs *regs = data;
921 
922 	switch (action) {
923 	default:
924 		die_if_kernel("Unhandled kernel unaligned access or invalid "
925 			      "instruction", regs);
926 		/* Fall through  */
927 
928 	case CU2_EXCEPTION:
929 		force_sig(SIGILL, current);
930 	}
931 
932 	return NOTIFY_OK;
933 }
934 
935 asmlinkage void do_cpu(struct pt_regs *regs)
936 {
937 	unsigned int __user *epc;
938 	unsigned long old_epc;
939 	unsigned int opcode;
940 	unsigned int cpid;
941 	int status;
942 	unsigned long __maybe_unused flags;
943 
944 	die_if_kernel("do_cpu invoked from kernel context!", regs);
945 
946 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
947 
948 	switch (cpid) {
949 	case 0:
950 		epc = (unsigned int __user *)exception_epc(regs);
951 		old_epc = regs->cp0_epc;
952 		opcode = 0;
953 		status = -1;
954 
955 		if (unlikely(compute_return_epc(regs) < 0))
956 			return;
957 
958 		if (unlikely(get_user(opcode, epc) < 0))
959 			status = SIGSEGV;
960 
961 		if (!cpu_has_llsc && status < 0)
962 			status = simulate_llsc(regs, opcode);
963 
964 		if (status < 0)
965 			status = simulate_rdhwr(regs, opcode);
966 
967 		if (status < 0)
968 			status = SIGILL;
969 
970 		if (unlikely(status > 0)) {
971 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
972 			force_sig(status, current);
973 		}
974 
975 		return;
976 
977 	case 1:
978 		if (used_math())	/* Using the FPU again.  */
979 			own_fpu(1);
980 		else {			/* First time FPU user.  */
981 			init_fpu();
982 			set_used_math();
983 		}
984 
985 		if (!raw_cpu_has_fpu) {
986 			int sig;
987 			sig = fpu_emulator_cop1Handler(regs,
988 						&current->thread.fpu, 0);
989 			if (sig)
990 				force_sig(sig, current);
991 			else
992 				mt_ase_fp_affinity();
993 		}
994 
995 		return;
996 
997 	case 2:
998 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
999 		return;
1000 
1001 	case 3:
1002 		break;
1003 	}
1004 
1005 	force_sig(SIGILL, current);
1006 }
1007 
1008 asmlinkage void do_mdmx(struct pt_regs *regs)
1009 {
1010 	force_sig(SIGILL, current);
1011 }
1012 
1013 /*
1014  * Called with interrupts disabled.
1015  */
1016 asmlinkage void do_watch(struct pt_regs *regs)
1017 {
1018 	u32 cause;
1019 
1020 	/*
1021 	 * Clear WP (bit 22) bit of cause register so we don't loop
1022 	 * forever.
1023 	 */
1024 	cause = read_c0_cause();
1025 	cause &= ~(1 << 22);
1026 	write_c0_cause(cause);
1027 
1028 	/*
1029 	 * If the current thread has the watch registers loaded, save
1030 	 * their values and send SIGTRAP.  Otherwise another thread
1031 	 * left the registers set, clear them and continue.
1032 	 */
1033 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1034 		mips_read_watch_registers();
1035 		local_irq_enable();
1036 		force_sig(SIGTRAP, current);
1037 	} else {
1038 		mips_clear_watch_registers();
1039 		local_irq_enable();
1040 	}
1041 }
1042 
1043 asmlinkage void do_mcheck(struct pt_regs *regs)
1044 {
1045 	const int field = 2 * sizeof(unsigned long);
1046 	int multi_match = regs->cp0_status & ST0_TS;
1047 
1048 	show_regs(regs);
1049 
1050 	if (multi_match) {
1051 		printk("Index   : %0x\n", read_c0_index());
1052 		printk("Pagemask: %0x\n", read_c0_pagemask());
1053 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1054 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1055 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1056 		printk("\n");
1057 		dump_tlb_all();
1058 	}
1059 
1060 	show_code((unsigned int __user *) regs->cp0_epc);
1061 
1062 	/*
1063 	 * Some chips may have other causes of machine check (e.g. SB1
1064 	 * graduation timer)
1065 	 */
1066 	panic("Caught Machine Check exception - %scaused by multiple "
1067 	      "matching entries in the TLB.",
1068 	      (multi_match) ? "" : "not ");
1069 }
1070 
1071 asmlinkage void do_mt(struct pt_regs *regs)
1072 {
1073 	int subcode;
1074 
1075 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1076 			>> VPECONTROL_EXCPT_SHIFT;
1077 	switch (subcode) {
1078 	case 0:
1079 		printk(KERN_DEBUG "Thread Underflow\n");
1080 		break;
1081 	case 1:
1082 		printk(KERN_DEBUG "Thread Overflow\n");
1083 		break;
1084 	case 2:
1085 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1086 		break;
1087 	case 3:
1088 		printk(KERN_DEBUG "Gating Storage Exception\n");
1089 		break;
1090 	case 4:
1091 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1092 		break;
1093 	case 5:
1094 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1095 		break;
1096 	default:
1097 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1098 			subcode);
1099 		break;
1100 	}
1101 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1102 
1103 	force_sig(SIGILL, current);
1104 }
1105 
1106 
1107 asmlinkage void do_dsp(struct pt_regs *regs)
1108 {
1109 	if (cpu_has_dsp)
1110 		panic("Unexpected DSP exception\n");
1111 
1112 	force_sig(SIGILL, current);
1113 }
1114 
1115 asmlinkage void do_reserved(struct pt_regs *regs)
1116 {
1117 	/*
1118 	 * Game over - no way to handle this if it ever occurs.  Most probably
1119 	 * caused by a new unknown cpu type or after another deadly
1120 	 * hard/software error.
1121 	 */
1122 	show_regs(regs);
1123 	panic("Caught reserved exception %ld - should not happen.",
1124 	      (regs->cp0_cause & 0x7f) >> 2);
1125 }
1126 
1127 static int __initdata l1parity = 1;
1128 static int __init nol1parity(char *s)
1129 {
1130 	l1parity = 0;
1131 	return 1;
1132 }
1133 __setup("nol1par", nol1parity);
1134 static int __initdata l2parity = 1;
1135 static int __init nol2parity(char *s)
1136 {
1137 	l2parity = 0;
1138 	return 1;
1139 }
1140 __setup("nol2par", nol2parity);
1141 
1142 /*
1143  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1144  * it different ways.
1145  */
1146 static inline void parity_protection_init(void)
1147 {
1148 	switch (current_cpu_type()) {
1149 	case CPU_24K:
1150 	case CPU_34K:
1151 	case CPU_74K:
1152 	case CPU_1004K:
1153 		{
1154 #define ERRCTL_PE	0x80000000
1155 #define ERRCTL_L2P	0x00800000
1156 			unsigned long errctl;
1157 			unsigned int l1parity_present, l2parity_present;
1158 
1159 			errctl = read_c0_ecc();
1160 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1161 
1162 			/* probe L1 parity support */
1163 			write_c0_ecc(errctl | ERRCTL_PE);
1164 			back_to_back_c0_hazard();
1165 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1166 
1167 			/* probe L2 parity support */
1168 			write_c0_ecc(errctl|ERRCTL_L2P);
1169 			back_to_back_c0_hazard();
1170 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1171 
1172 			if (l1parity_present && l2parity_present) {
1173 				if (l1parity)
1174 					errctl |= ERRCTL_PE;
1175 				if (l1parity ^ l2parity)
1176 					errctl |= ERRCTL_L2P;
1177 			} else if (l1parity_present) {
1178 				if (l1parity)
1179 					errctl |= ERRCTL_PE;
1180 			} else if (l2parity_present) {
1181 				if (l2parity)
1182 					errctl |= ERRCTL_L2P;
1183 			} else {
1184 				/* No parity available */
1185 			}
1186 
1187 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1188 
1189 			write_c0_ecc(errctl);
1190 			back_to_back_c0_hazard();
1191 			errctl = read_c0_ecc();
1192 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1193 
1194 			if (l1parity_present)
1195 				printk(KERN_INFO "Cache parity protection %sabled\n",
1196 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1197 
1198 			if (l2parity_present) {
1199 				if (l1parity_present && l1parity)
1200 					errctl ^= ERRCTL_L2P;
1201 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1202 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1203 			}
1204 		}
1205 		break;
1206 
1207 	case CPU_5KC:
1208 		write_c0_ecc(0x80000000);
1209 		back_to_back_c0_hazard();
1210 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1211 		printk(KERN_INFO "Cache parity protection %sabled\n",
1212 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1213 		break;
1214 	case CPU_20KC:
1215 	case CPU_25KF:
1216 		/* Clear the DE bit (bit 16) in the c0_status register. */
1217 		printk(KERN_INFO "Enable cache parity protection for "
1218 		       "MIPS 20KC/25KF CPUs.\n");
1219 		clear_c0_status(ST0_DE);
1220 		break;
1221 	default:
1222 		break;
1223 	}
1224 }
1225 
1226 asmlinkage void cache_parity_error(void)
1227 {
1228 	const int field = 2 * sizeof(unsigned long);
1229 	unsigned int reg_val;
1230 
1231 	/* For the moment, report the problem and hang. */
1232 	printk("Cache error exception:\n");
1233 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1234 	reg_val = read_c0_cacheerr();
1235 	printk("c0_cacheerr == %08x\n", reg_val);
1236 
1237 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1238 	       reg_val & (1<<30) ? "secondary" : "primary",
1239 	       reg_val & (1<<31) ? "data" : "insn");
1240 	printk("Error bits: %s%s%s%s%s%s%s\n",
1241 	       reg_val & (1<<29) ? "ED " : "",
1242 	       reg_val & (1<<28) ? "ET " : "",
1243 	       reg_val & (1<<26) ? "EE " : "",
1244 	       reg_val & (1<<25) ? "EB " : "",
1245 	       reg_val & (1<<24) ? "EI " : "",
1246 	       reg_val & (1<<23) ? "E1 " : "",
1247 	       reg_val & (1<<22) ? "E0 " : "");
1248 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1249 
1250 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1251 	if (reg_val & (1<<22))
1252 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1253 
1254 	if (reg_val & (1<<23))
1255 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1256 #endif
1257 
1258 	panic("Can't handle the cache error!");
1259 }
1260 
1261 /*
1262  * SDBBP EJTAG debug exception handler.
1263  * We skip the instruction and return to the next instruction.
1264  */
1265 void ejtag_exception_handler(struct pt_regs *regs)
1266 {
1267 	const int field = 2 * sizeof(unsigned long);
1268 	unsigned long depc, old_epc;
1269 	unsigned int debug;
1270 
1271 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1272 	depc = read_c0_depc();
1273 	debug = read_c0_debug();
1274 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1275 	if (debug & 0x80000000) {
1276 		/*
1277 		 * In branch delay slot.
1278 		 * We cheat a little bit here and use EPC to calculate the
1279 		 * debug return address (DEPC). EPC is restored after the
1280 		 * calculation.
1281 		 */
1282 		old_epc = regs->cp0_epc;
1283 		regs->cp0_epc = depc;
1284 		__compute_return_epc(regs);
1285 		depc = regs->cp0_epc;
1286 		regs->cp0_epc = old_epc;
1287 	} else
1288 		depc += 4;
1289 	write_c0_depc(depc);
1290 
1291 #if 0
1292 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1293 	write_c0_debug(debug | 0x100);
1294 #endif
1295 }
1296 
1297 /*
1298  * NMI exception handler.
1299  */
1300 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1301 {
1302 	bust_spinlocks(1);
1303 	printk("NMI taken!!!!\n");
1304 	die("NMI", regs);
1305 }
1306 
1307 #define VECTORSPACING 0x100	/* for EI/VI mode */
1308 
1309 unsigned long ebase;
1310 unsigned long exception_handlers[32];
1311 unsigned long vi_handlers[64];
1312 
1313 void __init *set_except_vector(int n, void *addr)
1314 {
1315 	unsigned long handler = (unsigned long) addr;
1316 	unsigned long old_handler = exception_handlers[n];
1317 
1318 	exception_handlers[n] = handler;
1319 	if (n == 0 && cpu_has_divec) {
1320 		unsigned long jump_mask = ~((1 << 28) - 1);
1321 		u32 *buf = (u32 *)(ebase + 0x200);
1322 		unsigned int k0 = 26;
1323 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1324 			uasm_i_j(&buf, handler & ~jump_mask);
1325 			uasm_i_nop(&buf);
1326 		} else {
1327 			UASM_i_LA(&buf, k0, handler);
1328 			uasm_i_jr(&buf, k0);
1329 			uasm_i_nop(&buf);
1330 		}
1331 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1332 	}
1333 	return (void *)old_handler;
1334 }
1335 
1336 static asmlinkage void do_default_vi(void)
1337 {
1338 	show_regs(get_irq_regs());
1339 	panic("Caught unexpected vectored interrupt.");
1340 }
1341 
1342 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1343 {
1344 	unsigned long handler;
1345 	unsigned long old_handler = vi_handlers[n];
1346 	int srssets = current_cpu_data.srsets;
1347 	u32 *w;
1348 	unsigned char *b;
1349 
1350 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1351 
1352 	if (addr == NULL) {
1353 		handler = (unsigned long) do_default_vi;
1354 		srs = 0;
1355 	} else
1356 		handler = (unsigned long) addr;
1357 	vi_handlers[n] = (unsigned long) addr;
1358 
1359 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1360 
1361 	if (srs >= srssets)
1362 		panic("Shadow register set %d not supported", srs);
1363 
1364 	if (cpu_has_veic) {
1365 		if (board_bind_eic_interrupt)
1366 			board_bind_eic_interrupt(n, srs);
1367 	} else if (cpu_has_vint) {
1368 		/* SRSMap is only defined if shadow sets are implemented */
1369 		if (srssets > 1)
1370 			change_c0_srsmap(0xf << n*4, srs << n*4);
1371 	}
1372 
1373 	if (srs == 0) {
1374 		/*
1375 		 * If no shadow set is selected then use the default handler
1376 		 * that does normal register saving and a standard interrupt exit
1377 		 */
1378 
1379 		extern char except_vec_vi, except_vec_vi_lui;
1380 		extern char except_vec_vi_ori, except_vec_vi_end;
1381 		extern char rollback_except_vec_vi;
1382 		char *vec_start = (cpu_wait == r4k_wait) ?
1383 			&rollback_except_vec_vi : &except_vec_vi;
1384 #ifdef CONFIG_MIPS_MT_SMTC
1385 		/*
1386 		 * We need to provide the SMTC vectored interrupt handler
1387 		 * not only with the address of the handler, but with the
1388 		 * Status.IM bit to be masked before going there.
1389 		 */
1390 		extern char except_vec_vi_mori;
1391 		const int mori_offset = &except_vec_vi_mori - vec_start;
1392 #endif /* CONFIG_MIPS_MT_SMTC */
1393 		const int handler_len = &except_vec_vi_end - vec_start;
1394 		const int lui_offset = &except_vec_vi_lui - vec_start;
1395 		const int ori_offset = &except_vec_vi_ori - vec_start;
1396 
1397 		if (handler_len > VECTORSPACING) {
1398 			/*
1399 			 * Sigh... panicing won't help as the console
1400 			 * is probably not configured :(
1401 			 */
1402 			panic("VECTORSPACING too small");
1403 		}
1404 
1405 		memcpy(b, vec_start, handler_len);
1406 #ifdef CONFIG_MIPS_MT_SMTC
1407 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1408 
1409 		w = (u32 *)(b + mori_offset);
1410 		*w = (*w & 0xffff0000) | (0x100 << n);
1411 #endif /* CONFIG_MIPS_MT_SMTC */
1412 		w = (u32 *)(b + lui_offset);
1413 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1414 		w = (u32 *)(b + ori_offset);
1415 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1416 		local_flush_icache_range((unsigned long)b,
1417 					 (unsigned long)(b+handler_len));
1418 	}
1419 	else {
1420 		/*
1421 		 * In other cases jump directly to the interrupt handler
1422 		 *
1423 		 * It is the handlers responsibility to save registers if required
1424 		 * (eg hi/lo) and return from the exception using "eret"
1425 		 */
1426 		w = (u32 *)b;
1427 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1428 		*w = 0;
1429 		local_flush_icache_range((unsigned long)b,
1430 					 (unsigned long)(b+8));
1431 	}
1432 
1433 	return (void *)old_handler;
1434 }
1435 
1436 void *set_vi_handler(int n, vi_handler_t addr)
1437 {
1438 	return set_vi_srs_handler(n, addr, 0);
1439 }
1440 
1441 extern void cpu_cache_init(void);
1442 extern void tlb_init(void);
1443 extern void flush_tlb_handlers(void);
1444 
1445 /*
1446  * Timer interrupt
1447  */
1448 int cp0_compare_irq;
1449 int cp0_compare_irq_shift;
1450 
1451 /*
1452  * Performance counter IRQ or -1 if shared with timer
1453  */
1454 int cp0_perfcount_irq;
1455 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1456 
1457 static int __cpuinitdata noulri;
1458 
1459 static int __init ulri_disable(char *s)
1460 {
1461 	pr_info("Disabling ulri\n");
1462 	noulri = 1;
1463 
1464 	return 1;
1465 }
1466 __setup("noulri", ulri_disable);
1467 
1468 void __cpuinit per_cpu_trap_init(void)
1469 {
1470 	unsigned int cpu = smp_processor_id();
1471 	unsigned int status_set = ST0_CU0;
1472 #ifdef CONFIG_MIPS_MT_SMTC
1473 	int secondaryTC = 0;
1474 	int bootTC = (cpu == 0);
1475 
1476 	/*
1477 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1478 	 * Note that this hack assumes that the SMTC init code
1479 	 * assigns TCs consecutively and in ascending order.
1480 	 */
1481 
1482 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1483 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1484 		secondaryTC = 1;
1485 #endif /* CONFIG_MIPS_MT_SMTC */
1486 
1487 	/*
1488 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1489 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1490 	 * flag that some firmware may have left set and the TS bit (for
1491 	 * IP27).  Set XX for ISA IV code to work.
1492 	 */
1493 #ifdef CONFIG_64BIT
1494 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1495 #endif
1496 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1497 		status_set |= ST0_XX;
1498 	if (cpu_has_dsp)
1499 		status_set |= ST0_MX;
1500 
1501 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1502 			 status_set);
1503 
1504 	if (cpu_has_mips_r2) {
1505 		unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
1506 
1507 		if (!noulri && cpu_has_userlocal)
1508 			enable |= (1 << 29);
1509 
1510 		write_c0_hwrena(enable);
1511 	}
1512 
1513 #ifdef CONFIG_MIPS_MT_SMTC
1514 	if (!secondaryTC) {
1515 #endif /* CONFIG_MIPS_MT_SMTC */
1516 
1517 	if (cpu_has_veic || cpu_has_vint) {
1518 		unsigned long sr = set_c0_status(ST0_BEV);
1519 		write_c0_ebase(ebase);
1520 		write_c0_status(sr);
1521 		/* Setting vector spacing enables EI/VI mode  */
1522 		change_c0_intctl(0x3e0, VECTORSPACING);
1523 	}
1524 	if (cpu_has_divec) {
1525 		if (cpu_has_mipsmt) {
1526 			unsigned int vpflags = dvpe();
1527 			set_c0_cause(CAUSEF_IV);
1528 			evpe(vpflags);
1529 		} else
1530 			set_c0_cause(CAUSEF_IV);
1531 	}
1532 
1533 	/*
1534 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1535 	 *
1536 	 *  o read IntCtl.IPTI to determine the timer interrupt
1537 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1538 	 */
1539 	if (cpu_has_mips_r2) {
1540 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1541 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1542 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1543 		if (cp0_perfcount_irq == cp0_compare_irq)
1544 			cp0_perfcount_irq = -1;
1545 	} else {
1546 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1547 		cp0_compare_irq_shift = cp0_compare_irq;
1548 		cp0_perfcount_irq = -1;
1549 	}
1550 
1551 #ifdef CONFIG_MIPS_MT_SMTC
1552 	}
1553 #endif /* CONFIG_MIPS_MT_SMTC */
1554 
1555 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1556 	TLBMISS_HANDLER_SETUP();
1557 
1558 	atomic_inc(&init_mm.mm_count);
1559 	current->active_mm = &init_mm;
1560 	BUG_ON(current->mm);
1561 	enter_lazy_tlb(&init_mm, current);
1562 
1563 #ifdef CONFIG_MIPS_MT_SMTC
1564 	if (bootTC) {
1565 #endif /* CONFIG_MIPS_MT_SMTC */
1566 		cpu_cache_init();
1567 		tlb_init();
1568 #ifdef CONFIG_MIPS_MT_SMTC
1569 	} else if (!secondaryTC) {
1570 		/*
1571 		 * First TC in non-boot VPE must do subset of tlb_init()
1572 		 * for MMU countrol registers.
1573 		 */
1574 		write_c0_pagemask(PM_DEFAULT_MASK);
1575 		write_c0_wired(0);
1576 	}
1577 #endif /* CONFIG_MIPS_MT_SMTC */
1578 }
1579 
1580 /* Install CPU exception handler */
1581 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1582 {
1583 	memcpy((void *)(ebase + offset), addr, size);
1584 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1585 }
1586 
1587 static char panic_null_cerr[] __cpuinitdata =
1588 	"Trying to set NULL cache error exception handler";
1589 
1590 /*
1591  * Install uncached CPU exception handler.
1592  * This is suitable only for the cache error exception which is the only
1593  * exception handler that is being run uncached.
1594  */
1595 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1596 	unsigned long size)
1597 {
1598 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1599 
1600 	if (!addr)
1601 		panic(panic_null_cerr);
1602 
1603 	memcpy((void *)(uncached_ebase + offset), addr, size);
1604 }
1605 
1606 static int __initdata rdhwr_noopt;
1607 static int __init set_rdhwr_noopt(char *str)
1608 {
1609 	rdhwr_noopt = 1;
1610 	return 1;
1611 }
1612 
1613 __setup("rdhwr_noopt", set_rdhwr_noopt);
1614 
1615 void __init trap_init(void)
1616 {
1617 	extern char except_vec3_generic, except_vec3_r4000;
1618 	extern char except_vec4;
1619 	unsigned long i;
1620 	int rollback;
1621 
1622 	check_wait();
1623 	rollback = (cpu_wait == r4k_wait);
1624 
1625 #if defined(CONFIG_KGDB)
1626 	if (kgdb_early_setup)
1627 		return;	/* Already done */
1628 #endif
1629 
1630 	if (cpu_has_veic || cpu_has_vint) {
1631 		unsigned long size = 0x200 + VECTORSPACING*64;
1632 		ebase = (unsigned long)
1633 			__alloc_bootmem(size, 1 << fls(size), 0);
1634 	} else {
1635 		ebase = CKSEG0;
1636 		if (cpu_has_mips_r2)
1637 			ebase += (read_c0_ebase() & 0x3ffff000);
1638 	}
1639 
1640 	per_cpu_trap_init();
1641 
1642 	/*
1643 	 * Copy the generic exception handlers to their final destination.
1644 	 * This will be overriden later as suitable for a particular
1645 	 * configuration.
1646 	 */
1647 	set_handler(0x180, &except_vec3_generic, 0x80);
1648 
1649 	/*
1650 	 * Setup default vectors
1651 	 */
1652 	for (i = 0; i <= 31; i++)
1653 		set_except_vector(i, handle_reserved);
1654 
1655 	/*
1656 	 * Copy the EJTAG debug exception vector handler code to it's final
1657 	 * destination.
1658 	 */
1659 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1660 		board_ejtag_handler_setup();
1661 
1662 	/*
1663 	 * Only some CPUs have the watch exceptions.
1664 	 */
1665 	if (cpu_has_watch)
1666 		set_except_vector(23, handle_watch);
1667 
1668 	/*
1669 	 * Initialise interrupt handlers
1670 	 */
1671 	if (cpu_has_veic || cpu_has_vint) {
1672 		int nvec = cpu_has_veic ? 64 : 8;
1673 		for (i = 0; i < nvec; i++)
1674 			set_vi_handler(i, NULL);
1675 	}
1676 	else if (cpu_has_divec)
1677 		set_handler(0x200, &except_vec4, 0x8);
1678 
1679 	/*
1680 	 * Some CPUs can enable/disable for cache parity detection, but does
1681 	 * it different ways.
1682 	 */
1683 	parity_protection_init();
1684 
1685 	/*
1686 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1687 	 * by external hardware.  Therefore these two exceptions
1688 	 * may have board specific handlers.
1689 	 */
1690 	if (board_be_init)
1691 		board_be_init();
1692 
1693 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1694 	set_except_vector(1, handle_tlbm);
1695 	set_except_vector(2, handle_tlbl);
1696 	set_except_vector(3, handle_tlbs);
1697 
1698 	set_except_vector(4, handle_adel);
1699 	set_except_vector(5, handle_ades);
1700 
1701 	set_except_vector(6, handle_ibe);
1702 	set_except_vector(7, handle_dbe);
1703 
1704 	set_except_vector(8, handle_sys);
1705 	set_except_vector(9, handle_bp);
1706 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1707 			  (cpu_has_vtag_icache ?
1708 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1709 	set_except_vector(11, handle_cpu);
1710 	set_except_vector(12, handle_ov);
1711 	set_except_vector(13, handle_tr);
1712 
1713 	if (current_cpu_type() == CPU_R6000 ||
1714 	    current_cpu_type() == CPU_R6000A) {
1715 		/*
1716 		 * The R6000 is the only R-series CPU that features a machine
1717 		 * check exception (similar to the R4000 cache error) and
1718 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1719 		 * written yet.  Well, anyway there is no R6000 machine on the
1720 		 * current list of targets for Linux/MIPS.
1721 		 * (Duh, crap, there is someone with a triple R6k machine)
1722 		 */
1723 		//set_except_vector(14, handle_mc);
1724 		//set_except_vector(15, handle_ndc);
1725 	}
1726 
1727 
1728 	if (board_nmi_handler_setup)
1729 		board_nmi_handler_setup();
1730 
1731 	if (cpu_has_fpu && !cpu_has_nofpuex)
1732 		set_except_vector(15, handle_fpe);
1733 
1734 	set_except_vector(22, handle_mdmx);
1735 
1736 	if (cpu_has_mcheck)
1737 		set_except_vector(24, handle_mcheck);
1738 
1739 	if (cpu_has_mipsmt)
1740 		set_except_vector(25, handle_mt);
1741 
1742 	set_except_vector(26, handle_dsp);
1743 
1744 	if (cpu_has_vce)
1745 		/* Special exception: R4[04]00 uses also the divec space. */
1746 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1747 	else if (cpu_has_4kex)
1748 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1749 	else
1750 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1751 
1752 	local_flush_icache_range(ebase, ebase + 0x400);
1753 	flush_tlb_handlers();
1754 
1755 	sort_extable(__start___dbe_table, __stop___dbe_table);
1756 
1757 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1758 }
1759