xref: /linux/arch/mips/kernel/traps.c (revision a13d7201d7deedcbb6ac6efa94a1a7d34d3d79ec)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
66 
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
96 
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
104 
105 static void show_raw_backtrace(unsigned long reg29)
106 {
107 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 	unsigned long addr;
109 
110 	printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 	printk("\n");
113 #endif
114 	while (!kstack_end(sp)) {
115 		unsigned long __user *p =
116 			(unsigned long __user *)(unsigned long)sp++;
117 		if (__get_user(addr, p)) {
118 			printk(" (Bad stack address)");
119 			break;
120 		}
121 		if (__kernel_text_address(addr))
122 			print_ip_sym(addr);
123 	}
124 	printk("\n");
125 }
126 
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
129 static int __init set_raw_show_trace(char *str)
130 {
131 	raw_show_trace = 1;
132 	return 1;
133 }
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
136 
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138 {
139 	unsigned long sp = regs->regs[29];
140 	unsigned long ra = regs->regs[31];
141 	unsigned long pc = regs->cp0_epc;
142 
143 	if (!task)
144 		task = current;
145 
146 	if (raw_show_trace || !__kernel_text_address(pc)) {
147 		show_raw_backtrace(sp);
148 		return;
149 	}
150 	printk("Call Trace:\n");
151 	do {
152 		print_ip_sym(pc);
153 		pc = unwind_stack(task, &sp, pc, &ra);
154 	} while (pc);
155 	printk("\n");
156 }
157 
158 /*
159  * This routine abuses get_user()/put_user() to reference pointers
160  * with at least a bit of error checking ...
161  */
162 static void show_stacktrace(struct task_struct *task,
163 	const struct pt_regs *regs)
164 {
165 	const int field = 2 * sizeof(unsigned long);
166 	long stackdata;
167 	int i;
168 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169 
170 	printk("Stack :");
171 	i = 0;
172 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 		if (i && ((i % (64 / field)) == 0))
174 			printk("\n	 ");
175 		if (i > 39) {
176 			printk(" ...");
177 			break;
178 		}
179 
180 		if (__get_user(stackdata, sp++)) {
181 			printk(" (Bad stack address)");
182 			break;
183 		}
184 
185 		printk(" %0*lx", field, stackdata);
186 		i++;
187 	}
188 	printk("\n");
189 	show_backtrace(task, regs);
190 }
191 
192 void show_stack(struct task_struct *task, unsigned long *sp)
193 {
194 	struct pt_regs regs;
195 	mm_segment_t old_fs = get_fs();
196 	if (sp) {
197 		regs.regs[29] = (unsigned long)sp;
198 		regs.regs[31] = 0;
199 		regs.cp0_epc = 0;
200 	} else {
201 		if (task && task != current) {
202 			regs.regs[29] = task->thread.reg29;
203 			regs.regs[31] = 0;
204 			regs.cp0_epc = task->thread.reg31;
205 #ifdef CONFIG_KGDB_KDB
206 		} else if (atomic_read(&kgdb_active) != -1 &&
207 			   kdb_current_regs) {
208 			memcpy(&regs, kdb_current_regs, sizeof(regs));
209 #endif /* CONFIG_KGDB_KDB */
210 		} else {
211 			prepare_frametrace(&regs);
212 		}
213 	}
214 	/*
215 	 * show_stack() deals exclusively with kernel mode, so be sure to access
216 	 * the stack in the kernel (not user) address space.
217 	 */
218 	set_fs(KERNEL_DS);
219 	show_stacktrace(task, &regs);
220 	set_fs(old_fs);
221 }
222 
223 static void show_code(unsigned int __user *pc)
224 {
225 	long i;
226 	unsigned short __user *pc16 = NULL;
227 
228 	printk("\nCode:");
229 
230 	if ((unsigned long)pc & 1)
231 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
232 	for(i = -3 ; i < 6 ; i++) {
233 		unsigned int insn;
234 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
235 			printk(" (Bad address in epc)\n");
236 			break;
237 		}
238 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
239 	}
240 }
241 
242 static void __show_regs(const struct pt_regs *regs)
243 {
244 	const int field = 2 * sizeof(unsigned long);
245 	unsigned int cause = regs->cp0_cause;
246 	unsigned int exccode;
247 	int i;
248 
249 	show_regs_print_info(KERN_DEFAULT);
250 
251 	/*
252 	 * Saved main processor registers
253 	 */
254 	for (i = 0; i < 32; ) {
255 		if ((i % 4) == 0)
256 			printk("$%2d   :", i);
257 		if (i == 0)
258 			printk(" %0*lx", field, 0UL);
259 		else if (i == 26 || i == 27)
260 			printk(" %*s", field, "");
261 		else
262 			printk(" %0*lx", field, regs->regs[i]);
263 
264 		i++;
265 		if ((i % 4) == 0)
266 			printk("\n");
267 	}
268 
269 #ifdef CONFIG_CPU_HAS_SMARTMIPS
270 	printk("Acx    : %0*lx\n", field, regs->acx);
271 #endif
272 	printk("Hi    : %0*lx\n", field, regs->hi);
273 	printk("Lo    : %0*lx\n", field, regs->lo);
274 
275 	/*
276 	 * Saved cp0 registers
277 	 */
278 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
279 	       (void *) regs->cp0_epc);
280 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
281 	       (void *) regs->regs[31]);
282 
283 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
284 
285 	if (cpu_has_3kex) {
286 		if (regs->cp0_status & ST0_KUO)
287 			printk("KUo ");
288 		if (regs->cp0_status & ST0_IEO)
289 			printk("IEo ");
290 		if (regs->cp0_status & ST0_KUP)
291 			printk("KUp ");
292 		if (regs->cp0_status & ST0_IEP)
293 			printk("IEp ");
294 		if (regs->cp0_status & ST0_KUC)
295 			printk("KUc ");
296 		if (regs->cp0_status & ST0_IEC)
297 			printk("IEc ");
298 	} else if (cpu_has_4kex) {
299 		if (regs->cp0_status & ST0_KX)
300 			printk("KX ");
301 		if (regs->cp0_status & ST0_SX)
302 			printk("SX ");
303 		if (regs->cp0_status & ST0_UX)
304 			printk("UX ");
305 		switch (regs->cp0_status & ST0_KSU) {
306 		case KSU_USER:
307 			printk("USER ");
308 			break;
309 		case KSU_SUPERVISOR:
310 			printk("SUPERVISOR ");
311 			break;
312 		case KSU_KERNEL:
313 			printk("KERNEL ");
314 			break;
315 		default:
316 			printk("BAD_MODE ");
317 			break;
318 		}
319 		if (regs->cp0_status & ST0_ERL)
320 			printk("ERL ");
321 		if (regs->cp0_status & ST0_EXL)
322 			printk("EXL ");
323 		if (regs->cp0_status & ST0_IE)
324 			printk("IE ");
325 	}
326 	printk("\n");
327 
328 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
330 
331 	if (1 <= exccode && exccode <= 5)
332 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
333 
334 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
335 	       cpu_name_string());
336 }
337 
338 /*
339  * FIXME: really the generic show_regs should take a const pointer argument.
340  */
341 void show_regs(struct pt_regs *regs)
342 {
343 	__show_regs((struct pt_regs *)regs);
344 }
345 
346 void show_registers(struct pt_regs *regs)
347 {
348 	const int field = 2 * sizeof(unsigned long);
349 	mm_segment_t old_fs = get_fs();
350 
351 	__show_regs(regs);
352 	print_modules();
353 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
354 	       current->comm, current->pid, current_thread_info(), current,
355 	      field, current_thread_info()->tp_value);
356 	if (cpu_has_userlocal) {
357 		unsigned long tls;
358 
359 		tls = read_c0_userlocal();
360 		if (tls != current_thread_info()->tp_value)
361 			printk("*HwTLS: %0*lx\n", field, tls);
362 	}
363 
364 	if (!user_mode(regs))
365 		/* Necessary for getting the correct stack content */
366 		set_fs(KERNEL_DS);
367 	show_stacktrace(current, regs);
368 	show_code((unsigned int __user *) regs->cp0_epc);
369 	printk("\n");
370 	set_fs(old_fs);
371 }
372 
373 static int regs_to_trapnr(struct pt_regs *regs)
374 {
375 	return (regs->cp0_cause >> 2) & 0x1f;
376 }
377 
378 static DEFINE_RAW_SPINLOCK(die_lock);
379 
380 void __noreturn die(const char *str, struct pt_regs *regs)
381 {
382 	static int die_counter;
383 	int sig = SIGSEGV;
384 
385 	oops_enter();
386 
387 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
388 		       SIGSEGV) == NOTIFY_STOP)
389 		sig = 0;
390 
391 	console_verbose();
392 	raw_spin_lock_irq(&die_lock);
393 	bust_spinlocks(1);
394 
395 	printk("%s[#%d]:\n", str, ++die_counter);
396 	show_registers(regs);
397 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
398 	raw_spin_unlock_irq(&die_lock);
399 
400 	oops_exit();
401 
402 	if (in_interrupt())
403 		panic("Fatal exception in interrupt");
404 
405 	if (panic_on_oops) {
406 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
407 		ssleep(5);
408 		panic("Fatal exception");
409 	}
410 
411 	if (regs && kexec_should_crash(current))
412 		crash_kexec(regs);
413 
414 	do_exit(sig);
415 }
416 
417 extern struct exception_table_entry __start___dbe_table[];
418 extern struct exception_table_entry __stop___dbe_table[];
419 
420 __asm__(
421 "	.section	__dbe_table, \"a\"\n"
422 "	.previous			\n");
423 
424 /* Given an address, look for it in the exception tables. */
425 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
426 {
427 	const struct exception_table_entry *e;
428 
429 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
430 	if (!e)
431 		e = search_module_dbetables(addr);
432 	return e;
433 }
434 
435 asmlinkage void do_be(struct pt_regs *regs)
436 {
437 	const int field = 2 * sizeof(unsigned long);
438 	const struct exception_table_entry *fixup = NULL;
439 	int data = regs->cp0_cause & 4;
440 	int action = MIPS_BE_FATAL;
441 	enum ctx_state prev_state;
442 
443 	prev_state = exception_enter();
444 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
445 	if (data && !user_mode(regs))
446 		fixup = search_dbe_tables(exception_epc(regs));
447 
448 	if (fixup)
449 		action = MIPS_BE_FIXUP;
450 
451 	if (board_be_handler)
452 		action = board_be_handler(regs, fixup != NULL);
453 
454 	switch (action) {
455 	case MIPS_BE_DISCARD:
456 		goto out;
457 	case MIPS_BE_FIXUP:
458 		if (fixup) {
459 			regs->cp0_epc = fixup->nextinsn;
460 			goto out;
461 		}
462 		break;
463 	default:
464 		break;
465 	}
466 
467 	/*
468 	 * Assume it would be too dangerous to continue ...
469 	 */
470 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
471 	       data ? "Data" : "Instruction",
472 	       field, regs->cp0_epc, field, regs->regs[31]);
473 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
474 		       SIGBUS) == NOTIFY_STOP)
475 		goto out;
476 
477 	die_if_kernel("Oops", regs);
478 	force_sig(SIGBUS, current);
479 
480 out:
481 	exception_exit(prev_state);
482 }
483 
484 /*
485  * ll/sc, rdhwr, sync emulation
486  */
487 
488 #define OPCODE 0xfc000000
489 #define BASE   0x03e00000
490 #define RT     0x001f0000
491 #define OFFSET 0x0000ffff
492 #define LL     0xc0000000
493 #define SC     0xe0000000
494 #define SPEC0  0x00000000
495 #define SPEC3  0x7c000000
496 #define RD     0x0000f800
497 #define FUNC   0x0000003f
498 #define SYNC   0x0000000f
499 #define RDHWR  0x0000003b
500 
501 /*  microMIPS definitions   */
502 #define MM_POOL32A_FUNC 0xfc00ffff
503 #define MM_RDHWR        0x00006b3c
504 #define MM_RS           0x001f0000
505 #define MM_RT           0x03e00000
506 
507 /*
508  * The ll_bit is cleared by r*_switch.S
509  */
510 
511 unsigned int ll_bit;
512 struct task_struct *ll_task;
513 
514 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
515 {
516 	unsigned long value, __user *vaddr;
517 	long offset;
518 
519 	/*
520 	 * analyse the ll instruction that just caused a ri exception
521 	 * and put the referenced address to addr.
522 	 */
523 
524 	/* sign extend offset */
525 	offset = opcode & OFFSET;
526 	offset <<= 16;
527 	offset >>= 16;
528 
529 	vaddr = (unsigned long __user *)
530 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
531 
532 	if ((unsigned long)vaddr & 3)
533 		return SIGBUS;
534 	if (get_user(value, vaddr))
535 		return SIGSEGV;
536 
537 	preempt_disable();
538 
539 	if (ll_task == NULL || ll_task == current) {
540 		ll_bit = 1;
541 	} else {
542 		ll_bit = 0;
543 	}
544 	ll_task = current;
545 
546 	preempt_enable();
547 
548 	regs->regs[(opcode & RT) >> 16] = value;
549 
550 	return 0;
551 }
552 
553 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
554 {
555 	unsigned long __user *vaddr;
556 	unsigned long reg;
557 	long offset;
558 
559 	/*
560 	 * analyse the sc instruction that just caused a ri exception
561 	 * and put the referenced address to addr.
562 	 */
563 
564 	/* sign extend offset */
565 	offset = opcode & OFFSET;
566 	offset <<= 16;
567 	offset >>= 16;
568 
569 	vaddr = (unsigned long __user *)
570 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
571 	reg = (opcode & RT) >> 16;
572 
573 	if ((unsigned long)vaddr & 3)
574 		return SIGBUS;
575 
576 	preempt_disable();
577 
578 	if (ll_bit == 0 || ll_task != current) {
579 		regs->regs[reg] = 0;
580 		preempt_enable();
581 		return 0;
582 	}
583 
584 	preempt_enable();
585 
586 	if (put_user(regs->regs[reg], vaddr))
587 		return SIGSEGV;
588 
589 	regs->regs[reg] = 1;
590 
591 	return 0;
592 }
593 
594 /*
595  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
596  * opcodes are supposed to result in coprocessor unusable exceptions if
597  * executed on ll/sc-less processors.  That's the theory.  In practice a
598  * few processors such as NEC's VR4100 throw reserved instruction exceptions
599  * instead, so we're doing the emulation thing in both exception handlers.
600  */
601 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
602 {
603 	if ((opcode & OPCODE) == LL) {
604 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
605 				1, regs, 0);
606 		return simulate_ll(regs, opcode);
607 	}
608 	if ((opcode & OPCODE) == SC) {
609 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 				1, regs, 0);
611 		return simulate_sc(regs, opcode);
612 	}
613 
614 	return -1;			/* Must be something else ... */
615 }
616 
617 /*
618  * Simulate trapping 'rdhwr' instructions to provide user accessible
619  * registers not implemented in hardware.
620  */
621 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
622 {
623 	struct thread_info *ti = task_thread_info(current);
624 
625 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
626 			1, regs, 0);
627 	switch (rd) {
628 	case 0:		/* CPU number */
629 		regs->regs[rt] = smp_processor_id();
630 		return 0;
631 	case 1:		/* SYNCI length */
632 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
633 				     current_cpu_data.icache.linesz);
634 		return 0;
635 	case 2:		/* Read count register */
636 		regs->regs[rt] = read_c0_count();
637 		return 0;
638 	case 3:		/* Count register resolution */
639 		switch (current_cpu_type()) {
640 		case CPU_20KC:
641 		case CPU_25KF:
642 			regs->regs[rt] = 1;
643 			break;
644 		default:
645 			regs->regs[rt] = 2;
646 		}
647 		return 0;
648 	case 29:
649 		regs->regs[rt] = ti->tp_value;
650 		return 0;
651 	default:
652 		return -1;
653 	}
654 }
655 
656 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
657 {
658 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
659 		int rd = (opcode & RD) >> 11;
660 		int rt = (opcode & RT) >> 16;
661 
662 		simulate_rdhwr(regs, rd, rt);
663 		return 0;
664 	}
665 
666 	/* Not ours.  */
667 	return -1;
668 }
669 
670 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
671 {
672 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
673 		int rd = (opcode & MM_RS) >> 16;
674 		int rt = (opcode & MM_RT) >> 21;
675 		simulate_rdhwr(regs, rd, rt);
676 		return 0;
677 	}
678 
679 	/* Not ours.  */
680 	return -1;
681 }
682 
683 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
684 {
685 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
686 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
687 				1, regs, 0);
688 		return 0;
689 	}
690 
691 	return -1;			/* Must be something else ... */
692 }
693 
694 asmlinkage void do_ov(struct pt_regs *regs)
695 {
696 	enum ctx_state prev_state;
697 	siginfo_t info;
698 
699 	prev_state = exception_enter();
700 	die_if_kernel("Integer overflow", regs);
701 
702 	info.si_code = FPE_INTOVF;
703 	info.si_signo = SIGFPE;
704 	info.si_errno = 0;
705 	info.si_addr = (void __user *) regs->cp0_epc;
706 	force_sig_info(SIGFPE, &info, current);
707 	exception_exit(prev_state);
708 }
709 
710 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
711 {
712 	struct siginfo si = { 0 };
713 
714 	switch (sig) {
715 	case 0:
716 		return 0;
717 
718 	case SIGFPE:
719 		si.si_addr = fault_addr;
720 		si.si_signo = sig;
721 		/*
722 		 * Inexact can happen together with Overflow or Underflow.
723 		 * Respect the mask to deliver the correct exception.
724 		 */
725 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
726 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
727 		if (fcr31 & FPU_CSR_INV_X)
728 			si.si_code = FPE_FLTINV;
729 		else if (fcr31 & FPU_CSR_DIV_X)
730 			si.si_code = FPE_FLTDIV;
731 		else if (fcr31 & FPU_CSR_OVF_X)
732 			si.si_code = FPE_FLTOVF;
733 		else if (fcr31 & FPU_CSR_UDF_X)
734 			si.si_code = FPE_FLTUND;
735 		else if (fcr31 & FPU_CSR_INE_X)
736 			si.si_code = FPE_FLTRES;
737 		else
738 			si.si_code = __SI_FAULT;
739 		force_sig_info(sig, &si, current);
740 		return 1;
741 
742 	case SIGBUS:
743 		si.si_addr = fault_addr;
744 		si.si_signo = sig;
745 		si.si_code = BUS_ADRERR;
746 		force_sig_info(sig, &si, current);
747 		return 1;
748 
749 	case SIGSEGV:
750 		si.si_addr = fault_addr;
751 		si.si_signo = sig;
752 		down_read(&current->mm->mmap_sem);
753 		if (find_vma(current->mm, (unsigned long)fault_addr))
754 			si.si_code = SEGV_ACCERR;
755 		else
756 			si.si_code = SEGV_MAPERR;
757 		up_read(&current->mm->mmap_sem);
758 		force_sig_info(sig, &si, current);
759 		return 1;
760 
761 	default:
762 		force_sig(sig, current);
763 		return 1;
764 	}
765 }
766 
767 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
768 		       unsigned long old_epc, unsigned long old_ra)
769 {
770 	union mips_instruction inst = { .word = opcode };
771 	void __user *fault_addr;
772 	unsigned long fcr31;
773 	int sig;
774 
775 	/* If it's obviously not an FP instruction, skip it */
776 	switch (inst.i_format.opcode) {
777 	case cop1_op:
778 	case cop1x_op:
779 	case lwc1_op:
780 	case ldc1_op:
781 	case swc1_op:
782 	case sdc1_op:
783 		break;
784 
785 	default:
786 		return -1;
787 	}
788 
789 	/*
790 	 * do_ri skipped over the instruction via compute_return_epc, undo
791 	 * that for the FPU emulator.
792 	 */
793 	regs->cp0_epc = old_epc;
794 	regs->regs[31] = old_ra;
795 
796 	/* Save the FP context to struct thread_struct */
797 	lose_fpu(1);
798 
799 	/* Run the emulator */
800 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
801 				       &fault_addr);
802 	fcr31 = current->thread.fpu.fcr31;
803 
804 	/*
805 	 * We can't allow the emulated instruction to leave any of
806 	 * the cause bits set in $fcr31.
807 	 */
808 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
809 
810 	/* Restore the hardware register state */
811 	own_fpu(1);
812 
813 	/* Send a signal if required.  */
814 	process_fpemu_return(sig, fault_addr, fcr31);
815 
816 	return 0;
817 }
818 
819 /*
820  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
821  */
822 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
823 {
824 	enum ctx_state prev_state;
825 	void __user *fault_addr;
826 	int sig;
827 
828 	prev_state = exception_enter();
829 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
830 		       SIGFPE) == NOTIFY_STOP)
831 		goto out;
832 
833 	/* Clear FCSR.Cause before enabling interrupts */
834 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
835 	local_irq_enable();
836 
837 	die_if_kernel("FP exception in kernel code", regs);
838 
839 	if (fcr31 & FPU_CSR_UNI_X) {
840 		/*
841 		 * Unimplemented operation exception.  If we've got the full
842 		 * software emulator on-board, let's use it...
843 		 *
844 		 * Force FPU to dump state into task/thread context.  We're
845 		 * moving a lot of data here for what is probably a single
846 		 * instruction, but the alternative is to pre-decode the FP
847 		 * register operands before invoking the emulator, which seems
848 		 * a bit extreme for what should be an infrequent event.
849 		 */
850 		/* Ensure 'resume' not overwrite saved fp context again. */
851 		lose_fpu(1);
852 
853 		/* Run the emulator */
854 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
855 					       &fault_addr);
856 		fcr31 = current->thread.fpu.fcr31;
857 
858 		/*
859 		 * We can't allow the emulated instruction to leave any of
860 		 * the cause bits set in $fcr31.
861 		 */
862 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
863 
864 		/* Restore the hardware register state */
865 		own_fpu(1);	/* Using the FPU again.	 */
866 	} else {
867 		sig = SIGFPE;
868 		fault_addr = (void __user *) regs->cp0_epc;
869 	}
870 
871 	/* Send a signal if required.  */
872 	process_fpemu_return(sig, fault_addr, fcr31);
873 
874 out:
875 	exception_exit(prev_state);
876 }
877 
878 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
879 	const char *str)
880 {
881 	siginfo_t info;
882 	char b[40];
883 
884 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
885 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
886 		return;
887 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
888 
889 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
890 		       SIGTRAP) == NOTIFY_STOP)
891 		return;
892 
893 	/*
894 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
895 	 * insns, even for trap and break codes that indicate arithmetic
896 	 * failures.  Weird ...
897 	 * But should we continue the brokenness???  --macro
898 	 */
899 	switch (code) {
900 	case BRK_OVERFLOW:
901 	case BRK_DIVZERO:
902 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
903 		die_if_kernel(b, regs);
904 		if (code == BRK_DIVZERO)
905 			info.si_code = FPE_INTDIV;
906 		else
907 			info.si_code = FPE_INTOVF;
908 		info.si_signo = SIGFPE;
909 		info.si_errno = 0;
910 		info.si_addr = (void __user *) regs->cp0_epc;
911 		force_sig_info(SIGFPE, &info, current);
912 		break;
913 	case BRK_BUG:
914 		die_if_kernel("Kernel bug detected", regs);
915 		force_sig(SIGTRAP, current);
916 		break;
917 	case BRK_MEMU:
918 		/*
919 		 * This breakpoint code is used by the FPU emulator to retake
920 		 * control of the CPU after executing the instruction from the
921 		 * delay slot of an emulated branch.
922 		 *
923 		 * Terminate if exception was recognized as a delay slot return
924 		 * otherwise handle as normal.
925 		 */
926 		if (do_dsemulret(regs))
927 			return;
928 
929 		die_if_kernel("Math emu break/trap", regs);
930 		force_sig(SIGTRAP, current);
931 		break;
932 	default:
933 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
934 		die_if_kernel(b, regs);
935 		force_sig(SIGTRAP, current);
936 	}
937 }
938 
939 asmlinkage void do_bp(struct pt_regs *regs)
940 {
941 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
942 	unsigned int opcode, bcode;
943 	enum ctx_state prev_state;
944 	mm_segment_t seg;
945 
946 	seg = get_fs();
947 	if (!user_mode(regs))
948 		set_fs(KERNEL_DS);
949 
950 	prev_state = exception_enter();
951 	if (get_isa16_mode(regs->cp0_epc)) {
952 		u16 instr[2];
953 
954 		if (__get_user(instr[0], (u16 __user *)epc))
955 			goto out_sigsegv;
956 
957 		if (!cpu_has_mmips) {
958 			/* MIPS16e mode */
959 			bcode = (instr[0] >> 5) & 0x3f;
960 		} else if (mm_insn_16bit(instr[0])) {
961 			/* 16-bit microMIPS BREAK */
962 			bcode = instr[0] & 0xf;
963 		} else {
964 			/* 32-bit microMIPS BREAK */
965 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
966 				goto out_sigsegv;
967 			opcode = (instr[0] << 16) | instr[1];
968 			bcode = (opcode >> 6) & ((1 << 20) - 1);
969 		}
970 	} else {
971 		if (__get_user(opcode, (unsigned int __user *)epc))
972 			goto out_sigsegv;
973 		bcode = (opcode >> 6) & ((1 << 20) - 1);
974 	}
975 
976 	/*
977 	 * There is the ancient bug in the MIPS assemblers that the break
978 	 * code starts left to bit 16 instead to bit 6 in the opcode.
979 	 * Gas is bug-compatible, but not always, grrr...
980 	 * We handle both cases with a simple heuristics.  --macro
981 	 */
982 	if (bcode >= (1 << 10))
983 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
984 
985 	/*
986 	 * notify the kprobe handlers, if instruction is likely to
987 	 * pertain to them.
988 	 */
989 	switch (bcode) {
990 	case BRK_KPROBE_BP:
991 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
992 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
993 			goto out;
994 		else
995 			break;
996 	case BRK_KPROBE_SSTEPBP:
997 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
998 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
999 			goto out;
1000 		else
1001 			break;
1002 	default:
1003 		break;
1004 	}
1005 
1006 	do_trap_or_bp(regs, bcode, "Break");
1007 
1008 out:
1009 	set_fs(seg);
1010 	exception_exit(prev_state);
1011 	return;
1012 
1013 out_sigsegv:
1014 	force_sig(SIGSEGV, current);
1015 	goto out;
1016 }
1017 
1018 asmlinkage void do_tr(struct pt_regs *regs)
1019 {
1020 	u32 opcode, tcode = 0;
1021 	enum ctx_state prev_state;
1022 	u16 instr[2];
1023 	mm_segment_t seg;
1024 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1025 
1026 	seg = get_fs();
1027 	if (!user_mode(regs))
1028 		set_fs(get_ds());
1029 
1030 	prev_state = exception_enter();
1031 	if (get_isa16_mode(regs->cp0_epc)) {
1032 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1033 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1034 			goto out_sigsegv;
1035 		opcode = (instr[0] << 16) | instr[1];
1036 		/* Immediate versions don't provide a code.  */
1037 		if (!(opcode & OPCODE))
1038 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1039 	} else {
1040 		if (__get_user(opcode, (u32 __user *)epc))
1041 			goto out_sigsegv;
1042 		/* Immediate versions don't provide a code.  */
1043 		if (!(opcode & OPCODE))
1044 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1045 	}
1046 
1047 	do_trap_or_bp(regs, tcode, "Trap");
1048 
1049 out:
1050 	set_fs(seg);
1051 	exception_exit(prev_state);
1052 	return;
1053 
1054 out_sigsegv:
1055 	force_sig(SIGSEGV, current);
1056 	goto out;
1057 }
1058 
1059 asmlinkage void do_ri(struct pt_regs *regs)
1060 {
1061 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1062 	unsigned long old_epc = regs->cp0_epc;
1063 	unsigned long old31 = regs->regs[31];
1064 	enum ctx_state prev_state;
1065 	unsigned int opcode = 0;
1066 	int status = -1;
1067 
1068 	/*
1069 	 * Avoid any kernel code. Just emulate the R2 instruction
1070 	 * as quickly as possible.
1071 	 */
1072 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1073 	    likely(user_mode(regs)) &&
1074 	    likely(get_user(opcode, epc) >= 0)) {
1075 		unsigned long fcr31 = 0;
1076 
1077 		status = mipsr2_decoder(regs, opcode, &fcr31);
1078 		switch (status) {
1079 		case 0:
1080 		case SIGEMT:
1081 			task_thread_info(current)->r2_emul_return = 1;
1082 			return;
1083 		case SIGILL:
1084 			goto no_r2_instr;
1085 		default:
1086 			process_fpemu_return(status,
1087 					     &current->thread.cp0_baduaddr,
1088 					     fcr31);
1089 			task_thread_info(current)->r2_emul_return = 1;
1090 			return;
1091 		}
1092 	}
1093 
1094 no_r2_instr:
1095 
1096 	prev_state = exception_enter();
1097 
1098 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1099 		       SIGILL) == NOTIFY_STOP)
1100 		goto out;
1101 
1102 	die_if_kernel("Reserved instruction in kernel code", regs);
1103 
1104 	if (unlikely(compute_return_epc(regs) < 0))
1105 		goto out;
1106 
1107 	if (get_isa16_mode(regs->cp0_epc)) {
1108 		unsigned short mmop[2] = { 0 };
1109 
1110 		if (unlikely(get_user(mmop[0], epc) < 0))
1111 			status = SIGSEGV;
1112 		if (unlikely(get_user(mmop[1], epc) < 0))
1113 			status = SIGSEGV;
1114 		opcode = (mmop[0] << 16) | mmop[1];
1115 
1116 		if (status < 0)
1117 			status = simulate_rdhwr_mm(regs, opcode);
1118 	} else {
1119 		if (unlikely(get_user(opcode, epc) < 0))
1120 			status = SIGSEGV;
1121 
1122 		if (!cpu_has_llsc && status < 0)
1123 			status = simulate_llsc(regs, opcode);
1124 
1125 		if (status < 0)
1126 			status = simulate_rdhwr_normal(regs, opcode);
1127 
1128 		if (status < 0)
1129 			status = simulate_sync(regs, opcode);
1130 
1131 		if (status < 0)
1132 			status = simulate_fp(regs, opcode, old_epc, old31);
1133 	}
1134 
1135 	if (status < 0)
1136 		status = SIGILL;
1137 
1138 	if (unlikely(status > 0)) {
1139 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1140 		regs->regs[31] = old31;
1141 		force_sig(status, current);
1142 	}
1143 
1144 out:
1145 	exception_exit(prev_state);
1146 }
1147 
1148 /*
1149  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1150  * emulated more than some threshold number of instructions, force migration to
1151  * a "CPU" that has FP support.
1152  */
1153 static void mt_ase_fp_affinity(void)
1154 {
1155 #ifdef CONFIG_MIPS_MT_FPAFF
1156 	if (mt_fpemul_threshold > 0 &&
1157 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1158 		/*
1159 		 * If there's no FPU present, or if the application has already
1160 		 * restricted the allowed set to exclude any CPUs with FPUs,
1161 		 * we'll skip the procedure.
1162 		 */
1163 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1164 			cpumask_t tmask;
1165 
1166 			current->thread.user_cpus_allowed
1167 				= current->cpus_allowed;
1168 			cpumask_and(&tmask, &current->cpus_allowed,
1169 				    &mt_fpu_cpumask);
1170 			set_cpus_allowed_ptr(current, &tmask);
1171 			set_thread_flag(TIF_FPUBOUND);
1172 		}
1173 	}
1174 #endif /* CONFIG_MIPS_MT_FPAFF */
1175 }
1176 
1177 /*
1178  * No lock; only written during early bootup by CPU 0.
1179  */
1180 static RAW_NOTIFIER_HEAD(cu2_chain);
1181 
1182 int __ref register_cu2_notifier(struct notifier_block *nb)
1183 {
1184 	return raw_notifier_chain_register(&cu2_chain, nb);
1185 }
1186 
1187 int cu2_notifier_call_chain(unsigned long val, void *v)
1188 {
1189 	return raw_notifier_call_chain(&cu2_chain, val, v);
1190 }
1191 
1192 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1193 	void *data)
1194 {
1195 	struct pt_regs *regs = data;
1196 
1197 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1198 			      "instruction", regs);
1199 	force_sig(SIGILL, current);
1200 
1201 	return NOTIFY_OK;
1202 }
1203 
1204 static int wait_on_fp_mode_switch(atomic_t *p)
1205 {
1206 	/*
1207 	 * The FP mode for this task is currently being switched. That may
1208 	 * involve modifications to the format of this tasks FP context which
1209 	 * make it unsafe to proceed with execution for the moment. Instead,
1210 	 * schedule some other task.
1211 	 */
1212 	schedule();
1213 	return 0;
1214 }
1215 
1216 static int enable_restore_fp_context(int msa)
1217 {
1218 	int err, was_fpu_owner, prior_msa;
1219 
1220 	/*
1221 	 * If an FP mode switch is currently underway, wait for it to
1222 	 * complete before proceeding.
1223 	 */
1224 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1225 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1226 
1227 	if (!used_math()) {
1228 		/* First time FP context user. */
1229 		preempt_disable();
1230 		err = init_fpu();
1231 		if (msa && !err) {
1232 			enable_msa();
1233 			_init_msa_upper();
1234 			set_thread_flag(TIF_USEDMSA);
1235 			set_thread_flag(TIF_MSA_CTX_LIVE);
1236 		}
1237 		preempt_enable();
1238 		if (!err)
1239 			set_used_math();
1240 		return err;
1241 	}
1242 
1243 	/*
1244 	 * This task has formerly used the FP context.
1245 	 *
1246 	 * If this thread has no live MSA vector context then we can simply
1247 	 * restore the scalar FP context. If it has live MSA vector context
1248 	 * (that is, it has or may have used MSA since last performing a
1249 	 * function call) then we'll need to restore the vector context. This
1250 	 * applies even if we're currently only executing a scalar FP
1251 	 * instruction. This is because if we were to later execute an MSA
1252 	 * instruction then we'd either have to:
1253 	 *
1254 	 *  - Restore the vector context & clobber any registers modified by
1255 	 *    scalar FP instructions between now & then.
1256 	 *
1257 	 * or
1258 	 *
1259 	 *  - Not restore the vector context & lose the most significant bits
1260 	 *    of all vector registers.
1261 	 *
1262 	 * Neither of those options is acceptable. We cannot restore the least
1263 	 * significant bits of the registers now & only restore the most
1264 	 * significant bits later because the most significant bits of any
1265 	 * vector registers whose aliased FP register is modified now will have
1266 	 * been zeroed. We'd have no way to know that when restoring the vector
1267 	 * context & thus may load an outdated value for the most significant
1268 	 * bits of a vector register.
1269 	 */
1270 	if (!msa && !thread_msa_context_live())
1271 		return own_fpu(1);
1272 
1273 	/*
1274 	 * This task is using or has previously used MSA. Thus we require
1275 	 * that Status.FR == 1.
1276 	 */
1277 	preempt_disable();
1278 	was_fpu_owner = is_fpu_owner();
1279 	err = own_fpu_inatomic(0);
1280 	if (err)
1281 		goto out;
1282 
1283 	enable_msa();
1284 	write_msa_csr(current->thread.fpu.msacsr);
1285 	set_thread_flag(TIF_USEDMSA);
1286 
1287 	/*
1288 	 * If this is the first time that the task is using MSA and it has
1289 	 * previously used scalar FP in this time slice then we already nave
1290 	 * FP context which we shouldn't clobber. We do however need to clear
1291 	 * the upper 64b of each vector register so that this task has no
1292 	 * opportunity to see data left behind by another.
1293 	 */
1294 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1295 	if (!prior_msa && was_fpu_owner) {
1296 		_init_msa_upper();
1297 
1298 		goto out;
1299 	}
1300 
1301 	if (!prior_msa) {
1302 		/*
1303 		 * Restore the least significant 64b of each vector register
1304 		 * from the existing scalar FP context.
1305 		 */
1306 		_restore_fp(current);
1307 
1308 		/*
1309 		 * The task has not formerly used MSA, so clear the upper 64b
1310 		 * of each vector register such that it cannot see data left
1311 		 * behind by another task.
1312 		 */
1313 		_init_msa_upper();
1314 	} else {
1315 		/* We need to restore the vector context. */
1316 		restore_msa(current);
1317 
1318 		/* Restore the scalar FP control & status register */
1319 		if (!was_fpu_owner)
1320 			write_32bit_cp1_register(CP1_STATUS,
1321 						 current->thread.fpu.fcr31);
1322 	}
1323 
1324 out:
1325 	preempt_enable();
1326 
1327 	return 0;
1328 }
1329 
1330 asmlinkage void do_cpu(struct pt_regs *regs)
1331 {
1332 	enum ctx_state prev_state;
1333 	unsigned int __user *epc;
1334 	unsigned long old_epc, old31;
1335 	void __user *fault_addr;
1336 	unsigned int opcode;
1337 	unsigned long fcr31;
1338 	unsigned int cpid;
1339 	int status, err;
1340 	unsigned long __maybe_unused flags;
1341 	int sig;
1342 
1343 	prev_state = exception_enter();
1344 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1345 
1346 	if (cpid != 2)
1347 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1348 
1349 	switch (cpid) {
1350 	case 0:
1351 		epc = (unsigned int __user *)exception_epc(regs);
1352 		old_epc = regs->cp0_epc;
1353 		old31 = regs->regs[31];
1354 		opcode = 0;
1355 		status = -1;
1356 
1357 		if (unlikely(compute_return_epc(regs) < 0))
1358 			break;
1359 
1360 		if (get_isa16_mode(regs->cp0_epc)) {
1361 			unsigned short mmop[2] = { 0 };
1362 
1363 			if (unlikely(get_user(mmop[0], epc) < 0))
1364 				status = SIGSEGV;
1365 			if (unlikely(get_user(mmop[1], epc) < 0))
1366 				status = SIGSEGV;
1367 			opcode = (mmop[0] << 16) | mmop[1];
1368 
1369 			if (status < 0)
1370 				status = simulate_rdhwr_mm(regs, opcode);
1371 		} else {
1372 			if (unlikely(get_user(opcode, epc) < 0))
1373 				status = SIGSEGV;
1374 
1375 			if (!cpu_has_llsc && status < 0)
1376 				status = simulate_llsc(regs, opcode);
1377 
1378 			if (status < 0)
1379 				status = simulate_rdhwr_normal(regs, opcode);
1380 		}
1381 
1382 		if (status < 0)
1383 			status = SIGILL;
1384 
1385 		if (unlikely(status > 0)) {
1386 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1387 			regs->regs[31] = old31;
1388 			force_sig(status, current);
1389 		}
1390 
1391 		break;
1392 
1393 	case 3:
1394 		/*
1395 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1396 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1397 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1398 		 * up the space has been reused for COP1X instructions, that
1399 		 * are enabled by the CP0.Status.CU1 bit and consequently
1400 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1401 		 * exceptions.  Some FPU-less processors that implement one
1402 		 * of these ISAs however use this code erroneously for COP1X
1403 		 * instructions.  Therefore we redirect this trap to the FP
1404 		 * emulator too.
1405 		 */
1406 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1407 			force_sig(SIGILL, current);
1408 			break;
1409 		}
1410 		/* Fall through.  */
1411 
1412 	case 1:
1413 		err = enable_restore_fp_context(0);
1414 
1415 		if (raw_cpu_has_fpu && !err)
1416 			break;
1417 
1418 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1419 					       &fault_addr);
1420 		fcr31 = current->thread.fpu.fcr31;
1421 
1422 		/*
1423 		 * We can't allow the emulated instruction to leave
1424 		 * any of the cause bits set in $fcr31.
1425 		 */
1426 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1427 
1428 		/* Send a signal if required.  */
1429 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1430 			mt_ase_fp_affinity();
1431 
1432 		break;
1433 
1434 	case 2:
1435 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1436 		break;
1437 	}
1438 
1439 	exception_exit(prev_state);
1440 }
1441 
1442 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1443 {
1444 	enum ctx_state prev_state;
1445 
1446 	prev_state = exception_enter();
1447 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1448 		       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1449 		goto out;
1450 
1451 	/* Clear MSACSR.Cause before enabling interrupts */
1452 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1453 	local_irq_enable();
1454 
1455 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1456 	force_sig(SIGFPE, current);
1457 out:
1458 	exception_exit(prev_state);
1459 }
1460 
1461 asmlinkage void do_msa(struct pt_regs *regs)
1462 {
1463 	enum ctx_state prev_state;
1464 	int err;
1465 
1466 	prev_state = exception_enter();
1467 
1468 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1469 		force_sig(SIGILL, current);
1470 		goto out;
1471 	}
1472 
1473 	die_if_kernel("do_msa invoked from kernel context!", regs);
1474 
1475 	err = enable_restore_fp_context(1);
1476 	if (err)
1477 		force_sig(SIGILL, current);
1478 out:
1479 	exception_exit(prev_state);
1480 }
1481 
1482 asmlinkage void do_mdmx(struct pt_regs *regs)
1483 {
1484 	enum ctx_state prev_state;
1485 
1486 	prev_state = exception_enter();
1487 	force_sig(SIGILL, current);
1488 	exception_exit(prev_state);
1489 }
1490 
1491 /*
1492  * Called with interrupts disabled.
1493  */
1494 asmlinkage void do_watch(struct pt_regs *regs)
1495 {
1496 	enum ctx_state prev_state;
1497 	u32 cause;
1498 
1499 	prev_state = exception_enter();
1500 	/*
1501 	 * Clear WP (bit 22) bit of cause register so we don't loop
1502 	 * forever.
1503 	 */
1504 	cause = read_c0_cause();
1505 	cause &= ~(1 << 22);
1506 	write_c0_cause(cause);
1507 
1508 	/*
1509 	 * If the current thread has the watch registers loaded, save
1510 	 * their values and send SIGTRAP.  Otherwise another thread
1511 	 * left the registers set, clear them and continue.
1512 	 */
1513 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514 		mips_read_watch_registers();
1515 		local_irq_enable();
1516 		force_sig(SIGTRAP, current);
1517 	} else {
1518 		mips_clear_watch_registers();
1519 		local_irq_enable();
1520 	}
1521 	exception_exit(prev_state);
1522 }
1523 
1524 asmlinkage void do_mcheck(struct pt_regs *regs)
1525 {
1526 	const int field = 2 * sizeof(unsigned long);
1527 	int multi_match = regs->cp0_status & ST0_TS;
1528 	enum ctx_state prev_state;
1529 	mm_segment_t old_fs = get_fs();
1530 
1531 	prev_state = exception_enter();
1532 	show_regs(regs);
1533 
1534 	if (multi_match) {
1535 		pr_err("Index	: %0x\n", read_c0_index());
1536 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1537 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1538 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1539 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1540 		pr_err("Wired   : %0x\n", read_c0_wired());
1541 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1542 		if (cpu_has_htw) {
1543 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1544 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1545 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1546 		}
1547 		pr_err("\n");
1548 		dump_tlb_all();
1549 	}
1550 
1551 	if (!user_mode(regs))
1552 		set_fs(KERNEL_DS);
1553 
1554 	show_code((unsigned int __user *) regs->cp0_epc);
1555 
1556 	set_fs(old_fs);
1557 
1558 	/*
1559 	 * Some chips may have other causes of machine check (e.g. SB1
1560 	 * graduation timer)
1561 	 */
1562 	panic("Caught Machine Check exception - %scaused by multiple "
1563 	      "matching entries in the TLB.",
1564 	      (multi_match) ? "" : "not ");
1565 }
1566 
1567 asmlinkage void do_mt(struct pt_regs *regs)
1568 {
1569 	int subcode;
1570 
1571 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1572 			>> VPECONTROL_EXCPT_SHIFT;
1573 	switch (subcode) {
1574 	case 0:
1575 		printk(KERN_DEBUG "Thread Underflow\n");
1576 		break;
1577 	case 1:
1578 		printk(KERN_DEBUG "Thread Overflow\n");
1579 		break;
1580 	case 2:
1581 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1582 		break;
1583 	case 3:
1584 		printk(KERN_DEBUG "Gating Storage Exception\n");
1585 		break;
1586 	case 4:
1587 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1588 		break;
1589 	case 5:
1590 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1591 		break;
1592 	default:
1593 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1594 			subcode);
1595 		break;
1596 	}
1597 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1598 
1599 	force_sig(SIGILL, current);
1600 }
1601 
1602 
1603 asmlinkage void do_dsp(struct pt_regs *regs)
1604 {
1605 	if (cpu_has_dsp)
1606 		panic("Unexpected DSP exception");
1607 
1608 	force_sig(SIGILL, current);
1609 }
1610 
1611 asmlinkage void do_reserved(struct pt_regs *regs)
1612 {
1613 	/*
1614 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1615 	 * caused by a new unknown cpu type or after another deadly
1616 	 * hard/software error.
1617 	 */
1618 	show_regs(regs);
1619 	panic("Caught reserved exception %ld - should not happen.",
1620 	      (regs->cp0_cause & 0x7f) >> 2);
1621 }
1622 
1623 static int __initdata l1parity = 1;
1624 static int __init nol1parity(char *s)
1625 {
1626 	l1parity = 0;
1627 	return 1;
1628 }
1629 __setup("nol1par", nol1parity);
1630 static int __initdata l2parity = 1;
1631 static int __init nol2parity(char *s)
1632 {
1633 	l2parity = 0;
1634 	return 1;
1635 }
1636 __setup("nol2par", nol2parity);
1637 
1638 /*
1639  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1640  * it different ways.
1641  */
1642 static inline void parity_protection_init(void)
1643 {
1644 	switch (current_cpu_type()) {
1645 	case CPU_24K:
1646 	case CPU_34K:
1647 	case CPU_74K:
1648 	case CPU_1004K:
1649 	case CPU_1074K:
1650 	case CPU_INTERAPTIV:
1651 	case CPU_PROAPTIV:
1652 	case CPU_P5600:
1653 	case CPU_QEMU_GENERIC:
1654 		{
1655 #define ERRCTL_PE	0x80000000
1656 #define ERRCTL_L2P	0x00800000
1657 			unsigned long errctl;
1658 			unsigned int l1parity_present, l2parity_present;
1659 
1660 			errctl = read_c0_ecc();
1661 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1662 
1663 			/* probe L1 parity support */
1664 			write_c0_ecc(errctl | ERRCTL_PE);
1665 			back_to_back_c0_hazard();
1666 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1667 
1668 			/* probe L2 parity support */
1669 			write_c0_ecc(errctl|ERRCTL_L2P);
1670 			back_to_back_c0_hazard();
1671 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1672 
1673 			if (l1parity_present && l2parity_present) {
1674 				if (l1parity)
1675 					errctl |= ERRCTL_PE;
1676 				if (l1parity ^ l2parity)
1677 					errctl |= ERRCTL_L2P;
1678 			} else if (l1parity_present) {
1679 				if (l1parity)
1680 					errctl |= ERRCTL_PE;
1681 			} else if (l2parity_present) {
1682 				if (l2parity)
1683 					errctl |= ERRCTL_L2P;
1684 			} else {
1685 				/* No parity available */
1686 			}
1687 
1688 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1689 
1690 			write_c0_ecc(errctl);
1691 			back_to_back_c0_hazard();
1692 			errctl = read_c0_ecc();
1693 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1694 
1695 			if (l1parity_present)
1696 				printk(KERN_INFO "Cache parity protection %sabled\n",
1697 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1698 
1699 			if (l2parity_present) {
1700 				if (l1parity_present && l1parity)
1701 					errctl ^= ERRCTL_L2P;
1702 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1703 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1704 			}
1705 		}
1706 		break;
1707 
1708 	case CPU_5KC:
1709 	case CPU_5KE:
1710 	case CPU_LOONGSON1:
1711 		write_c0_ecc(0x80000000);
1712 		back_to_back_c0_hazard();
1713 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1714 		printk(KERN_INFO "Cache parity protection %sabled\n",
1715 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1716 		break;
1717 	case CPU_20KC:
1718 	case CPU_25KF:
1719 		/* Clear the DE bit (bit 16) in the c0_status register. */
1720 		printk(KERN_INFO "Enable cache parity protection for "
1721 		       "MIPS 20KC/25KF CPUs.\n");
1722 		clear_c0_status(ST0_DE);
1723 		break;
1724 	default:
1725 		break;
1726 	}
1727 }
1728 
1729 asmlinkage void cache_parity_error(void)
1730 {
1731 	const int field = 2 * sizeof(unsigned long);
1732 	unsigned int reg_val;
1733 
1734 	/* For the moment, report the problem and hang. */
1735 	printk("Cache error exception:\n");
1736 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1737 	reg_val = read_c0_cacheerr();
1738 	printk("c0_cacheerr == %08x\n", reg_val);
1739 
1740 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1741 	       reg_val & (1<<30) ? "secondary" : "primary",
1742 	       reg_val & (1<<31) ? "data" : "insn");
1743 	if ((cpu_has_mips_r2_r6) &&
1744 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1745 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1746 			reg_val & (1<<29) ? "ED " : "",
1747 			reg_val & (1<<28) ? "ET " : "",
1748 			reg_val & (1<<27) ? "ES " : "",
1749 			reg_val & (1<<26) ? "EE " : "",
1750 			reg_val & (1<<25) ? "EB " : "",
1751 			reg_val & (1<<24) ? "EI " : "",
1752 			reg_val & (1<<23) ? "E1 " : "",
1753 			reg_val & (1<<22) ? "E0 " : "");
1754 	} else {
1755 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1756 			reg_val & (1<<29) ? "ED " : "",
1757 			reg_val & (1<<28) ? "ET " : "",
1758 			reg_val & (1<<26) ? "EE " : "",
1759 			reg_val & (1<<25) ? "EB " : "",
1760 			reg_val & (1<<24) ? "EI " : "",
1761 			reg_val & (1<<23) ? "E1 " : "",
1762 			reg_val & (1<<22) ? "E0 " : "");
1763 	}
1764 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1765 
1766 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1767 	if (reg_val & (1<<22))
1768 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1769 
1770 	if (reg_val & (1<<23))
1771 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1772 #endif
1773 
1774 	panic("Can't handle the cache error!");
1775 }
1776 
1777 asmlinkage void do_ftlb(void)
1778 {
1779 	const int field = 2 * sizeof(unsigned long);
1780 	unsigned int reg_val;
1781 
1782 	/* For the moment, report the problem and hang. */
1783 	if ((cpu_has_mips_r2_r6) &&
1784 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1785 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1786 		       read_c0_ecc());
1787 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1788 		reg_val = read_c0_cacheerr();
1789 		pr_err("c0_cacheerr == %08x\n", reg_val);
1790 
1791 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1792 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1793 		} else {
1794 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 			       reg_val & (1<<30) ? "secondary" : "primary",
1796 			       reg_val & (1<<31) ? "data" : "insn");
1797 		}
1798 	} else {
1799 		pr_err("FTLB error exception\n");
1800 	}
1801 	/* Just print the cacheerr bits for now */
1802 	cache_parity_error();
1803 }
1804 
1805 /*
1806  * SDBBP EJTAG debug exception handler.
1807  * We skip the instruction and return to the next instruction.
1808  */
1809 void ejtag_exception_handler(struct pt_regs *regs)
1810 {
1811 	const int field = 2 * sizeof(unsigned long);
1812 	unsigned long depc, old_epc, old_ra;
1813 	unsigned int debug;
1814 
1815 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1816 	depc = read_c0_depc();
1817 	debug = read_c0_debug();
1818 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1819 	if (debug & 0x80000000) {
1820 		/*
1821 		 * In branch delay slot.
1822 		 * We cheat a little bit here and use EPC to calculate the
1823 		 * debug return address (DEPC). EPC is restored after the
1824 		 * calculation.
1825 		 */
1826 		old_epc = regs->cp0_epc;
1827 		old_ra = regs->regs[31];
1828 		regs->cp0_epc = depc;
1829 		compute_return_epc(regs);
1830 		depc = regs->cp0_epc;
1831 		regs->cp0_epc = old_epc;
1832 		regs->regs[31] = old_ra;
1833 	} else
1834 		depc += 4;
1835 	write_c0_depc(depc);
1836 
1837 #if 0
1838 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1839 	write_c0_debug(debug | 0x100);
1840 #endif
1841 }
1842 
1843 /*
1844  * NMI exception handler.
1845  * No lock; only written during early bootup by CPU 0.
1846  */
1847 static RAW_NOTIFIER_HEAD(nmi_chain);
1848 
1849 int register_nmi_notifier(struct notifier_block *nb)
1850 {
1851 	return raw_notifier_chain_register(&nmi_chain, nb);
1852 }
1853 
1854 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1855 {
1856 	char str[100];
1857 
1858 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1859 	bust_spinlocks(1);
1860 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1861 		 smp_processor_id(), regs->cp0_epc);
1862 	regs->cp0_epc = read_c0_errorepc();
1863 	die(str, regs);
1864 }
1865 
1866 #define VECTORSPACING 0x100	/* for EI/VI mode */
1867 
1868 unsigned long ebase;
1869 unsigned long exception_handlers[32];
1870 unsigned long vi_handlers[64];
1871 
1872 void __init *set_except_vector(int n, void *addr)
1873 {
1874 	unsigned long handler = (unsigned long) addr;
1875 	unsigned long old_handler;
1876 
1877 #ifdef CONFIG_CPU_MICROMIPS
1878 	/*
1879 	 * Only the TLB handlers are cache aligned with an even
1880 	 * address. All other handlers are on an odd address and
1881 	 * require no modification. Otherwise, MIPS32 mode will
1882 	 * be entered when handling any TLB exceptions. That
1883 	 * would be bad...since we must stay in microMIPS mode.
1884 	 */
1885 	if (!(handler & 0x1))
1886 		handler |= 1;
1887 #endif
1888 	old_handler = xchg(&exception_handlers[n], handler);
1889 
1890 	if (n == 0 && cpu_has_divec) {
1891 #ifdef CONFIG_CPU_MICROMIPS
1892 		unsigned long jump_mask = ~((1 << 27) - 1);
1893 #else
1894 		unsigned long jump_mask = ~((1 << 28) - 1);
1895 #endif
1896 		u32 *buf = (u32 *)(ebase + 0x200);
1897 		unsigned int k0 = 26;
1898 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1899 			uasm_i_j(&buf, handler & ~jump_mask);
1900 			uasm_i_nop(&buf);
1901 		} else {
1902 			UASM_i_LA(&buf, k0, handler);
1903 			uasm_i_jr(&buf, k0);
1904 			uasm_i_nop(&buf);
1905 		}
1906 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1907 	}
1908 	return (void *)old_handler;
1909 }
1910 
1911 static void do_default_vi(void)
1912 {
1913 	show_regs(get_irq_regs());
1914 	panic("Caught unexpected vectored interrupt.");
1915 }
1916 
1917 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1918 {
1919 	unsigned long handler;
1920 	unsigned long old_handler = vi_handlers[n];
1921 	int srssets = current_cpu_data.srsets;
1922 	u16 *h;
1923 	unsigned char *b;
1924 
1925 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1926 
1927 	if (addr == NULL) {
1928 		handler = (unsigned long) do_default_vi;
1929 		srs = 0;
1930 	} else
1931 		handler = (unsigned long) addr;
1932 	vi_handlers[n] = handler;
1933 
1934 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1935 
1936 	if (srs >= srssets)
1937 		panic("Shadow register set %d not supported", srs);
1938 
1939 	if (cpu_has_veic) {
1940 		if (board_bind_eic_interrupt)
1941 			board_bind_eic_interrupt(n, srs);
1942 	} else if (cpu_has_vint) {
1943 		/* SRSMap is only defined if shadow sets are implemented */
1944 		if (srssets > 1)
1945 			change_c0_srsmap(0xf << n*4, srs << n*4);
1946 	}
1947 
1948 	if (srs == 0) {
1949 		/*
1950 		 * If no shadow set is selected then use the default handler
1951 		 * that does normal register saving and standard interrupt exit
1952 		 */
1953 		extern char except_vec_vi, except_vec_vi_lui;
1954 		extern char except_vec_vi_ori, except_vec_vi_end;
1955 		extern char rollback_except_vec_vi;
1956 		char *vec_start = using_rollback_handler() ?
1957 			&rollback_except_vec_vi : &except_vec_vi;
1958 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1959 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1960 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1961 #else
1962 		const int lui_offset = &except_vec_vi_lui - vec_start;
1963 		const int ori_offset = &except_vec_vi_ori - vec_start;
1964 #endif
1965 		const int handler_len = &except_vec_vi_end - vec_start;
1966 
1967 		if (handler_len > VECTORSPACING) {
1968 			/*
1969 			 * Sigh... panicing won't help as the console
1970 			 * is probably not configured :(
1971 			 */
1972 			panic("VECTORSPACING too small");
1973 		}
1974 
1975 		set_handler(((unsigned long)b - ebase), vec_start,
1976 #ifdef CONFIG_CPU_MICROMIPS
1977 				(handler_len - 1));
1978 #else
1979 				handler_len);
1980 #endif
1981 		h = (u16 *)(b + lui_offset);
1982 		*h = (handler >> 16) & 0xffff;
1983 		h = (u16 *)(b + ori_offset);
1984 		*h = (handler & 0xffff);
1985 		local_flush_icache_range((unsigned long)b,
1986 					 (unsigned long)(b+handler_len));
1987 	}
1988 	else {
1989 		/*
1990 		 * In other cases jump directly to the interrupt handler. It
1991 		 * is the handler's responsibility to save registers if required
1992 		 * (eg hi/lo) and return from the exception using "eret".
1993 		 */
1994 		u32 insn;
1995 
1996 		h = (u16 *)b;
1997 		/* j handler */
1998 #ifdef CONFIG_CPU_MICROMIPS
1999 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2000 #else
2001 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2002 #endif
2003 		h[0] = (insn >> 16) & 0xffff;
2004 		h[1] = insn & 0xffff;
2005 		h[2] = 0;
2006 		h[3] = 0;
2007 		local_flush_icache_range((unsigned long)b,
2008 					 (unsigned long)(b+8));
2009 	}
2010 
2011 	return (void *)old_handler;
2012 }
2013 
2014 void *set_vi_handler(int n, vi_handler_t addr)
2015 {
2016 	return set_vi_srs_handler(n, addr, 0);
2017 }
2018 
2019 extern void tlb_init(void);
2020 
2021 /*
2022  * Timer interrupt
2023  */
2024 int cp0_compare_irq;
2025 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2026 int cp0_compare_irq_shift;
2027 
2028 /*
2029  * Performance counter IRQ or -1 if shared with timer
2030  */
2031 int cp0_perfcount_irq;
2032 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2033 
2034 /*
2035  * Fast debug channel IRQ or -1 if not present
2036  */
2037 int cp0_fdc_irq;
2038 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2039 
2040 static int noulri;
2041 
2042 static int __init ulri_disable(char *s)
2043 {
2044 	pr_info("Disabling ulri\n");
2045 	noulri = 1;
2046 
2047 	return 1;
2048 }
2049 __setup("noulri", ulri_disable);
2050 
2051 /* configure STATUS register */
2052 static void configure_status(void)
2053 {
2054 	/*
2055 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2056 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2057 	 * flag that some firmware may have left set and the TS bit (for
2058 	 * IP27).  Set XX for ISA IV code to work.
2059 	 */
2060 	unsigned int status_set = ST0_CU0;
2061 #ifdef CONFIG_64BIT
2062 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2063 #endif
2064 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2065 		status_set |= ST0_XX;
2066 	if (cpu_has_dsp)
2067 		status_set |= ST0_MX;
2068 
2069 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2070 			 status_set);
2071 }
2072 
2073 /* configure HWRENA register */
2074 static void configure_hwrena(void)
2075 {
2076 	unsigned int hwrena = cpu_hwrena_impl_bits;
2077 
2078 	if (cpu_has_mips_r2_r6)
2079 		hwrena |= 0x0000000f;
2080 
2081 	if (!noulri && cpu_has_userlocal)
2082 		hwrena |= (1 << 29);
2083 
2084 	if (hwrena)
2085 		write_c0_hwrena(hwrena);
2086 }
2087 
2088 static void configure_exception_vector(void)
2089 {
2090 	if (cpu_has_veic || cpu_has_vint) {
2091 		unsigned long sr = set_c0_status(ST0_BEV);
2092 		write_c0_ebase(ebase);
2093 		write_c0_status(sr);
2094 		/* Setting vector spacing enables EI/VI mode  */
2095 		change_c0_intctl(0x3e0, VECTORSPACING);
2096 	}
2097 	if (cpu_has_divec) {
2098 		if (cpu_has_mipsmt) {
2099 			unsigned int vpflags = dvpe();
2100 			set_c0_cause(CAUSEF_IV);
2101 			evpe(vpflags);
2102 		} else
2103 			set_c0_cause(CAUSEF_IV);
2104 	}
2105 }
2106 
2107 void per_cpu_trap_init(bool is_boot_cpu)
2108 {
2109 	unsigned int cpu = smp_processor_id();
2110 
2111 	configure_status();
2112 	configure_hwrena();
2113 
2114 	configure_exception_vector();
2115 
2116 	/*
2117 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2118 	 *
2119 	 *  o read IntCtl.IPTI to determine the timer interrupt
2120 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2121 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2122 	 */
2123 	if (cpu_has_mips_r2_r6) {
2124 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2125 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2126 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2127 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2128 		if (!cp0_fdc_irq)
2129 			cp0_fdc_irq = -1;
2130 
2131 	} else {
2132 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134 		cp0_perfcount_irq = -1;
2135 		cp0_fdc_irq = -1;
2136 	}
2137 
2138 	if (!cpu_data[cpu].asid_cache)
2139 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2140 
2141 	atomic_inc(&init_mm.mm_count);
2142 	current->active_mm = &init_mm;
2143 	BUG_ON(current->mm);
2144 	enter_lazy_tlb(&init_mm, current);
2145 
2146 	/* Boot CPU's cache setup in setup_arch(). */
2147 	if (!is_boot_cpu)
2148 		cpu_cache_init();
2149 	tlb_init();
2150 	TLBMISS_HANDLER_SETUP();
2151 }
2152 
2153 /* Install CPU exception handler */
2154 void set_handler(unsigned long offset, void *addr, unsigned long size)
2155 {
2156 #ifdef CONFIG_CPU_MICROMIPS
2157 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2158 #else
2159 	memcpy((void *)(ebase + offset), addr, size);
2160 #endif
2161 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2162 }
2163 
2164 static char panic_null_cerr[] =
2165 	"Trying to set NULL cache error exception handler";
2166 
2167 /*
2168  * Install uncached CPU exception handler.
2169  * This is suitable only for the cache error exception which is the only
2170  * exception handler that is being run uncached.
2171  */
2172 void set_uncached_handler(unsigned long offset, void *addr,
2173 	unsigned long size)
2174 {
2175 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2176 
2177 	if (!addr)
2178 		panic(panic_null_cerr);
2179 
2180 	memcpy((void *)(uncached_ebase + offset), addr, size);
2181 }
2182 
2183 static int __initdata rdhwr_noopt;
2184 static int __init set_rdhwr_noopt(char *str)
2185 {
2186 	rdhwr_noopt = 1;
2187 	return 1;
2188 }
2189 
2190 __setup("rdhwr_noopt", set_rdhwr_noopt);
2191 
2192 void __init trap_init(void)
2193 {
2194 	extern char except_vec3_generic;
2195 	extern char except_vec4;
2196 	extern char except_vec3_r4000;
2197 	unsigned long i;
2198 
2199 	check_wait();
2200 
2201 	if (cpu_has_veic || cpu_has_vint) {
2202 		unsigned long size = 0x200 + VECTORSPACING*64;
2203 		ebase = (unsigned long)
2204 			__alloc_bootmem(size, 1 << fls(size), 0);
2205 	} else {
2206 #ifdef CONFIG_KVM_GUEST
2207 #define KVM_GUEST_KSEG0     0x40000000
2208         ebase = KVM_GUEST_KSEG0;
2209 #else
2210         ebase = CKSEG0;
2211 #endif
2212 		if (cpu_has_mips_r2_r6)
2213 			ebase += (read_c0_ebase() & 0x3ffff000);
2214 	}
2215 
2216 	if (cpu_has_mmips) {
2217 		unsigned int config3 = read_c0_config3();
2218 
2219 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2220 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2221 		else
2222 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2223 	}
2224 
2225 	if (board_ebase_setup)
2226 		board_ebase_setup();
2227 	per_cpu_trap_init(true);
2228 
2229 	/*
2230 	 * Copy the generic exception handlers to their final destination.
2231 	 * This will be overriden later as suitable for a particular
2232 	 * configuration.
2233 	 */
2234 	set_handler(0x180, &except_vec3_generic, 0x80);
2235 
2236 	/*
2237 	 * Setup default vectors
2238 	 */
2239 	for (i = 0; i <= 31; i++)
2240 		set_except_vector(i, handle_reserved);
2241 
2242 	/*
2243 	 * Copy the EJTAG debug exception vector handler code to it's final
2244 	 * destination.
2245 	 */
2246 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2247 		board_ejtag_handler_setup();
2248 
2249 	/*
2250 	 * Only some CPUs have the watch exceptions.
2251 	 */
2252 	if (cpu_has_watch)
2253 		set_except_vector(23, handle_watch);
2254 
2255 	/*
2256 	 * Initialise interrupt handlers
2257 	 */
2258 	if (cpu_has_veic || cpu_has_vint) {
2259 		int nvec = cpu_has_veic ? 64 : 8;
2260 		for (i = 0; i < nvec; i++)
2261 			set_vi_handler(i, NULL);
2262 	}
2263 	else if (cpu_has_divec)
2264 		set_handler(0x200, &except_vec4, 0x8);
2265 
2266 	/*
2267 	 * Some CPUs can enable/disable for cache parity detection, but does
2268 	 * it different ways.
2269 	 */
2270 	parity_protection_init();
2271 
2272 	/*
2273 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2274 	 * by external hardware.  Therefore these two exceptions
2275 	 * may have board specific handlers.
2276 	 */
2277 	if (board_be_init)
2278 		board_be_init();
2279 
2280 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2281 						      : handle_int);
2282 	set_except_vector(1, handle_tlbm);
2283 	set_except_vector(2, handle_tlbl);
2284 	set_except_vector(3, handle_tlbs);
2285 
2286 	set_except_vector(4, handle_adel);
2287 	set_except_vector(5, handle_ades);
2288 
2289 	set_except_vector(6, handle_ibe);
2290 	set_except_vector(7, handle_dbe);
2291 
2292 	set_except_vector(8, handle_sys);
2293 	set_except_vector(9, handle_bp);
2294 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2295 			  (cpu_has_vtag_icache ?
2296 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2297 	set_except_vector(11, handle_cpu);
2298 	set_except_vector(12, handle_ov);
2299 	set_except_vector(13, handle_tr);
2300 	set_except_vector(14, handle_msa_fpe);
2301 
2302 	if (current_cpu_type() == CPU_R6000 ||
2303 	    current_cpu_type() == CPU_R6000A) {
2304 		/*
2305 		 * The R6000 is the only R-series CPU that features a machine
2306 		 * check exception (similar to the R4000 cache error) and
2307 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2308 		 * written yet.	 Well, anyway there is no R6000 machine on the
2309 		 * current list of targets for Linux/MIPS.
2310 		 * (Duh, crap, there is someone with a triple R6k machine)
2311 		 */
2312 		//set_except_vector(14, handle_mc);
2313 		//set_except_vector(15, handle_ndc);
2314 	}
2315 
2316 
2317 	if (board_nmi_handler_setup)
2318 		board_nmi_handler_setup();
2319 
2320 	if (cpu_has_fpu && !cpu_has_nofpuex)
2321 		set_except_vector(15, handle_fpe);
2322 
2323 	set_except_vector(16, handle_ftlb);
2324 
2325 	if (cpu_has_rixiex) {
2326 		set_except_vector(19, tlb_do_page_fault_0);
2327 		set_except_vector(20, tlb_do_page_fault_0);
2328 	}
2329 
2330 	set_except_vector(21, handle_msa);
2331 	set_except_vector(22, handle_mdmx);
2332 
2333 	if (cpu_has_mcheck)
2334 		set_except_vector(24, handle_mcheck);
2335 
2336 	if (cpu_has_mipsmt)
2337 		set_except_vector(25, handle_mt);
2338 
2339 	set_except_vector(26, handle_dsp);
2340 
2341 	if (board_cache_error_setup)
2342 		board_cache_error_setup();
2343 
2344 	if (cpu_has_vce)
2345 		/* Special exception: R4[04]00 uses also the divec space. */
2346 		set_handler(0x180, &except_vec3_r4000, 0x100);
2347 	else if (cpu_has_4kex)
2348 		set_handler(0x180, &except_vec3_generic, 0x80);
2349 	else
2350 		set_handler(0x080, &except_vec3_generic, 0x80);
2351 
2352 	local_flush_icache_range(ebase, ebase + 0x400);
2353 
2354 	sort_extable(__start___dbe_table, __stop___dbe_table);
2355 
2356 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2357 }
2358 
2359 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2360 			    void *v)
2361 {
2362 	switch (cmd) {
2363 	case CPU_PM_ENTER_FAILED:
2364 	case CPU_PM_EXIT:
2365 		configure_status();
2366 		configure_hwrena();
2367 		configure_exception_vector();
2368 
2369 		/* Restore register with CPU number for TLB handlers */
2370 		TLBMISS_HANDLER_RESTORE();
2371 
2372 		break;
2373 	}
2374 
2375 	return NOTIFY_OK;
2376 }
2377 
2378 static struct notifier_block trap_pm_notifier_block = {
2379 	.notifier_call = trap_pm_notifier,
2380 };
2381 
2382 static int __init trap_pm_init(void)
2383 {
2384 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2385 }
2386 arch_initcall(trap_pm_init);
2387