xref: /linux/arch/mips/kernel/smp-bmips.c (revision 3503d56cc7233ced602e38a4c13caa64f00ab2aa)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40 
41 static int __maybe_unused max_cpus = 1;
42 
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48 
49 #define RESET_FROM_KSEG0		0x80080800
50 #define RESET_FROM_KSEG1		0xa0080800
51 
52 static void bmips_set_reset_vec(int cpu, u32 val);
53 
54 #ifdef CONFIG_SMP
55 
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59 
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64 
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
68 
69 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
73 
74 static void __init bmips_smp_setup(void)
75 {
76 	int i, cpu = 1, boot_cpu = 0;
77 	int cpu_hw_intr;
78 
79 	switch (current_cpu_type()) {
80 	case CPU_BMIPS4350:
81 	case CPU_BMIPS4380:
82 		/* arbitration priority */
83 		clear_c0_brcm_cmt_ctrl(0x30);
84 
85 		/* NBK and weak order flags */
86 		set_c0_brcm_config_0(0x30000);
87 
88 		/* Find out if we are running on TP0 or TP1 */
89 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90 
91 		/*
92 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 		 * thread
94 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 		 */
97 		if (boot_cpu == 0)
98 			cpu_hw_intr = 0x02;
99 		else
100 			cpu_hw_intr = 0x1d;
101 
102 		change_c0_brcm_cmt_intr(0xf8018000,
103 					(cpu_hw_intr << 27) | (0x03 << 15));
104 
105 		/* single core, 2 threads (2 pipelines) */
106 		max_cpus = 2;
107 
108 		break;
109 	case CPU_BMIPS5000:
110 		/* enable raceless SW interrupts */
111 		set_c0_brcm_config(0x03 << 22);
112 
113 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115 
116 		/* N cores, 2 threads per core */
117 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118 
119 		/* clear any pending SW interrupts */
120 		for (i = 0; i < max_cpus; i++) {
121 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 		}
124 
125 		break;
126 	default:
127 		max_cpus = 1;
128 	}
129 
130 	if (!bmips_smp_enabled)
131 		max_cpus = 1;
132 
133 	/* this can be overridden by the BSP */
134 	if (!board_ebase_setup)
135 		board_ebase_setup = &bmips_ebase_setup;
136 
137 	__cpu_number_map[boot_cpu] = 0;
138 	__cpu_logical_map[0] = boot_cpu;
139 
140 	for (i = 0; i < max_cpus; i++) {
141 		if (i != boot_cpu) {
142 			__cpu_number_map[i] = cpu;
143 			__cpu_logical_map[cpu] = i;
144 			cpu++;
145 		}
146 		set_cpu_possible(i, 1);
147 		set_cpu_present(i, 1);
148 	}
149 }
150 
151 /*
152  * IPI IRQ setup - runs on CPU0
153  */
154 static void bmips_prepare_cpus(unsigned int max_cpus)
155 {
156 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157 
158 	switch (current_cpu_type()) {
159 	case CPU_BMIPS4350:
160 	case CPU_BMIPS4380:
161 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162 		break;
163 	case CPU_BMIPS5000:
164 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165 		break;
166 	default:
167 		return;
168 	}
169 
170 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
171 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
172 		panic("Can't request IPI0 interrupt");
173 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
174 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
175 		panic("Can't request IPI1 interrupt");
176 }
177 
178 /*
179  * Tell the hardware to boot CPUx - runs on CPU0
180  */
181 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
182 {
183 	bmips_smp_boot_sp = __KSTK_TOS(idle);
184 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185 	mb();
186 
187 	/*
188 	 * Initial boot sequence for secondary CPU:
189 	 *   bmips_reset_nmi_vec @ a000_0000 ->
190 	 *   bmips_smp_entry ->
191 	 *   plat_wired_tlb_setup (cached function call; optional) ->
192 	 *   start_secondary (cached jump)
193 	 *
194 	 * Warm restart sequence:
195 	 *   play_dead WAIT loop ->
196 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197 	 *   eret to play_dead ->
198 	 *   bmips_secondary_reentry ->
199 	 *   start_secondary
200 	 */
201 
202 	pr_info("SMP: Booting CPU%d...\n", cpu);
203 
204 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205 		/* kseg1 might not exist if this CPU enabled XKS01 */
206 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207 
208 		switch (current_cpu_type()) {
209 		case CPU_BMIPS4350:
210 		case CPU_BMIPS4380:
211 			bmips43xx_send_ipi_single(cpu, 0);
212 			break;
213 		case CPU_BMIPS5000:
214 			bmips5000_send_ipi_single(cpu, 0);
215 			break;
216 		}
217 	} else {
218 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219 
220 		switch (current_cpu_type()) {
221 		case CPU_BMIPS4350:
222 		case CPU_BMIPS4380:
223 			/* Reset slave TP1 if booting from TP0 */
224 			if (cpu_logical_map(cpu) == 1)
225 				set_c0_brcm_cmt_ctrl(0x01);
226 			break;
227 		case CPU_BMIPS5000:
228 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229 			break;
230 		}
231 		cpumask_set_cpu(cpu, &bmips_booted_mask);
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Early setup - runs on secondary CPU after cache probe
239  */
240 static void bmips_init_secondary(void)
241 {
242 	switch (current_cpu_type()) {
243 	case CPU_BMIPS4350:
244 	case CPU_BMIPS4380:
245 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
246 		break;
247 	case CPU_BMIPS5000:
248 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
249 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
250 		break;
251 	}
252 }
253 
254 /*
255  * Late setup - runs on secondary CPU before entering the idle loop
256  */
257 static void bmips_smp_finish(void)
258 {
259 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
260 
261 	/* make sure there won't be a timer interrupt for a little while */
262 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
263 
264 	irq_enable_hazard();
265 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
266 	irq_enable_hazard();
267 }
268 
269 /*
270  * BMIPS5000 raceless IPIs
271  *
272  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
273  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
274  * IPI1 is used for SMP_CALL_FUNCTION
275  */
276 
277 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
278 {
279 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
280 }
281 
282 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
283 {
284 	int action = irq - IPI0_IRQ;
285 
286 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
287 
288 	if (action == 0)
289 		scheduler_ipi();
290 	else
291 		generic_smp_call_function_interrupt();
292 
293 	return IRQ_HANDLED;
294 }
295 
296 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
297 	unsigned int action)
298 {
299 	unsigned int i;
300 
301 	for_each_cpu(i, mask)
302 		bmips5000_send_ipi_single(i, action);
303 }
304 
305 /*
306  * BMIPS43xx racey IPIs
307  *
308  * We use one inbound SW IRQ for each CPU.
309  *
310  * A spinlock must be held in order to keep CPUx from accidentally clearing
311  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
312  * same spinlock is used to protect the action masks.
313  */
314 
315 static DEFINE_SPINLOCK(ipi_lock);
316 static DEFINE_PER_CPU(int, ipi_action_mask);
317 
318 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
319 {
320 	unsigned long flags;
321 
322 	spin_lock_irqsave(&ipi_lock, flags);
323 	set_c0_cause(cpu ? C_SW1 : C_SW0);
324 	per_cpu(ipi_action_mask, cpu) |= action;
325 	irq_enable_hazard();
326 	spin_unlock_irqrestore(&ipi_lock, flags);
327 }
328 
329 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
330 {
331 	unsigned long flags;
332 	int action, cpu = irq - IPI0_IRQ;
333 
334 	spin_lock_irqsave(&ipi_lock, flags);
335 	action = __this_cpu_read(ipi_action_mask);
336 	per_cpu(ipi_action_mask, cpu) = 0;
337 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
338 	spin_unlock_irqrestore(&ipi_lock, flags);
339 
340 	if (action & SMP_RESCHEDULE_YOURSELF)
341 		scheduler_ipi();
342 	if (action & SMP_CALL_FUNCTION)
343 		generic_smp_call_function_interrupt();
344 
345 	return IRQ_HANDLED;
346 }
347 
348 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
349 	unsigned int action)
350 {
351 	unsigned int i;
352 
353 	for_each_cpu(i, mask)
354 		bmips43xx_send_ipi_single(i, action);
355 }
356 
357 #ifdef CONFIG_HOTPLUG_CPU
358 
359 static int bmips_cpu_disable(void)
360 {
361 	unsigned int cpu = smp_processor_id();
362 
363 	if (cpu == 0)
364 		return -EBUSY;
365 
366 	pr_info("SMP: CPU%d is offline\n", cpu);
367 
368 	set_cpu_online(cpu, false);
369 	calculate_cpu_foreign_map();
370 	irq_cpu_offline();
371 	clear_c0_status(IE_IRQ5);
372 
373 	local_flush_tlb_all();
374 	local_flush_icache_range(0, ~0);
375 
376 	return 0;
377 }
378 
379 static void bmips_cpu_die(unsigned int cpu)
380 {
381 }
382 
383 void __ref play_dead(void)
384 {
385 	idle_task_exit();
386 
387 	/* flush data cache */
388 	_dma_cache_wback_inv(0, ~0);
389 
390 	/*
391 	 * Wakeup is on SW0 or SW1; disable everything else
392 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
393 	 * IRQ handlers; this clears ST0_IE and returns immediately.
394 	 */
395 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
396 	change_c0_status(
397 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
398 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
399 	irq_disable_hazard();
400 
401 	/*
402 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
403 	 * back to start_secondary()
404 	 */
405 	__asm__ __volatile__(
406 	"	wait\n"
407 	"	j	bmips_secondary_reentry\n"
408 	: : : "memory");
409 }
410 
411 #endif /* CONFIG_HOTPLUG_CPU */
412 
413 const struct plat_smp_ops bmips43xx_smp_ops = {
414 	.smp_setup		= bmips_smp_setup,
415 	.prepare_cpus		= bmips_prepare_cpus,
416 	.boot_secondary		= bmips_boot_secondary,
417 	.smp_finish		= bmips_smp_finish,
418 	.init_secondary		= bmips_init_secondary,
419 	.send_ipi_single	= bmips43xx_send_ipi_single,
420 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
421 #ifdef CONFIG_HOTPLUG_CPU
422 	.cpu_disable		= bmips_cpu_disable,
423 	.cpu_die		= bmips_cpu_die,
424 #endif
425 #ifdef CONFIG_KEXEC
426 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
427 #endif
428 };
429 
430 const struct plat_smp_ops bmips5000_smp_ops = {
431 	.smp_setup		= bmips_smp_setup,
432 	.prepare_cpus		= bmips_prepare_cpus,
433 	.boot_secondary		= bmips_boot_secondary,
434 	.smp_finish		= bmips_smp_finish,
435 	.init_secondary		= bmips_init_secondary,
436 	.send_ipi_single	= bmips5000_send_ipi_single,
437 	.send_ipi_mask		= bmips5000_send_ipi_mask,
438 #ifdef CONFIG_HOTPLUG_CPU
439 	.cpu_disable		= bmips_cpu_disable,
440 	.cpu_die		= bmips_cpu_die,
441 #endif
442 #ifdef CONFIG_KEXEC
443 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
444 #endif
445 };
446 
447 #endif /* CONFIG_SMP */
448 
449 /***********************************************************************
450  * BMIPS vector relocation
451  * This is primarily used for SMP boot, but it is applicable to some
452  * UP BMIPS systems as well.
453  ***********************************************************************/
454 
455 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
456 {
457 	memcpy((void *)dst, start, end - start);
458 	dma_cache_wback(dst, end - start);
459 	local_flush_icache_range(dst, dst + (end - start));
460 	instruction_hazard();
461 }
462 
463 static inline void bmips_nmi_handler_setup(void)
464 {
465 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
466 		bmips_reset_nmi_vec_end);
467 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
468 		bmips_smp_int_vec_end);
469 }
470 
471 struct reset_vec_info {
472 	int cpu;
473 	u32 val;
474 };
475 
476 static void bmips_set_reset_vec_remote(void *vinfo)
477 {
478 	struct reset_vec_info *info = vinfo;
479 	int shift = info->cpu & 0x01 ? 16 : 0;
480 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
481 
482 	preempt_disable();
483 	if (smp_processor_id() > 0) {
484 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
485 					 info, 1);
486 	} else {
487 		if (info->cpu & 0x02) {
488 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
489 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
490 			bmips_read_zscm_reg(0xa0);
491 		} else {
492 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
493 					      (val << shift));
494 		}
495 	}
496 	preempt_enable();
497 }
498 
499 static void bmips_set_reset_vec(int cpu, u32 val)
500 {
501 	struct reset_vec_info info;
502 
503 	if (current_cpu_type() == CPU_BMIPS5000) {
504 		/* this needs to run from CPU0 (which is always online) */
505 		info.cpu = cpu;
506 		info.val = val;
507 		bmips_set_reset_vec_remote(&info);
508 	} else {
509 		void __iomem *cbr = BMIPS_GET_CBR();
510 
511 		if (cpu == 0)
512 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
513 		else {
514 			if (current_cpu_type() != CPU_BMIPS4380)
515 				return;
516 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
517 		}
518 	}
519 	__sync();
520 	back_to_back_c0_hazard();
521 }
522 
523 void bmips_ebase_setup(void)
524 {
525 	unsigned long new_ebase = ebase;
526 
527 	BUG_ON(ebase != CKSEG0);
528 
529 	switch (current_cpu_type()) {
530 	case CPU_BMIPS4350:
531 		/*
532 		 * BMIPS4350 cannot relocate the normal vectors, but it
533 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
534 		 * the relocated BEV=1, IV=0 general exception vector @
535 		 * 0xa000_0380.
536 		 *
537 		 * set_uncached_handler() is used here because:
538 		 *  - CPU1 will run this from uncached space
539 		 *  - None of the cacheflush functions are set up yet
540 		 */
541 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
542 			&bmips_smp_int_vec, 0x80);
543 		__sync();
544 		return;
545 	case CPU_BMIPS3300:
546 	case CPU_BMIPS4380:
547 		/*
548 		 * 0x8000_0000: reset/NMI (initially in kseg1)
549 		 * 0x8000_0400: normal vectors
550 		 */
551 		new_ebase = 0x80000400;
552 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
553 		break;
554 	case CPU_BMIPS5000:
555 		/*
556 		 * 0x8000_0000: reset/NMI (initially in kseg1)
557 		 * 0x8000_1000: normal vectors
558 		 */
559 		new_ebase = 0x80001000;
560 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
561 		write_c0_ebase(new_ebase);
562 		break;
563 	default:
564 		return;
565 	}
566 
567 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
568 	ebase = new_ebase;
569 }
570 
571 asmlinkage void __weak plat_wired_tlb_setup(void)
572 {
573 	/*
574 	 * Called when starting/restarting a secondary CPU.
575 	 * Kernel stacks and other important data might only be accessible
576 	 * once the wired entries are present.
577 	 */
578 }
579 
580 void bmips_cpu_setup(void)
581 {
582 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
583 	u32 __maybe_unused cfg;
584 
585 	switch (current_cpu_type()) {
586 	case CPU_BMIPS3300:
587 		/* Set BIU to async mode */
588 		set_c0_brcm_bus_pll(BIT(22));
589 		__sync();
590 
591 		/* put the BIU back in sync mode */
592 		clear_c0_brcm_bus_pll(BIT(22));
593 
594 		/* clear BHTD to enable branch history table */
595 		clear_c0_brcm_reset(BIT(16));
596 
597 		/* Flush and enable RAC */
598 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
599 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
600 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
601 
602 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
603 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
604 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
605 
606 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
607 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
608 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609 		break;
610 
611 	case CPU_BMIPS4380:
612 		/* CBG workaround for early BMIPS4380 CPUs */
613 		switch (read_c0_prid()) {
614 		case 0x2a040:
615 		case 0x2a042:
616 		case 0x2a044:
617 		case 0x2a060:
618 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
619 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
620 			__raw_readl(cbr + BMIPS_L2_CONFIG);
621 		}
622 
623 		/* clear BHTD to enable branch history table */
624 		clear_c0_brcm_config_0(BIT(21));
625 
626 		/* XI/ROTR enable */
627 		set_c0_brcm_config_0(BIT(23));
628 		set_c0_brcm_cmt_ctrl(BIT(15));
629 		break;
630 
631 	case CPU_BMIPS5000:
632 		/* enable RDHWR, BRDHWR */
633 		set_c0_brcm_config(BIT(17) | BIT(21));
634 
635 		/* Disable JTB */
636 		__asm__ __volatile__(
637 		"	.set	noreorder\n"
638 		"	li	$8, 0x5a455048\n"
639 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
640 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
641 		"	li	$9, 0x00008000\n"
642 		"	or	$8, $8, $9\n"
643 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
644 		"	sync\n"
645 		"	li	$8, 0x0\n"
646 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
647 		"	.set	reorder\n"
648 		: : : "$8", "$9");
649 
650 		/* XI enable */
651 		set_c0_brcm_config(BIT(27));
652 
653 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
654 		__asm__ __volatile__(
655 		"	li	$8, 0x5a455048\n"
656 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
657 		"	nop; nop; nop\n"
658 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
659 		"	lui	$9, 0x0100\n"
660 		"	or	$8, $9\n"
661 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
662 		: : : "$8", "$9");
663 		break;
664 	}
665 }
666