xref: /linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision cbdb1f163af2bb90d01be1f0263df1d8d5c9d9d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 struct host_mmu host_mmu;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30 
31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 	hyp_spin_lock(&vm->lock);
34 	current_vm = vm;
35 }
36 
37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 	current_vm = NULL;
40 	hyp_spin_unlock(&vm->lock);
41 }
42 
43 static void host_lock_component(void)
44 {
45 	hyp_spin_lock(&host_mmu.lock);
46 }
47 
48 static void host_unlock_component(void)
49 {
50 	hyp_spin_unlock(&host_mmu.lock);
51 }
52 
53 static void hyp_lock_component(void)
54 {
55 	hyp_spin_lock(&pkvm_pgd_lock);
56 }
57 
58 static void hyp_unlock_component(void)
59 {
60 	hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62 
63 static void *host_s2_zalloc_pages_exact(size_t size)
64 {
65 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
66 
67 	hyp_split_page(hyp_virt_to_page(addr));
68 
69 	/*
70 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
71 	 * so there should be no need to free any of the tail pages to make the
72 	 * allocation exact.
73 	 */
74 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
75 
76 	return addr;
77 }
78 
79 static void *host_s2_zalloc_page(void *pool)
80 {
81 	return hyp_alloc_pages(pool, 0);
82 }
83 
84 static void host_s2_get_page(void *addr)
85 {
86 	hyp_get_page(&host_s2_pool, addr);
87 }
88 
89 static void host_s2_put_page(void *addr)
90 {
91 	hyp_put_page(&host_s2_pool, addr);
92 }
93 
94 static void host_s2_free_removed_table(void *addr, u32 level)
95 {
96 	kvm_pgtable_stage2_free_removed(&host_mmu.mm_ops, addr, level);
97 }
98 
99 static int prepare_s2_pool(void *pgt_pool_base)
100 {
101 	unsigned long nr_pages, pfn;
102 	int ret;
103 
104 	pfn = hyp_virt_to_pfn(pgt_pool_base);
105 	nr_pages = host_s2_pgtable_pages();
106 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
107 	if (ret)
108 		return ret;
109 
110 	host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
111 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
112 		.zalloc_page = host_s2_zalloc_page,
113 		.free_removed_table = host_s2_free_removed_table,
114 		.phys_to_virt = hyp_phys_to_virt,
115 		.virt_to_phys = hyp_virt_to_phys,
116 		.page_count = hyp_page_count,
117 		.get_page = host_s2_get_page,
118 		.put_page = host_s2_put_page,
119 	};
120 
121 	return 0;
122 }
123 
124 static void prepare_host_vtcr(void)
125 {
126 	u32 parange, phys_shift;
127 
128 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
129 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
130 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
131 
132 	host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
133 					  id_aa64mmfr1_el1_sys_val, phys_shift);
134 }
135 
136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
137 
138 int kvm_host_prepare_stage2(void *pgt_pool_base)
139 {
140 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
141 	int ret;
142 
143 	prepare_host_vtcr();
144 	hyp_spin_lock_init(&host_mmu.lock);
145 	mmu->arch = &host_mmu.arch;
146 
147 	ret = prepare_s2_pool(pgt_pool_base);
148 	if (ret)
149 		return ret;
150 
151 	ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
152 					&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
153 					host_stage2_force_pte_cb);
154 	if (ret)
155 		return ret;
156 
157 	mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
158 	mmu->pgt = &host_mmu.pgt;
159 	atomic64_set(&mmu->vmid.id, 0);
160 
161 	return 0;
162 }
163 
164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
165 				      enum kvm_pgtable_prot prot)
166 {
167 	return true;
168 }
169 
170 static void *guest_s2_zalloc_pages_exact(size_t size)
171 {
172 	void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
173 
174 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
175 	hyp_split_page(hyp_virt_to_page(addr));
176 
177 	return addr;
178 }
179 
180 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
181 {
182 	u8 order = get_order(size);
183 	unsigned int i;
184 
185 	for (i = 0; i < (1 << order); i++)
186 		hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
187 }
188 
189 static void *guest_s2_zalloc_page(void *mc)
190 {
191 	struct hyp_page *p;
192 	void *addr;
193 
194 	addr = hyp_alloc_pages(&current_vm->pool, 0);
195 	if (addr)
196 		return addr;
197 
198 	addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
199 	if (!addr)
200 		return addr;
201 
202 	memset(addr, 0, PAGE_SIZE);
203 	p = hyp_virt_to_page(addr);
204 	memset(p, 0, sizeof(*p));
205 	p->refcount = 1;
206 
207 	return addr;
208 }
209 
210 static void guest_s2_get_page(void *addr)
211 {
212 	hyp_get_page(&current_vm->pool, addr);
213 }
214 
215 static void guest_s2_put_page(void *addr)
216 {
217 	hyp_put_page(&current_vm->pool, addr);
218 }
219 
220 static void clean_dcache_guest_page(void *va, size_t size)
221 {
222 	__clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
223 	hyp_fixmap_unmap();
224 }
225 
226 static void invalidate_icache_guest_page(void *va, size_t size)
227 {
228 	__invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
229 	hyp_fixmap_unmap();
230 }
231 
232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
233 {
234 	struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
235 	unsigned long nr_pages;
236 	int ret;
237 
238 	nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
239 	ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
240 	if (ret)
241 		return ret;
242 
243 	hyp_spin_lock_init(&vm->lock);
244 	vm->mm_ops = (struct kvm_pgtable_mm_ops) {
245 		.zalloc_pages_exact	= guest_s2_zalloc_pages_exact,
246 		.free_pages_exact	= guest_s2_free_pages_exact,
247 		.zalloc_page		= guest_s2_zalloc_page,
248 		.phys_to_virt		= hyp_phys_to_virt,
249 		.virt_to_phys		= hyp_virt_to_phys,
250 		.page_count		= hyp_page_count,
251 		.get_page		= guest_s2_get_page,
252 		.put_page		= guest_s2_put_page,
253 		.dcache_clean_inval_poc	= clean_dcache_guest_page,
254 		.icache_inval_pou	= invalidate_icache_guest_page,
255 	};
256 
257 	guest_lock_component(vm);
258 	ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
259 					guest_stage2_force_pte_cb);
260 	guest_unlock_component(vm);
261 	if (ret)
262 		return ret;
263 
264 	vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
265 
266 	return 0;
267 }
268 
269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
270 {
271 	void *addr;
272 
273 	/* Dump all pgtable pages in the hyp_pool */
274 	guest_lock_component(vm);
275 	kvm_pgtable_stage2_destroy(&vm->pgt);
276 	vm->kvm.arch.mmu.pgd_phys = 0ULL;
277 	guest_unlock_component(vm);
278 
279 	/* Drain the hyp_pool into the memcache */
280 	addr = hyp_alloc_pages(&vm->pool, 0);
281 	while (addr) {
282 		memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
283 		push_hyp_memcache(mc, addr, hyp_virt_to_phys);
284 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
285 		addr = hyp_alloc_pages(&vm->pool, 0);
286 	}
287 }
288 
289 int __pkvm_prot_finalize(void)
290 {
291 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
292 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
293 
294 	if (params->hcr_el2 & HCR_VM)
295 		return -EPERM;
296 
297 	params->vttbr = kvm_get_vttbr(mmu);
298 	params->vtcr = host_mmu.arch.vtcr;
299 	params->hcr_el2 |= HCR_VM;
300 	kvm_flush_dcache_to_poc(params, sizeof(*params));
301 
302 	write_sysreg(params->hcr_el2, hcr_el2);
303 	__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
304 
305 	/*
306 	 * Make sure to have an ISB before the TLB maintenance below but only
307 	 * when __load_stage2() doesn't include one already.
308 	 */
309 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
310 
311 	/* Invalidate stale HCR bits that may be cached in TLBs */
312 	__tlbi(vmalls12e1);
313 	dsb(nsh);
314 	isb();
315 
316 	return 0;
317 }
318 
319 static int host_stage2_unmap_dev_all(void)
320 {
321 	struct kvm_pgtable *pgt = &host_mmu.pgt;
322 	struct memblock_region *reg;
323 	u64 addr = 0;
324 	int i, ret;
325 
326 	/* Unmap all non-memory regions to recycle the pages */
327 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
328 		reg = &hyp_memory[i];
329 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
330 		if (ret)
331 			return ret;
332 	}
333 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
334 }
335 
336 struct kvm_mem_range {
337 	u64 start;
338 	u64 end;
339 };
340 
341 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
342 {
343 	int cur, left = 0, right = hyp_memblock_nr;
344 	struct memblock_region *reg;
345 	phys_addr_t end;
346 
347 	range->start = 0;
348 	range->end = ULONG_MAX;
349 
350 	/* The list of memblock regions is sorted, binary search it */
351 	while (left < right) {
352 		cur = (left + right) >> 1;
353 		reg = &hyp_memory[cur];
354 		end = reg->base + reg->size;
355 		if (addr < reg->base) {
356 			right = cur;
357 			range->end = reg->base;
358 		} else if (addr >= end) {
359 			left = cur + 1;
360 			range->start = end;
361 		} else {
362 			range->start = reg->base;
363 			range->end = end;
364 			return reg;
365 		}
366 	}
367 
368 	return NULL;
369 }
370 
371 bool addr_is_memory(phys_addr_t phys)
372 {
373 	struct kvm_mem_range range;
374 
375 	return !!find_mem_range(phys, &range);
376 }
377 
378 static bool addr_is_allowed_memory(phys_addr_t phys)
379 {
380 	struct memblock_region *reg;
381 	struct kvm_mem_range range;
382 
383 	reg = find_mem_range(phys, &range);
384 
385 	return reg && !(reg->flags & MEMBLOCK_NOMAP);
386 }
387 
388 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
389 {
390 	return range->start <= addr && addr < range->end;
391 }
392 
393 static bool range_is_memory(u64 start, u64 end)
394 {
395 	struct kvm_mem_range r;
396 
397 	if (!find_mem_range(start, &r))
398 		return false;
399 
400 	return is_in_mem_range(end - 1, &r);
401 }
402 
403 static inline int __host_stage2_idmap(u64 start, u64 end,
404 				      enum kvm_pgtable_prot prot)
405 {
406 	return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
407 				      prot, &host_s2_pool, 0);
408 }
409 
410 /*
411  * The pool has been provided with enough pages to cover all of memory with
412  * page granularity, but it is difficult to know how much of the MMIO range
413  * we will need to cover upfront, so we may need to 'recycle' the pages if we
414  * run out.
415  */
416 #define host_stage2_try(fn, ...)					\
417 	({								\
418 		int __ret;						\
419 		hyp_assert_lock_held(&host_mmu.lock);			\
420 		__ret = fn(__VA_ARGS__);				\
421 		if (__ret == -ENOMEM) {					\
422 			__ret = host_stage2_unmap_dev_all();		\
423 			if (!__ret)					\
424 				__ret = fn(__VA_ARGS__);		\
425 		}							\
426 		__ret;							\
427 	 })
428 
429 static inline bool range_included(struct kvm_mem_range *child,
430 				  struct kvm_mem_range *parent)
431 {
432 	return parent->start <= child->start && child->end <= parent->end;
433 }
434 
435 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
436 {
437 	struct kvm_mem_range cur;
438 	kvm_pte_t pte;
439 	u32 level;
440 	int ret;
441 
442 	hyp_assert_lock_held(&host_mmu.lock);
443 	ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
444 	if (ret)
445 		return ret;
446 
447 	if (kvm_pte_valid(pte))
448 		return -EAGAIN;
449 
450 	if (pte)
451 		return -EPERM;
452 
453 	do {
454 		u64 granule = kvm_granule_size(level);
455 		cur.start = ALIGN_DOWN(addr, granule);
456 		cur.end = cur.start + granule;
457 		level++;
458 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
459 			!(kvm_level_supports_block_mapping(level) &&
460 			  range_included(&cur, range)));
461 
462 	*range = cur;
463 
464 	return 0;
465 }
466 
467 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
468 			     enum kvm_pgtable_prot prot)
469 {
470 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
471 }
472 
473 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
474 {
475 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
476 			       addr, size, &host_s2_pool, owner_id);
477 }
478 
479 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
480 {
481 	/*
482 	 * Block mappings must be used with care in the host stage-2 as a
483 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
484 	 * an existing block will delete the block under the assumption that
485 	 * mappings in the rest of the block range can always be rebuilt lazily.
486 	 * That assumption is correct for the host stage-2 with RWX mappings
487 	 * targeting memory or RW mappings targeting MMIO ranges (see
488 	 * host_stage2_idmap() below which implements some of the host memory
489 	 * abort logic). However, this is not safe for any other mappings where
490 	 * the host stage-2 page-table is in fact the only place where this
491 	 * state is stored. In all those cases, it is safer to use page-level
492 	 * mappings, hence avoiding to lose the state because of side-effects in
493 	 * kvm_pgtable_stage2_map().
494 	 */
495 	if (range_is_memory(addr, end))
496 		return prot != PKVM_HOST_MEM_PROT;
497 	else
498 		return prot != PKVM_HOST_MMIO_PROT;
499 }
500 
501 static int host_stage2_idmap(u64 addr)
502 {
503 	struct kvm_mem_range range;
504 	bool is_memory = !!find_mem_range(addr, &range);
505 	enum kvm_pgtable_prot prot;
506 	int ret;
507 
508 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
509 
510 	host_lock_component();
511 	ret = host_stage2_adjust_range(addr, &range);
512 	if (ret)
513 		goto unlock;
514 
515 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
516 unlock:
517 	host_unlock_component();
518 
519 	return ret;
520 }
521 
522 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
523 {
524 	struct kvm_vcpu_fault_info fault;
525 	u64 esr, addr;
526 	int ret = 0;
527 
528 	esr = read_sysreg_el2(SYS_ESR);
529 	BUG_ON(!__get_fault_info(esr, &fault));
530 
531 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
532 	ret = host_stage2_idmap(addr);
533 	BUG_ON(ret && ret != -EAGAIN);
534 }
535 
536 struct pkvm_mem_transition {
537 	u64				nr_pages;
538 
539 	struct {
540 		enum pkvm_component_id	id;
541 		/* Address in the initiator's address space */
542 		u64			addr;
543 
544 		union {
545 			struct {
546 				/* Address in the completer's address space */
547 				u64	completer_addr;
548 			} host;
549 			struct {
550 				u64	completer_addr;
551 			} hyp;
552 		};
553 	} initiator;
554 
555 	struct {
556 		enum pkvm_component_id	id;
557 	} completer;
558 };
559 
560 struct pkvm_mem_share {
561 	const struct pkvm_mem_transition	tx;
562 	const enum kvm_pgtable_prot		completer_prot;
563 };
564 
565 struct pkvm_mem_donation {
566 	const struct pkvm_mem_transition	tx;
567 };
568 
569 struct check_walk_data {
570 	enum pkvm_page_state	desired;
571 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
572 };
573 
574 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
575 				      enum kvm_pgtable_walk_flags visit)
576 {
577 	struct check_walk_data *d = ctx->arg;
578 
579 	if (kvm_pte_valid(ctx->old) && !addr_is_allowed_memory(kvm_pte_to_phys(ctx->old)))
580 		return -EINVAL;
581 
582 	return d->get_page_state(ctx->old) == d->desired ? 0 : -EPERM;
583 }
584 
585 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
586 				  struct check_walk_data *data)
587 {
588 	struct kvm_pgtable_walker walker = {
589 		.cb	= __check_page_state_visitor,
590 		.arg	= data,
591 		.flags	= KVM_PGTABLE_WALK_LEAF,
592 	};
593 
594 	return kvm_pgtable_walk(pgt, addr, size, &walker);
595 }
596 
597 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
598 {
599 	if (!kvm_pte_valid(pte) && pte)
600 		return PKVM_NOPAGE;
601 
602 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
603 }
604 
605 static int __host_check_page_state_range(u64 addr, u64 size,
606 					 enum pkvm_page_state state)
607 {
608 	struct check_walk_data d = {
609 		.desired	= state,
610 		.get_page_state	= host_get_page_state,
611 	};
612 
613 	hyp_assert_lock_held(&host_mmu.lock);
614 	return check_page_state_range(&host_mmu.pgt, addr, size, &d);
615 }
616 
617 static int __host_set_page_state_range(u64 addr, u64 size,
618 				       enum pkvm_page_state state)
619 {
620 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
621 
622 	return host_stage2_idmap_locked(addr, size, prot);
623 }
624 
625 static int host_request_owned_transition(u64 *completer_addr,
626 					 const struct pkvm_mem_transition *tx)
627 {
628 	u64 size = tx->nr_pages * PAGE_SIZE;
629 	u64 addr = tx->initiator.addr;
630 
631 	*completer_addr = tx->initiator.host.completer_addr;
632 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
633 }
634 
635 static int host_request_unshare(u64 *completer_addr,
636 				const struct pkvm_mem_transition *tx)
637 {
638 	u64 size = tx->nr_pages * PAGE_SIZE;
639 	u64 addr = tx->initiator.addr;
640 
641 	*completer_addr = tx->initiator.host.completer_addr;
642 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
643 }
644 
645 static int host_initiate_share(u64 *completer_addr,
646 			       const struct pkvm_mem_transition *tx)
647 {
648 	u64 size = tx->nr_pages * PAGE_SIZE;
649 	u64 addr = tx->initiator.addr;
650 
651 	*completer_addr = tx->initiator.host.completer_addr;
652 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
653 }
654 
655 static int host_initiate_unshare(u64 *completer_addr,
656 				 const struct pkvm_mem_transition *tx)
657 {
658 	u64 size = tx->nr_pages * PAGE_SIZE;
659 	u64 addr = tx->initiator.addr;
660 
661 	*completer_addr = tx->initiator.host.completer_addr;
662 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
663 }
664 
665 static int host_initiate_donation(u64 *completer_addr,
666 				  const struct pkvm_mem_transition *tx)
667 {
668 	u8 owner_id = tx->completer.id;
669 	u64 size = tx->nr_pages * PAGE_SIZE;
670 
671 	*completer_addr = tx->initiator.host.completer_addr;
672 	return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
673 }
674 
675 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
676 {
677 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
678 		 tx->initiator.id != PKVM_ID_HYP);
679 }
680 
681 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
682 				 enum pkvm_page_state state)
683 {
684 	u64 size = tx->nr_pages * PAGE_SIZE;
685 
686 	if (__host_ack_skip_pgtable_check(tx))
687 		return 0;
688 
689 	return __host_check_page_state_range(addr, size, state);
690 }
691 
692 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
693 {
694 	return __host_ack_transition(addr, tx, PKVM_NOPAGE);
695 }
696 
697 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
698 {
699 	u64 size = tx->nr_pages * PAGE_SIZE;
700 	u8 host_id = tx->completer.id;
701 
702 	return host_stage2_set_owner_locked(addr, size, host_id);
703 }
704 
705 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
706 {
707 	if (!kvm_pte_valid(pte))
708 		return PKVM_NOPAGE;
709 
710 	return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
711 }
712 
713 static int __hyp_check_page_state_range(u64 addr, u64 size,
714 					enum pkvm_page_state state)
715 {
716 	struct check_walk_data d = {
717 		.desired	= state,
718 		.get_page_state	= hyp_get_page_state,
719 	};
720 
721 	hyp_assert_lock_held(&pkvm_pgd_lock);
722 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
723 }
724 
725 static int hyp_request_donation(u64 *completer_addr,
726 				const struct pkvm_mem_transition *tx)
727 {
728 	u64 size = tx->nr_pages * PAGE_SIZE;
729 	u64 addr = tx->initiator.addr;
730 
731 	*completer_addr = tx->initiator.hyp.completer_addr;
732 	return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
733 }
734 
735 static int hyp_initiate_donation(u64 *completer_addr,
736 				 const struct pkvm_mem_transition *tx)
737 {
738 	u64 size = tx->nr_pages * PAGE_SIZE;
739 	int ret;
740 
741 	*completer_addr = tx->initiator.hyp.completer_addr;
742 	ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
743 	return (ret != size) ? -EFAULT : 0;
744 }
745 
746 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
747 {
748 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
749 		 tx->initiator.id != PKVM_ID_HOST);
750 }
751 
752 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
753 			 enum kvm_pgtable_prot perms)
754 {
755 	u64 size = tx->nr_pages * PAGE_SIZE;
756 
757 	if (perms != PAGE_HYP)
758 		return -EPERM;
759 
760 	if (__hyp_ack_skip_pgtable_check(tx))
761 		return 0;
762 
763 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
764 }
765 
766 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
767 {
768 	u64 size = tx->nr_pages * PAGE_SIZE;
769 
770 	if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
771 		return -EBUSY;
772 
773 	if (__hyp_ack_skip_pgtable_check(tx))
774 		return 0;
775 
776 	return __hyp_check_page_state_range(addr, size,
777 					    PKVM_PAGE_SHARED_BORROWED);
778 }
779 
780 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
781 {
782 	u64 size = tx->nr_pages * PAGE_SIZE;
783 
784 	if (__hyp_ack_skip_pgtable_check(tx))
785 		return 0;
786 
787 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
788 }
789 
790 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
791 			      enum kvm_pgtable_prot perms)
792 {
793 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
794 	enum kvm_pgtable_prot prot;
795 
796 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
797 	return pkvm_create_mappings_locked(start, end, prot);
798 }
799 
800 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
801 {
802 	u64 size = tx->nr_pages * PAGE_SIZE;
803 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
804 
805 	return (ret != size) ? -EFAULT : 0;
806 }
807 
808 static int hyp_complete_donation(u64 addr,
809 				 const struct pkvm_mem_transition *tx)
810 {
811 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
812 	enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
813 
814 	return pkvm_create_mappings_locked(start, end, prot);
815 }
816 
817 static int check_share(struct pkvm_mem_share *share)
818 {
819 	const struct pkvm_mem_transition *tx = &share->tx;
820 	u64 completer_addr;
821 	int ret;
822 
823 	switch (tx->initiator.id) {
824 	case PKVM_ID_HOST:
825 		ret = host_request_owned_transition(&completer_addr, tx);
826 		break;
827 	default:
828 		ret = -EINVAL;
829 	}
830 
831 	if (ret)
832 		return ret;
833 
834 	switch (tx->completer.id) {
835 	case PKVM_ID_HYP:
836 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
837 		break;
838 	default:
839 		ret = -EINVAL;
840 	}
841 
842 	return ret;
843 }
844 
845 static int __do_share(struct pkvm_mem_share *share)
846 {
847 	const struct pkvm_mem_transition *tx = &share->tx;
848 	u64 completer_addr;
849 	int ret;
850 
851 	switch (tx->initiator.id) {
852 	case PKVM_ID_HOST:
853 		ret = host_initiate_share(&completer_addr, tx);
854 		break;
855 	default:
856 		ret = -EINVAL;
857 	}
858 
859 	if (ret)
860 		return ret;
861 
862 	switch (tx->completer.id) {
863 	case PKVM_ID_HYP:
864 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
865 		break;
866 	default:
867 		ret = -EINVAL;
868 	}
869 
870 	return ret;
871 }
872 
873 /*
874  * do_share():
875  *
876  * The page owner grants access to another component with a given set
877  * of permissions.
878  *
879  * Initiator: OWNED	=> SHARED_OWNED
880  * Completer: NOPAGE	=> SHARED_BORROWED
881  */
882 static int do_share(struct pkvm_mem_share *share)
883 {
884 	int ret;
885 
886 	ret = check_share(share);
887 	if (ret)
888 		return ret;
889 
890 	return WARN_ON(__do_share(share));
891 }
892 
893 static int check_unshare(struct pkvm_mem_share *share)
894 {
895 	const struct pkvm_mem_transition *tx = &share->tx;
896 	u64 completer_addr;
897 	int ret;
898 
899 	switch (tx->initiator.id) {
900 	case PKVM_ID_HOST:
901 		ret = host_request_unshare(&completer_addr, tx);
902 		break;
903 	default:
904 		ret = -EINVAL;
905 	}
906 
907 	if (ret)
908 		return ret;
909 
910 	switch (tx->completer.id) {
911 	case PKVM_ID_HYP:
912 		ret = hyp_ack_unshare(completer_addr, tx);
913 		break;
914 	default:
915 		ret = -EINVAL;
916 	}
917 
918 	return ret;
919 }
920 
921 static int __do_unshare(struct pkvm_mem_share *share)
922 {
923 	const struct pkvm_mem_transition *tx = &share->tx;
924 	u64 completer_addr;
925 	int ret;
926 
927 	switch (tx->initiator.id) {
928 	case PKVM_ID_HOST:
929 		ret = host_initiate_unshare(&completer_addr, tx);
930 		break;
931 	default:
932 		ret = -EINVAL;
933 	}
934 
935 	if (ret)
936 		return ret;
937 
938 	switch (tx->completer.id) {
939 	case PKVM_ID_HYP:
940 		ret = hyp_complete_unshare(completer_addr, tx);
941 		break;
942 	default:
943 		ret = -EINVAL;
944 	}
945 
946 	return ret;
947 }
948 
949 /*
950  * do_unshare():
951  *
952  * The page owner revokes access from another component for a range of
953  * pages which were previously shared using do_share().
954  *
955  * Initiator: SHARED_OWNED	=> OWNED
956  * Completer: SHARED_BORROWED	=> NOPAGE
957  */
958 static int do_unshare(struct pkvm_mem_share *share)
959 {
960 	int ret;
961 
962 	ret = check_unshare(share);
963 	if (ret)
964 		return ret;
965 
966 	return WARN_ON(__do_unshare(share));
967 }
968 
969 static int check_donation(struct pkvm_mem_donation *donation)
970 {
971 	const struct pkvm_mem_transition *tx = &donation->tx;
972 	u64 completer_addr;
973 	int ret;
974 
975 	switch (tx->initiator.id) {
976 	case PKVM_ID_HOST:
977 		ret = host_request_owned_transition(&completer_addr, tx);
978 		break;
979 	case PKVM_ID_HYP:
980 		ret = hyp_request_donation(&completer_addr, tx);
981 		break;
982 	default:
983 		ret = -EINVAL;
984 	}
985 
986 	if (ret)
987 		return ret;
988 
989 	switch (tx->completer.id) {
990 	case PKVM_ID_HOST:
991 		ret = host_ack_donation(completer_addr, tx);
992 		break;
993 	case PKVM_ID_HYP:
994 		ret = hyp_ack_donation(completer_addr, tx);
995 		break;
996 	default:
997 		ret = -EINVAL;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 static int __do_donate(struct pkvm_mem_donation *donation)
1004 {
1005 	const struct pkvm_mem_transition *tx = &donation->tx;
1006 	u64 completer_addr;
1007 	int ret;
1008 
1009 	switch (tx->initiator.id) {
1010 	case PKVM_ID_HOST:
1011 		ret = host_initiate_donation(&completer_addr, tx);
1012 		break;
1013 	case PKVM_ID_HYP:
1014 		ret = hyp_initiate_donation(&completer_addr, tx);
1015 		break;
1016 	default:
1017 		ret = -EINVAL;
1018 	}
1019 
1020 	if (ret)
1021 		return ret;
1022 
1023 	switch (tx->completer.id) {
1024 	case PKVM_ID_HOST:
1025 		ret = host_complete_donation(completer_addr, tx);
1026 		break;
1027 	case PKVM_ID_HYP:
1028 		ret = hyp_complete_donation(completer_addr, tx);
1029 		break;
1030 	default:
1031 		ret = -EINVAL;
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 /*
1038  * do_donate():
1039  *
1040  * The page owner transfers ownership to another component, losing access
1041  * as a consequence.
1042  *
1043  * Initiator: OWNED	=> NOPAGE
1044  * Completer: NOPAGE	=> OWNED
1045  */
1046 static int do_donate(struct pkvm_mem_donation *donation)
1047 {
1048 	int ret;
1049 
1050 	ret = check_donation(donation);
1051 	if (ret)
1052 		return ret;
1053 
1054 	return WARN_ON(__do_donate(donation));
1055 }
1056 
1057 int __pkvm_host_share_hyp(u64 pfn)
1058 {
1059 	int ret;
1060 	u64 host_addr = hyp_pfn_to_phys(pfn);
1061 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1062 	struct pkvm_mem_share share = {
1063 		.tx	= {
1064 			.nr_pages	= 1,
1065 			.initiator	= {
1066 				.id	= PKVM_ID_HOST,
1067 				.addr	= host_addr,
1068 				.host	= {
1069 					.completer_addr = hyp_addr,
1070 				},
1071 			},
1072 			.completer	= {
1073 				.id	= PKVM_ID_HYP,
1074 			},
1075 		},
1076 		.completer_prot	= PAGE_HYP,
1077 	};
1078 
1079 	host_lock_component();
1080 	hyp_lock_component();
1081 
1082 	ret = do_share(&share);
1083 
1084 	hyp_unlock_component();
1085 	host_unlock_component();
1086 
1087 	return ret;
1088 }
1089 
1090 int __pkvm_host_unshare_hyp(u64 pfn)
1091 {
1092 	int ret;
1093 	u64 host_addr = hyp_pfn_to_phys(pfn);
1094 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1095 	struct pkvm_mem_share share = {
1096 		.tx	= {
1097 			.nr_pages	= 1,
1098 			.initiator	= {
1099 				.id	= PKVM_ID_HOST,
1100 				.addr	= host_addr,
1101 				.host	= {
1102 					.completer_addr = hyp_addr,
1103 				},
1104 			},
1105 			.completer	= {
1106 				.id	= PKVM_ID_HYP,
1107 			},
1108 		},
1109 		.completer_prot	= PAGE_HYP,
1110 	};
1111 
1112 	host_lock_component();
1113 	hyp_lock_component();
1114 
1115 	ret = do_unshare(&share);
1116 
1117 	hyp_unlock_component();
1118 	host_unlock_component();
1119 
1120 	return ret;
1121 }
1122 
1123 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
1124 {
1125 	int ret;
1126 	u64 host_addr = hyp_pfn_to_phys(pfn);
1127 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1128 	struct pkvm_mem_donation donation = {
1129 		.tx	= {
1130 			.nr_pages	= nr_pages,
1131 			.initiator	= {
1132 				.id	= PKVM_ID_HOST,
1133 				.addr	= host_addr,
1134 				.host	= {
1135 					.completer_addr = hyp_addr,
1136 				},
1137 			},
1138 			.completer	= {
1139 				.id	= PKVM_ID_HYP,
1140 			},
1141 		},
1142 	};
1143 
1144 	host_lock_component();
1145 	hyp_lock_component();
1146 
1147 	ret = do_donate(&donation);
1148 
1149 	hyp_unlock_component();
1150 	host_unlock_component();
1151 
1152 	return ret;
1153 }
1154 
1155 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
1156 {
1157 	int ret;
1158 	u64 host_addr = hyp_pfn_to_phys(pfn);
1159 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1160 	struct pkvm_mem_donation donation = {
1161 		.tx	= {
1162 			.nr_pages	= nr_pages,
1163 			.initiator	= {
1164 				.id	= PKVM_ID_HYP,
1165 				.addr	= hyp_addr,
1166 				.hyp	= {
1167 					.completer_addr = host_addr,
1168 				},
1169 			},
1170 			.completer	= {
1171 				.id	= PKVM_ID_HOST,
1172 			},
1173 		},
1174 	};
1175 
1176 	host_lock_component();
1177 	hyp_lock_component();
1178 
1179 	ret = do_donate(&donation);
1180 
1181 	hyp_unlock_component();
1182 	host_unlock_component();
1183 
1184 	return ret;
1185 }
1186 
1187 int hyp_pin_shared_mem(void *from, void *to)
1188 {
1189 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1190 	u64 end = PAGE_ALIGN((u64)to);
1191 	u64 size = end - start;
1192 	int ret;
1193 
1194 	host_lock_component();
1195 	hyp_lock_component();
1196 
1197 	ret = __host_check_page_state_range(__hyp_pa(start), size,
1198 					    PKVM_PAGE_SHARED_OWNED);
1199 	if (ret)
1200 		goto unlock;
1201 
1202 	ret = __hyp_check_page_state_range(start, size,
1203 					   PKVM_PAGE_SHARED_BORROWED);
1204 	if (ret)
1205 		goto unlock;
1206 
1207 	for (cur = start; cur < end; cur += PAGE_SIZE)
1208 		hyp_page_ref_inc(hyp_virt_to_page(cur));
1209 
1210 unlock:
1211 	hyp_unlock_component();
1212 	host_unlock_component();
1213 
1214 	return ret;
1215 }
1216 
1217 void hyp_unpin_shared_mem(void *from, void *to)
1218 {
1219 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1220 	u64 end = PAGE_ALIGN((u64)to);
1221 
1222 	host_lock_component();
1223 	hyp_lock_component();
1224 
1225 	for (cur = start; cur < end; cur += PAGE_SIZE)
1226 		hyp_page_ref_dec(hyp_virt_to_page(cur));
1227 
1228 	hyp_unlock_component();
1229 	host_unlock_component();
1230 }
1231