xref: /linux/arch/arm/mm/ioremap.c (revision 33619f0d3ff715a2a5499520967d526ad931d70d)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 
29 #include <asm/cputype.h>
30 #include <asm/cacheflush.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgalloc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/sizes.h>
35 
36 #include <asm/mach/map.h>
37 #include "mm.h"
38 
39 /*
40  * Used by ioremap() and iounmap() code to mark (super)section-mapped
41  * I/O regions in vm_struct->flags field.
42  */
43 #define VM_ARM_SECTION_MAPPING	0x80000000
44 
45 int ioremap_page(unsigned long virt, unsigned long phys,
46 		 const struct mem_type *mtype)
47 {
48 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
49 				  __pgprot(mtype->prot_pte));
50 }
51 EXPORT_SYMBOL(ioremap_page);
52 
53 void __check_kvm_seq(struct mm_struct *mm)
54 {
55 	unsigned int seq;
56 
57 	do {
58 		seq = init_mm.context.kvm_seq;
59 		memcpy(pgd_offset(mm, VMALLOC_START),
60 		       pgd_offset_k(VMALLOC_START),
61 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
62 					pgd_index(VMALLOC_START)));
63 		mm->context.kvm_seq = seq;
64 	} while (seq != init_mm.context.kvm_seq);
65 }
66 
67 #ifndef CONFIG_SMP
68 /*
69  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
70  * the other CPUs will not see this change until their next context switch.
71  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
72  * which requires the new ioremap'd region to be referenced, the CPU will
73  * reference the _old_ region.
74  *
75  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
76  * mask the size back to 1MB aligned or we will overflow in the loop below.
77  */
78 static void unmap_area_sections(unsigned long virt, unsigned long size)
79 {
80 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
81 	pgd_t *pgd;
82 
83 	flush_cache_vunmap(addr, end);
84 	pgd = pgd_offset_k(addr);
85 	do {
86 		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
87 
88 		pmd = *pmdp;
89 		if (!pmd_none(pmd)) {
90 			/*
91 			 * Clear the PMD from the page table, and
92 			 * increment the kvm sequence so others
93 			 * notice this change.
94 			 *
95 			 * Note: this is still racy on SMP machines.
96 			 */
97 			pmd_clear(pmdp);
98 			init_mm.context.kvm_seq++;
99 
100 			/*
101 			 * Free the page table, if there was one.
102 			 */
103 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105 		}
106 
107 		addr += PGDIR_SIZE;
108 		pgd++;
109 	} while (addr < end);
110 
111 	/*
112 	 * Ensure that the active_mm is up to date - we want to
113 	 * catch any use-after-iounmap cases.
114 	 */
115 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116 		__check_kvm_seq(current->active_mm);
117 
118 	flush_tlb_kernel_range(virt, end);
119 }
120 
121 static int
122 remap_area_sections(unsigned long virt, unsigned long pfn,
123 		    size_t size, const struct mem_type *type)
124 {
125 	unsigned long addr = virt, end = virt + size;
126 	pgd_t *pgd;
127 
128 	/*
129 	 * Remove and free any PTE-based mapping, and
130 	 * sync the current kernel mapping.
131 	 */
132 	unmap_area_sections(virt, size);
133 
134 	pgd = pgd_offset_k(addr);
135 	do {
136 		pmd_t *pmd = pmd_offset(pgd, addr);
137 
138 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
139 		pfn += SZ_1M >> PAGE_SHIFT;
140 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141 		pfn += SZ_1M >> PAGE_SHIFT;
142 		flush_pmd_entry(pmd);
143 
144 		addr += PGDIR_SIZE;
145 		pgd++;
146 	} while (addr < end);
147 
148 	return 0;
149 }
150 
151 static int
152 remap_area_supersections(unsigned long virt, unsigned long pfn,
153 			 size_t size, const struct mem_type *type)
154 {
155 	unsigned long addr = virt, end = virt + size;
156 	pgd_t *pgd;
157 
158 	/*
159 	 * Remove and free any PTE-based mapping, and
160 	 * sync the current kernel mapping.
161 	 */
162 	unmap_area_sections(virt, size);
163 
164 	pgd = pgd_offset_k(virt);
165 	do {
166 		unsigned long super_pmd_val, i;
167 
168 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
169 				PMD_SECT_SUPER;
170 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
171 
172 		for (i = 0; i < 8; i++) {
173 			pmd_t *pmd = pmd_offset(pgd, addr);
174 
175 			pmd[0] = __pmd(super_pmd_val);
176 			pmd[1] = __pmd(super_pmd_val);
177 			flush_pmd_entry(pmd);
178 
179 			addr += PGDIR_SIZE;
180 			pgd++;
181 		}
182 
183 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
184 	} while (addr < end);
185 
186 	return 0;
187 }
188 #endif
189 
190 void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
191 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
192 {
193 	const struct mem_type *type;
194 	int err;
195 	unsigned long addr;
196  	struct vm_struct * area;
197 
198 	/*
199 	 * High mappings must be supersection aligned
200 	 */
201 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
202 		return NULL;
203 
204 	/*
205 	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
206 	 */
207 	if (WARN_ON(pfn_valid(pfn)))
208 		return NULL;
209 
210 	type = get_mem_type(mtype);
211 	if (!type)
212 		return NULL;
213 
214 	/*
215 	 * Page align the mapping size, taking account of any offset.
216 	 */
217 	size = PAGE_ALIGN(offset + size);
218 
219 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
220  	if (!area)
221  		return NULL;
222  	addr = (unsigned long)area->addr;
223 
224 #ifndef CONFIG_SMP
225 	if (DOMAIN_IO == 0 &&
226 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
227 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
228 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
229 		area->flags |= VM_ARM_SECTION_MAPPING;
230 		err = remap_area_supersections(addr, pfn, size, type);
231 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
232 		area->flags |= VM_ARM_SECTION_MAPPING;
233 		err = remap_area_sections(addr, pfn, size, type);
234 	} else
235 #endif
236 		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
237 					 __pgprot(type->prot_pte));
238 
239 	if (err) {
240  		vunmap((void *)addr);
241  		return NULL;
242  	}
243 
244 	flush_cache_vmap(addr, addr + size);
245 	return (void __iomem *) (offset + addr);
246 }
247 
248 void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
249 	unsigned int mtype, void *caller)
250 {
251 	unsigned long last_addr;
252  	unsigned long offset = phys_addr & ~PAGE_MASK;
253  	unsigned long pfn = __phys_to_pfn(phys_addr);
254 
255  	/*
256  	 * Don't allow wraparound or zero size
257 	 */
258 	last_addr = phys_addr + size - 1;
259 	if (!size || last_addr < phys_addr)
260 		return NULL;
261 
262 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
263 			caller);
264 }
265 
266 /*
267  * Remap an arbitrary physical address space into the kernel virtual
268  * address space. Needed when the kernel wants to access high addresses
269  * directly.
270  *
271  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
272  * have to convert them into an offset in a page-aligned mapping, but the
273  * caller shouldn't need to know that small detail.
274  */
275 void __iomem *
276 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
277 		  unsigned int mtype)
278 {
279 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
280 			__builtin_return_address(0));
281 }
282 EXPORT_SYMBOL(__arm_ioremap_pfn);
283 
284 void __iomem *
285 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
286 {
287 	return __arm_ioremap_caller(phys_addr, size, mtype,
288 			__builtin_return_address(0));
289 }
290 EXPORT_SYMBOL(__arm_ioremap);
291 
292 void __iounmap(volatile void __iomem *io_addr)
293 {
294 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
295 #ifndef CONFIG_SMP
296 	struct vm_struct **p, *tmp;
297 
298 	/*
299 	 * If this is a section based mapping we need to handle it
300 	 * specially as the VM subsystem does not know how to handle
301 	 * such a beast. We need the lock here b/c we need to clear
302 	 * all the mappings before the area can be reclaimed
303 	 * by someone else.
304 	 */
305 	write_lock(&vmlist_lock);
306 	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
307 		if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
308 			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
309 				unmap_area_sections((unsigned long)tmp->addr,
310 						    tmp->size);
311 			}
312 			break;
313 		}
314 	}
315 	write_unlock(&vmlist_lock);
316 #endif
317 
318 	vunmap(addr);
319 }
320 EXPORT_SYMBOL(__iounmap);
321