xref: /linux/arch/arm/mm/fault.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
30 #ifdef CONFIG_KPROBES
31 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
32 {
33 	int ret = 0;
34 
35 	if (!user_mode(regs)) {
36 		/* kprobe_running() needs smp_processor_id() */
37 		preempt_disable();
38 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
39 			ret = 1;
40 		preempt_enable();
41 	}
42 
43 	return ret;
44 }
45 #else
46 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
47 {
48 	return 0;
49 }
50 #endif
51 
52 /*
53  * This is useful to dump out the page tables associated with
54  * 'addr' in mm 'mm'.
55  */
56 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
57 {
58 	pgd_t *pgd;
59 
60 	if (!mm)
61 		mm = &init_mm;
62 
63 	printk("%spgd = %p\n", lvl, mm->pgd);
64 	pgd = pgd_offset(mm, addr);
65 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
66 
67 	do {
68 		pud_t *pud;
69 		pmd_t *pmd;
70 		pte_t *pte;
71 
72 		if (pgd_none(*pgd))
73 			break;
74 
75 		if (pgd_bad(*pgd)) {
76 			pr_cont("(bad)");
77 			break;
78 		}
79 
80 		pud = pud_offset(pgd, addr);
81 		if (PTRS_PER_PUD != 1)
82 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
83 
84 		if (pud_none(*pud))
85 			break;
86 
87 		if (pud_bad(*pud)) {
88 			pr_cont("(bad)");
89 			break;
90 		}
91 
92 		pmd = pmd_offset(pud, addr);
93 		if (PTRS_PER_PMD != 1)
94 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
95 
96 		if (pmd_none(*pmd))
97 			break;
98 
99 		if (pmd_bad(*pmd)) {
100 			pr_cont("(bad)");
101 			break;
102 		}
103 
104 		/* We must not map this if we have highmem enabled */
105 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
106 			break;
107 
108 		pte = pte_offset_map(pmd, addr);
109 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
110 #ifndef CONFIG_ARM_LPAE
111 		pr_cont(", *ppte=%08llx",
112 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
113 #endif
114 		pte_unmap(pte);
115 	} while(0);
116 
117 	pr_cont("\n");
118 }
119 #else					/* CONFIG_MMU */
120 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
121 { }
122 #endif					/* CONFIG_MMU */
123 
124 /*
125  * Oops.  The kernel tried to access some page that wasn't present.
126  */
127 static void
128 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
129 		  struct pt_regs *regs)
130 {
131 	/*
132 	 * Are we prepared to handle this kernel fault?
133 	 */
134 	if (fixup_exception(regs))
135 		return;
136 
137 	/*
138 	 * No handler, we'll have to terminate things with extreme prejudice.
139 	 */
140 	bust_spinlocks(1);
141 	pr_alert("8<--- cut here ---\n");
142 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
143 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
144 		 "paging request", addr);
145 
146 	show_pte(KERN_ALERT, mm, addr);
147 	die("Oops", regs, fsr);
148 	bust_spinlocks(0);
149 	do_exit(SIGKILL);
150 }
151 
152 /*
153  * Something tried to access memory that isn't in our memory map..
154  * User mode accesses just cause a SIGSEGV
155  */
156 static void
157 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
158 		int code, struct pt_regs *regs)
159 {
160 	struct task_struct *tsk = current;
161 
162 	if (addr > TASK_SIZE)
163 		harden_branch_predictor();
164 
165 #ifdef CONFIG_DEBUG_USER
166 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
167 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
168 		pr_err("8<--- cut here ---\n");
169 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170 		       tsk->comm, sig, addr, fsr);
171 		show_pte(KERN_ERR, tsk->mm, addr);
172 		show_regs(regs);
173 	}
174 #endif
175 #ifndef CONFIG_KUSER_HELPERS
176 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
177 		printk_ratelimited(KERN_DEBUG
178 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
179 				   tsk->comm, addr);
180 #endif
181 
182 	tsk->thread.address = addr;
183 	tsk->thread.error_code = fsr;
184 	tsk->thread.trap_no = 14;
185 	force_sig_fault(sig, code, (void __user *)addr);
186 }
187 
188 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
189 {
190 	struct task_struct *tsk = current;
191 	struct mm_struct *mm = tsk->active_mm;
192 
193 	/*
194 	 * If we are in kernel mode at this point, we
195 	 * have no context to handle this fault with.
196 	 */
197 	if (user_mode(regs))
198 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
199 	else
200 		__do_kernel_fault(mm, addr, fsr, regs);
201 }
202 
203 #ifdef CONFIG_MMU
204 #define VM_FAULT_BADMAP		0x010000
205 #define VM_FAULT_BADACCESS	0x020000
206 
207 /*
208  * Check that the permissions on the VMA allow for the fault which occurred.
209  * If we encountered a write fault, we must have write permission, otherwise
210  * we allow any permission.
211  */
212 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
213 {
214 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
215 
216 	if (fsr & FSR_WRITE)
217 		mask = VM_WRITE;
218 	if (fsr & FSR_LNX_PF)
219 		mask = VM_EXEC;
220 
221 	return vma->vm_flags & mask ? false : true;
222 }
223 
224 static vm_fault_t __kprobes
225 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
226 		unsigned int flags, struct task_struct *tsk)
227 {
228 	struct vm_area_struct *vma;
229 	vm_fault_t fault;
230 
231 	vma = find_vma(mm, addr);
232 	fault = VM_FAULT_BADMAP;
233 	if (unlikely(!vma))
234 		goto out;
235 	if (unlikely(vma->vm_start > addr))
236 		goto check_stack;
237 
238 	/*
239 	 * Ok, we have a good vm_area for this
240 	 * memory access, so we can handle it.
241 	 */
242 good_area:
243 	if (access_error(fsr, vma)) {
244 		fault = VM_FAULT_BADACCESS;
245 		goto out;
246 	}
247 
248 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
249 
250 check_stack:
251 	/* Don't allow expansion below FIRST_USER_ADDRESS */
252 	if (vma->vm_flags & VM_GROWSDOWN &&
253 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
254 		goto good_area;
255 out:
256 	return fault;
257 }
258 
259 static int __kprobes
260 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
261 {
262 	struct task_struct *tsk;
263 	struct mm_struct *mm;
264 	int sig, code;
265 	vm_fault_t fault;
266 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
267 
268 	if (notify_page_fault(regs, fsr))
269 		return 0;
270 
271 	tsk = current;
272 	mm  = tsk->mm;
273 
274 	/* Enable interrupts if they were enabled in the parent context. */
275 	if (interrupts_enabled(regs))
276 		local_irq_enable();
277 
278 	/*
279 	 * If we're in an interrupt or have no user
280 	 * context, we must not take the fault..
281 	 */
282 	if (faulthandler_disabled() || !mm)
283 		goto no_context;
284 
285 	if (user_mode(regs))
286 		flags |= FAULT_FLAG_USER;
287 	if (fsr & FSR_WRITE)
288 		flags |= FAULT_FLAG_WRITE;
289 
290 	/*
291 	 * As per x86, we may deadlock here.  However, since the kernel only
292 	 * validly references user space from well defined areas of the code,
293 	 * we can bug out early if this is from code which shouldn't.
294 	 */
295 	if (!down_read_trylock(&mm->mmap_sem)) {
296 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
297 			goto no_context;
298 retry:
299 		down_read(&mm->mmap_sem);
300 	} else {
301 		/*
302 		 * The above down_read_trylock() might have succeeded in
303 		 * which case, we'll have missed the might_sleep() from
304 		 * down_read()
305 		 */
306 		might_sleep();
307 #ifdef CONFIG_DEBUG_VM
308 		if (!user_mode(regs) &&
309 		    !search_exception_tables(regs->ARM_pc))
310 			goto no_context;
311 #endif
312 	}
313 
314 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
315 
316 	/* If we need to retry but a fatal signal is pending, handle the
317 	 * signal first. We do not need to release the mmap_sem because
318 	 * it would already be released in __lock_page_or_retry in
319 	 * mm/filemap.c. */
320 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
321 		if (!user_mode(regs))
322 			goto no_context;
323 		return 0;
324 	}
325 
326 	/*
327 	 * Major/minor page fault accounting is only done on the
328 	 * initial attempt. If we go through a retry, it is extremely
329 	 * likely that the page will be found in page cache at that point.
330 	 */
331 
332 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
333 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
334 		if (fault & VM_FAULT_MAJOR) {
335 			tsk->maj_flt++;
336 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
337 					regs, addr);
338 		} else {
339 			tsk->min_flt++;
340 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
341 					regs, addr);
342 		}
343 		if (fault & VM_FAULT_RETRY) {
344 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
345 			* of starvation. */
346 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
347 			flags |= FAULT_FLAG_TRIED;
348 			goto retry;
349 		}
350 	}
351 
352 	up_read(&mm->mmap_sem);
353 
354 	/*
355 	 * Handle the "normal" case first - VM_FAULT_MAJOR
356 	 */
357 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
358 		return 0;
359 
360 	/*
361 	 * If we are in kernel mode at this point, we
362 	 * have no context to handle this fault with.
363 	 */
364 	if (!user_mode(regs))
365 		goto no_context;
366 
367 	if (fault & VM_FAULT_OOM) {
368 		/*
369 		 * We ran out of memory, call the OOM killer, and return to
370 		 * userspace (which will retry the fault, or kill us if we
371 		 * got oom-killed)
372 		 */
373 		pagefault_out_of_memory();
374 		return 0;
375 	}
376 
377 	if (fault & VM_FAULT_SIGBUS) {
378 		/*
379 		 * We had some memory, but were unable to
380 		 * successfully fix up this page fault.
381 		 */
382 		sig = SIGBUS;
383 		code = BUS_ADRERR;
384 	} else {
385 		/*
386 		 * Something tried to access memory that
387 		 * isn't in our memory map..
388 		 */
389 		sig = SIGSEGV;
390 		code = fault == VM_FAULT_BADACCESS ?
391 			SEGV_ACCERR : SEGV_MAPERR;
392 	}
393 
394 	__do_user_fault(addr, fsr, sig, code, regs);
395 	return 0;
396 
397 no_context:
398 	__do_kernel_fault(mm, addr, fsr, regs);
399 	return 0;
400 }
401 #else					/* CONFIG_MMU */
402 static int
403 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
404 {
405 	return 0;
406 }
407 #endif					/* CONFIG_MMU */
408 
409 /*
410  * First Level Translation Fault Handler
411  *
412  * We enter here because the first level page table doesn't contain
413  * a valid entry for the address.
414  *
415  * If the address is in kernel space (>= TASK_SIZE), then we are
416  * probably faulting in the vmalloc() area.
417  *
418  * If the init_task's first level page tables contains the relevant
419  * entry, we copy the it to this task.  If not, we send the process
420  * a signal, fixup the exception, or oops the kernel.
421  *
422  * NOTE! We MUST NOT take any locks for this case. We may be in an
423  * interrupt or a critical region, and should only copy the information
424  * from the master page table, nothing more.
425  */
426 #ifdef CONFIG_MMU
427 static int __kprobes
428 do_translation_fault(unsigned long addr, unsigned int fsr,
429 		     struct pt_regs *regs)
430 {
431 	unsigned int index;
432 	pgd_t *pgd, *pgd_k;
433 	pud_t *pud, *pud_k;
434 	pmd_t *pmd, *pmd_k;
435 
436 	if (addr < TASK_SIZE)
437 		return do_page_fault(addr, fsr, regs);
438 
439 	if (user_mode(regs))
440 		goto bad_area;
441 
442 	index = pgd_index(addr);
443 
444 	pgd = cpu_get_pgd() + index;
445 	pgd_k = init_mm.pgd + index;
446 
447 	if (pgd_none(*pgd_k))
448 		goto bad_area;
449 	if (!pgd_present(*pgd))
450 		set_pgd(pgd, *pgd_k);
451 
452 	pud = pud_offset(pgd, addr);
453 	pud_k = pud_offset(pgd_k, addr);
454 
455 	if (pud_none(*pud_k))
456 		goto bad_area;
457 	if (!pud_present(*pud))
458 		set_pud(pud, *pud_k);
459 
460 	pmd = pmd_offset(pud, addr);
461 	pmd_k = pmd_offset(pud_k, addr);
462 
463 #ifdef CONFIG_ARM_LPAE
464 	/*
465 	 * Only one hardware entry per PMD with LPAE.
466 	 */
467 	index = 0;
468 #else
469 	/*
470 	 * On ARM one Linux PGD entry contains two hardware entries (see page
471 	 * tables layout in pgtable.h). We normally guarantee that we always
472 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
473 	 * It can create inidividual L1 entries, so here we have to call
474 	 * pmd_none() check for the entry really corresponded to address, not
475 	 * for the first of pair.
476 	 */
477 	index = (addr >> SECTION_SHIFT) & 1;
478 #endif
479 	if (pmd_none(pmd_k[index]))
480 		goto bad_area;
481 
482 	copy_pmd(pmd, pmd_k);
483 	return 0;
484 
485 bad_area:
486 	do_bad_area(addr, fsr, regs);
487 	return 0;
488 }
489 #else					/* CONFIG_MMU */
490 static int
491 do_translation_fault(unsigned long addr, unsigned int fsr,
492 		     struct pt_regs *regs)
493 {
494 	return 0;
495 }
496 #endif					/* CONFIG_MMU */
497 
498 /*
499  * Some section permission faults need to be handled gracefully.
500  * They can happen due to a __{get,put}_user during an oops.
501  */
502 #ifndef CONFIG_ARM_LPAE
503 static int
504 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
505 {
506 	do_bad_area(addr, fsr, regs);
507 	return 0;
508 }
509 #endif /* CONFIG_ARM_LPAE */
510 
511 /*
512  * This abort handler always returns "fault".
513  */
514 static int
515 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
516 {
517 	return 1;
518 }
519 
520 struct fsr_info {
521 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
522 	int	sig;
523 	int	code;
524 	const char *name;
525 };
526 
527 /* FSR definition */
528 #ifdef CONFIG_ARM_LPAE
529 #include "fsr-3level.c"
530 #else
531 #include "fsr-2level.c"
532 #endif
533 
534 void __init
535 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
536 		int sig, int code, const char *name)
537 {
538 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
539 		BUG();
540 
541 	fsr_info[nr].fn   = fn;
542 	fsr_info[nr].sig  = sig;
543 	fsr_info[nr].code = code;
544 	fsr_info[nr].name = name;
545 }
546 
547 /*
548  * Dispatch a data abort to the relevant handler.
549  */
550 asmlinkage void
551 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
552 {
553 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
554 
555 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
556 		return;
557 
558 	pr_alert("8<--- cut here ---\n");
559 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
560 		inf->name, fsr, addr);
561 	show_pte(KERN_ALERT, current->mm, addr);
562 
563 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
564 		       fsr, 0);
565 }
566 
567 void __init
568 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
569 		 int sig, int code, const char *name)
570 {
571 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
572 		BUG();
573 
574 	ifsr_info[nr].fn   = fn;
575 	ifsr_info[nr].sig  = sig;
576 	ifsr_info[nr].code = code;
577 	ifsr_info[nr].name = name;
578 }
579 
580 asmlinkage void
581 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
582 {
583 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
584 
585 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
586 		return;
587 
588 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
589 		inf->name, ifsr, addr);
590 
591 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
592 		       ifsr, 0);
593 }
594 
595 /*
596  * Abort handler to be used only during first unmasking of asynchronous aborts
597  * on the boot CPU. This makes sure that the machine will not die if the
598  * firmware/bootloader left an imprecise abort pending for us to trip over.
599  */
600 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
601 				      struct pt_regs *regs)
602 {
603 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
604 		"first unmask, this is most likely caused by a "
605 		"firmware/bootloader bug.\n", fsr);
606 
607 	return 0;
608 }
609 
610 void __init early_abt_enable(void)
611 {
612 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
613 	local_abt_enable();
614 	fsr_info[FSR_FS_AEA].fn = do_bad;
615 }
616 
617 #ifndef CONFIG_ARM_LPAE
618 static int __init exceptions_init(void)
619 {
620 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
621 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
622 				"I-cache maintenance fault");
623 	}
624 
625 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
626 		/*
627 		 * TODO: Access flag faults introduced in ARMv6K.
628 		 * Runtime check for 'K' extension is needed
629 		 */
630 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
631 				"section access flag fault");
632 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
633 				"section access flag fault");
634 	}
635 
636 	return 0;
637 }
638 
639 arch_initcall(exceptions_init);
640 #endif
641